Affiner les résultats
Type de document
Institution
Collection spécifique
Langue
- Anglais (47)
Auteur
- Magyari, Eugen (6)
- Magyari, E. (5)
- Keller, B. (3)
- Winderickx, Joris (3)
- Zweifel, Roman (3)
- Ghillebert, Ruben (2)
- Hauck, Christian (2)
- Pepin, Steeve (2)
- Pop, I. (2)
- Porté-Agel, Fernando (2)
- Sterck, Frank J. (2)
- Steyn, D. (2)
- Swinnen, Erwin (2)
- Virgilio, Claudio De (2)
- Zabrocki, Piotr (2)
- Albayrak, Ismail (1)
- Ammann, Brigitta (1)
- Bai, Tuanhui (1)
- Bammens, Tine (1)
- Bangerter, Sara (1)
- Barthlott, Christian (1)
- Bastiaens, Ilse (1)
- Binda, Matteo (1)
- Britel, Abderraouf (1)
- Brown, Susan (1)
- Bruijnzeel, L Adrian (1)
- Bugmann, Harald (1)
- Cameroni, Elisabetta (1)
- Carmeliet, J. (1)
- Carmeliet, Jan (1) Plus Moins
Domaine
Mot clé
- Porous media (4)
- algebraic decay (4)
- free convection (3)
- transpiration (3)
- Convective boundary layer (2)
- Pinus sylvestris (2)
- Research Papers (2)
- Similar flows (2)
- Stomata (2)
- Stomatal conductance (2)
- Vertical surface (2)
- Yeast (2)
- boundary layer (2)
- drought stress (2)
- exact solutions (2)
- stomatal regulation (2)
- tree water deficit (2)
- water storage (2)
- $$C_{d - FPL}$$ C d - F P L : Drag coefficient of laminar flat plate flow (1)
- $$C_{d - FPT}$$ C d - F P T : Drag coefficient of turbulent flat plate flow (1)
- $$C_{xy}$$ C x y : Covariance function (1)
- $$F_{m}$$ F m : Total mean drag force (i.e., tip+leaf) (1)
- $$F_{t}$$ F t : Mean drag force acting on the rod tip (1)
- $$MR_{{\hat{F}_{m} u_{d} }}$$ M R F ^ m u d : Average of maximum cross-correlation coefficients between drag force and downstream velocity (1)
- $$MR_{{u_{a} \hat{F}_{m} }}$$ M R u a F ^ m : Average of maximum cross-correlation coefficients between approach velocity and drag force (1)
- $$MR_{{u_{a} u_{d} }}$$ M R u a u d : Average of maximum cross-correlation coefficients between approach velocity and downstream velocity (1)
- $$R_{xy}$$ R x y : Cross-correlation function (1)
- $$R_{{\hat{F}_{m} U_{d} }}$$ R F ^ m U d : Cross-correlation function between drag force and downstream velocity (1)
- $$R_{{u_{a} \hat{F}_{m} }}$$ R u a F ^ m : Cross-correlation function between approach velocity and drag force (1)
- $$R_{{u_{a} u_{d} }}$$ R u a u d : Cross-correlation function between approach and downstream velocities (1) Plus Moins