Cold Tolerance of the Photosynthetic Apparatus: Pleiotropic Relationship between Photosynthetic Performance and Specific Leaf Area of Maize Seedlings

Hund, Andreas ; Frascaroli, Elisabetta ; Leipner, Jörg ; Jompuk, Choosak ; Stamp, Peter ; Fracheboud, Yvan

In: Molecular Breeding, 2005, vol. 16, no. 4, p. 321-331

Ajouter à la liste personnelle
    Summary
    The objective of this study was to elucidate the genetic relationship between the specific leaf area (SLA) and the photosynthetic performance of maize (Zea mays L.) as dependent on growth temperature. Three sets of genotypes: (i) 19 S5 inbred lines, divergently selected for high or low operating efficiency of photosystem II (ΦPSII) at low temperature, (ii) a population of 226 F2:3 families from the cross of ETH-DL3 × ETH-DH7, and (iii) a population of 168 F2:4 families from the cross of Lo964 × Lo1016 were tested at low (15/13°C day/night) or at optimal (25/22°C day/night) temperature. The latter cross was originally developed to study QTLs for root traits. At 15/13°C the groups of S5 inbred lines selected for high or low ΦPSII differed significantly for all the measured traits, while at optimal temperature the groups differed only with regard to leaf greenness (SPAD). At low temperature, the SLA of these inbred lines was negatively correlated with ΦPSII (r= − 0.56, p < 0.05) and SPAD (r = − 0.80, p < 0.001). This negative relationship was confirmed by mapping quantitative trait loci (QTL) in the two mapping populations. A co-location of three QTLs for SLA with QTLs for photosynthesis-related traits was detected in both populations at 15/13°C, while co-location was not detected at 25/22°C. The co-selection of SLA and ΦPSII in the inbred lines and the co-location of QTL for SLA, SPAD, and ΦPSII at 15/13°C in the QTL populations strongly supports pleiotropy. There was no evidence that selecting for high ΦPSII at low temperature leads to a constitutively altered SLA