Polymer-based microfluidic device for measuring membrane protein activities

Hutter, I. ; Müller, E. ; Kristiansen, P. ; Kresak, S. ; Tiefenauer, L.

In: Microfluidics and Nanofluidics, 2013, vol. 14, no. 3-4, p. 421-429

Ajouter à la liste personnelle
    Summary
    Functional assays of membrane proteins are becoming increasingly important, both in research and drug discovery applications. The majority of current assays use the patch-clamp technology to measure the activity of ion channels which are over-expressed in cells. In future, in vitro assay systems will be available, which use reconstituted membrane proteins in free-standing lipid bilayers suspended in nano- or micrometer-sized pores. Such functional assays require (1) expression, purification and reconstitution of the membrane protein of interest, (2) a reliable method for lipid bilayer formation and membrane protein integration, and (3) a sensitive detection system. For practical applications, especially for automation, the reliable and controllable transport of fluids is essential. In order to achieve a stable free-standing lipid bilayer, a pore diameter in the micro- to nanometer range is essential. Novel microfluidic devices were developed by bonding a thick (300μm) polyether ether ketone foil, bearing a channel structure, to a thin (12μm) foil with a micropore of about 10μm diameter and then utilized for the formation of stable, free-standing lipid bilayers within the pore. A bacterial voltage-gated potassium channel is integrated therein by fusion and the ion channel activity detected by voltage clamp