Positive effects of cyanogenic glycosides in food plants on larval development of the common blue butterfly

Goverde, Marcel ; Bazin, Alain ; Kéry, Marc ; Shykoff, Jacqui ; Erhardt, Andreas

In: Oecologia, 2008, vol. 157, no. 3, p. 409-418

Ajouter à la liste personnelle
    Summary
    Cyanogenesis is a widespread chemical defence mechanism in plants against herbivory. However, some specialised herbivores overcome this protection by different behavioural or metabolic mechanisms. In the present study, we investigated the effect of presence or absence of cyanogenic glycosides in birdsfoot trefoil (Lotus corniculatus, Fabaceae) on oviposition behaviour, larval preference, larval development, adult weight and nectar preference of the common blue butterfly (Polyommatus icarus, Lycaenidae). For oviposition behaviour there was a female-specific reaction to cyanogenic glycoside content; i.e. some females preferred to oviposit on cyanogenic over acyanogenic plants, while other females behaved in the opposite way. Freshly hatched larvae did not discriminate between the two plant morphs. Since the two plant morphs differed not only in their content of cyanogenic glycoside, but also in N and water content, we expected these differences to affect larval growth. Contrary to our expectations, larvae feeding on cyanogenic plants showed a faster development and stronger weight gain than larvae feeding on acyanogenic plants. Furthermore, female genotype affected development time, larval and pupal weight of the common blue butterfly. However, most effects detected in the larval phase disappeared for adult weight, indicating compensatory feeding of larvae. Adult butterflies reared on the two cyanogenic glycoside plant morphs did not differ in their nectar preference. But a gender-specific effect was found, where females preferred amino acid-rich nectar while males did not discriminate between the two nectar mimics. The presented results indicate that larvae of the common blue butterfly can metabolise the surplus of N in cyanogenic plants for growth. Additionally, the female-specific behaviour to oviposit preferably on cyanogenic or acyanogenic plant morphs and the female-genotype-specific responses in life history traits indicate the genetic flexibility of this butterfly species and its potential for local adaptation