Descent properties of hermitian Witt groups in inseparable extensions

Bayer-Fluckiger, Eva ; Moldovan, Daniel

In: Archiv der Mathematik, 2011, vol. 96, no. 6, p. 547-553

Ajouter à la liste personnelle
    Summary
    Let k be a field of characteristic ≠ 2, A be a central simple algebra with involution σ over k and W(A, σ) be the associated Witt group of hermitian forms. We prove that for all purely inseparable extensions L of k, the canonical map $${r_{L/k}: W(A, \sigma) \longrightarrow W(A_L, \sigma_L)}$$ is an isomorphism