Affiner les résultats
Type de document
Institution
Collection spécifique
Langue
- Anglais (52)
Auteur
- KINZELBACH, W. (3)
- LÜTHI, B. (3)
- TSINOBER, A. (3)
- Agertz, Oscar (2)
- Boritchev, Alexandre (2)
- HOLZNER, MARKUS (2)
- Haller, G. (2)
- Holzner, Markus (2)
- Romeo, Alessandro B. (2)
- Vonlanthen, Richard (2)
- Wolf, Marc (2)
- ANDRUSHCHENKO, ZHANNA N. (1)
- Altman, Ehud (1)
- Ambrosio, Luigi (1)
- Ammar, Yasmine (1)
- Ancey, C. (1)
- BAŁDYGA, JERZY (1)
- BERGDORF, MICHAEL (1)
- Baalen, Guillaume van (1)
- Barmettler, Peter (1)
- Beron-Vera, F. J. (1)
- Beron-Vera, F.J. (1)
- Boulouchos, Konstantinos (1)
- Brandão, Fernando (1)
- Buffoni, B. (1)
- Burkert, Andreas (1)
- Burman, Erik (1)
- BÄBLER, MATTHÄUS U. (1)
- Calinon, Ronald (1)
- Chamorro, Leonardo (1) Plus Moins
Domaine
Mot clé
- Turbulence (3)
- turbulent flows (3)
- Papers (2)
- geophysical and geological flows (2)
- nonlinear dynamical systems (2)
- rotating flows (2)
- turbulence (2)
- wakes/jets (2)
- $${C^{\infty}_{0}(D)}$$ : Compactly supported functions in C ∞(D), $${{\rm {\bf C}}_{0}^{\infty}(D)=(C^{\infty}_{0}(D))^{3}}$$ (1)
- $${HF^{-\frac{1}{2},k}({\mathsf{d}}, {\partial}{D})}$$ : Trace space of $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HF^{\frac{3}{2},0}({\partial}{D})}$$ : See (5.5) (1)
- $${HF^{k}({\mathsf{d}},D)}$$ : Square integrable k-forms with square integrable exterior derivative (1)
- $${HF^{k}_{0}({\mathsf{d}},D)}$$ : Completion of compactly supported k-forms in $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HZ^{-\frac{1}{2},k}({\partial}{D})}$$ : Closed k-forms in $${{HF^{-\frac{1}{2},1}({\mathsf{d}}, {\partial}{D})}}$$ , see for instance (6.1) (1)
- $${H^{\frac{1}{2}} (\partial{D})}$$ : Trace space of $${H^1(D):=\{u\in {L^2(D)}:\nabla {u} \in {L^2(D)}\}}$$ (1)
- $${H{\frac{3}{2}}(\partial{D})}$$ : See (5.3) (1)
- $${S_i,S^{\prime}_{i}}$$ : Inside and outside cuts of D, see Sect. 6.3 (1)
- $${\langle\cdot\rangle}$$ : (Relative) Homology class of a cycle (1)
- $${\mathbf{H}^{-\frac{1}{2}}_{\mathbf{t}}({\rm curl}_\partial, \partial{D})}$$ : Tangential traces of vector fields in H(curl, D) (1)
- $${\mathbf{H}^{s}_{\mathbf{t}}(\partial{D}),\mathbf{L}^{2}_{\mathbf{t}}(\partial{D})}$$ : Tangential trace spaces (1)
- $${\mathsf{T},\mathsf{T}*}$$ : An (unbounded) linear operator and its adjoint (1)
- $${\mathsf{T}_{min}}$$ , $${\mathsf{T}_{s}}, \mathsf{T}_{max}$$ : Min, self-adj. and max closures of a symmetric operator $${\mathsf{T}}$$ (1)
- $${\omega,\eta,\ldots}$$ : Differential forms (1)
- $${\omega^{0},\omega^{\perp}}$$ : Components of the Hodge decomposition of $${\omega \in {HF^{-\frac{1}{2},1}}{(\mathsf{d},{\partial}{D})}}$$ (1)
- $${\star}$$ $$({\star_{g}})$$ : Hodge operator (induced by metric g) (1)
- $${\wedge}$$ : Exterior product of differential forms (1)
- $${{L}^{\sharp}}$$ : Symplectic orthogonal of subspace L of a symplectic space (1)
- $${{\bf grad}_\partial}$$ : Surface gradient (1)
- $${{\mathcal D}(\mathsf{T})}$$ : Domain of definition of the linear operator $${\mathsf{T}}$$ (1)
- $${{\mathcal H}^{1}({\partial}{D})}$$ : Co-homology space of harmonic 1-forms on $${{\partial}{D}}$$ (1) Plus Moins