Affiner les résultats

Type de document

Collection spécifique

Langue

Université de Fribourg

Strong, machinable, and insulating chitosan–urea aerogels: toward ambient pressure drying of biopolymer aerogel monoliths

Guerrero-Alburquerque, Natalia ; Zhao, Shanyu ; Adilien, Nour ; Koebel, Matthias M. ; Lattuada, Marco ; Malfait, Wim J.

In: ACS Applied Materials & Interfaces, 2020, vol. 12, no. 19, p. 22037–22049

Biopolymer aerogels are an emerging class of materials with potential applications in drug delivery, thermal insulation, separation, and filtration. Chitosan is of particular interest as a sustainable, biocompatible, and abundant raw material. Here, we present urea-modified chitosan aerogels with a high surface area and excellent thermal and mechanical properties. The irreversible gelation of...

Université de Fribourg

Preferential out-of-plane conduction and quasi-one-dimensional electronic states in layered 1T-TaS 2

Martino, E. ; Pisoni, A. ; Ćirić, L. ; Arakcheeva, A. ; Berger, H. ; Akrap, Ana ; Putzke, C. ; Moll, P. J. W. ; Batistić, I. ; Tutiš, E. ; Forró, László ; Semeniuk, K.

In: npj 2D Materials and Applications, 2020, vol. 4, no. 1, p. 1–9

Layered transition metal dichalcogenides (TMDs) are commonly classified as quasi-two-dimensional materials, meaning that their electronic structure closely resembles that of an individual layer, which results in resistivity anisotropies reaching thousands. Here, we show that this rule does not hold for 1T-TaS2—a compound with the richest phase diagram among TMDs. Although the onset of ...

Université de Fribourg

Soft, implantable bioelectronic interfaces for translational research

Schiavone, Giuseppe ; Fallegger, Florian ; Kang, Xiaoyang ; Barra, Beatrice ; Vachicouras, Nicolas ; Roussinova, Evgenia ; Furfaro, Ivan ; Jiguet, Sébastien ; Seáñez, Ismael ; Borgognon, Simon ; Rowald, Andreas ; Li, Qin ; Qin, Chuan ; Bézard, Erwan ; Bloch, Jocelyne ; Courtine, Grégoire ; Capogrosso, Marco ; Lacour, Stéphanie P.

In: Advanced Materials, 2020, vol. 32, no. 17, p. 1906512

The convergence of materials science, electronics, and biology, namely bioelectronic interfaces, leads novel and precise communication with biological tissue, particularly with the nervous system. However, the translation of lab‐ based innovation toward clinical use calls for further advances in materials, manufacturing and characterization paradigms, and design rules. Herein, a ...