Effect of full-size and down-scaled accelerated traffic loading on pavement behavior

Arraigada, Martin ; Pugliessi, Andrés ; Partl, Manfred ; Martinez, Fernando

In: Materials and Structures, 2014, vol. 47, no. 8, p. 1409-1424

Zum persönliche Liste hinzufügen
    Summary
    Accelerated pavement testing (APT) is an effective testing procedure to evaluate asphalt pavements. With APT it is possible to determine and measure the structural response and pavement performance under a controlled, accelerated damage accumulation in a compressed period of time. However, different types of APT technologies can lead to different results. Full-size loading devices simulate road traffic accurately, but are expensive, while down-scaled size simulators are cost effective, nevertheless further away from reality. In this work, two types of APT mobile load simulators with different loading characteristics are compared with respect to pavement response in the field and in the laboratory. The MLS10 is a full-size simulator, whereas the MMLS3 is a one-third scale device. The relationship between the devices was studied in terms of the measured strains induced by both machines in the same pavement. Therefore, a testing field was instrumented with strain gauges and first trafficked with MLS10. Later, a slab of the instrumented pavement was cut off the road and tested in the laboratory with the smaller MMLS3. Furthermore, the structure of the pavement was modelled with a viscoelastic finite element method model and the moving loads of both machines were simulated considering size, speed and approximate footprints of their tires. As for the pavement materials, the properties of the different asphalt layers were determined in the laboratory. Experimentally acquired strain data were used to validate the models. Stress fields under different loading and environmental conditions were analysed and compared. The evaluation shows that the models can predict the pavement response under different loading conditions. However, they still need to be improved to increase the accuracy under different conditions. Further, the analysis of the strains show that both load simulators induce a different stress-strain situation and scaling of the pavement should be considered.