Carbohydrate Metabolism in Drought-Stressed Leaves of Pigeonpea (Cajanus cajan)

KELLER, F. ; LUDLOW, M. M.

In: Journal of Experimental Botany, 1993, vol. 44, no. 8, p. 1351-1359

Add to personal list
    Summary
    Pigeonpea is a tropical grain-legume, which is highly dehydration tolerant. The effect of drought stress on the carbohydrate metabolism in mature pigeonpea leaves was investigated by withholding water from plants grown in very large pots (50 kg of soil). The most striking feature of drought-stressed plants was the pronounced accumulation of D-pinitol (1D-3-methyl-chiro-inositol), which increased from 14 to 85 mg g−1 dry weight during a 27 d stress period. Concomitantly, the levels of starch, sucrose and the pinitol precursors myo-inositol and ononitol all decreased rapidly to zero or near-zero in response to drought. The levels of glucose and fructose increased moderately. Drought stress induced a pronounced increase of the activities of enzymes hydrolysing soluble starch (amylases) and sucrose (invertase and sucrose synthase). The two anabolic enzymes sucrose phosphate synthase (sucrose synthetic pathway) and myo-inositol methyl transferase (pinitol synthetic pathway) also showed an increase of activity during stress. These results indicate that pinitol accumulated in pigeonpea leaves, because the carbon flux was diverted from starch and sucrose into polyols