In: Geometric and Functional Analysis, 2015, vol. 25, no. 2, p. 580-657
|
In: Mathematische Zeitschrift, 2015, vol. 280, no. 1-2, p. 421-449
|
In: Transformation Groups, 2015, vol. 20, no. 3, p. 831-861
|
In: Mathematische Zeitschrift, 2015, vol. 280, no. 1-2, p. 231-255
|
In: Proceedings of the London Mathematical Society, 2019, vol. 119, no. 4, p. 1115–1148
Let 𝔤 be a real finite‐dimensional Lie algebra equipped with a symmetric bilinear form ⟨·,·⟩ . We assume that ⟨·,·⟩ is nil‐invariant. This means that every nilpotent operator in the smallest algebraic Lie subalgebra of endomorphisms containing the adjoint representation of 𝔤 is an infinitesimal isometry for ⟨·,·⟩ . Among these Lie algebras are the isometry Lie...
|
In: Journal für die reine und angewandte Mathematik (Crelles Journal), 2016, vol. 2016, no. 712, p. 225-250
|
In: Mathematische Annalen, 2014, vol. 360, no. 3-4, p. 995-1020
|
In: Studia Logica, 2008, vol. 89, no. 3, p. 401-425
|
In: International Journal on Software Tools for Technology Transfer, 2013, vol. 15, no. 5-6, p. 455-474
|
In: Transformation Groups, 2007, vol. 12, no. 4, p. 619-630
|