Ergebnisse einschränken
Dokumententyp
Institution
Spezialsammlung
Sprache
- Englisch (78)
Autor
- Besson, Samantha (26)
- Crippa, Gianluca (3)
- Hairer, E. (3)
- Hairer, Ernst (3)
- Aghion, S. (2)
- Amsler, C. (2)
- Ariga, A. (2)
- Ariga, T. (2)
- Belov, A. (2)
- Bonomi, G. (2)
- Bremer, J. (2)
- Bräunig, P. (2)
- Cabaret, L. (2)
- Caravita, R. (2)
- Castelli, F. (2)
- Cerchiari, G. (2)
- Cialdi, S. (2)
- Cohen, David (2)
- Comparat, D. (2)
- Consolati, G. (2)
- Doser, M. (2)
- Dudarev, A. (2)
- Ereditato, A. (2)
- Ferragut, R. (2)
- Fontana, A. (2)
- Giammarchi, M. (2)
- Gligorova, A. (2)
- Glocker, Ch (2)
- Glocker, Christoph (2)
- Gninenko, S. (2) Mehr Weniger
Fachgebiet
Schlagwort
- International law (6)
- Hamiltonian systems (4)
- Human Rights (4)
- energy conservation (4)
- modulated Fourier expansion (4)
- International Law (3)
- Numerical solutions (3)
- impact (3)
- Antihydrogen (2)
- Emulsions (2)
- Geometric numerical integration (2)
- Law (2)
- Numerical approximations and analysis (2)
- Sources of International Law (2)
- adiabatic invariants (2)
- backward error analysis (2)
- friction (2)
- international law (2)
- oscillatory solutions (2)
- reversible differential equations (2)
- sine-Gordon equation (2)
- sources (2)
- $${C^{\infty}_{0}(D)}$$ : Compactly supported functions in C ∞(D), $${{\rm {\bf C}}_{0}^{\infty}(D)=(C^{\infty}_{0}(D))^{3}}$$ (1)
- $${HF^{-\frac{1}{2},k}({\mathsf{d}}, {\partial}{D})}$$ : Trace space of $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HF^{\frac{3}{2},0}({\partial}{D})}$$ : See (5.5) (1)
- $${HF^{k}({\mathsf{d}},D)}$$ : Square integrable k-forms with square integrable exterior derivative (1)
- $${HF^{k}_{0}({\mathsf{d}},D)}$$ : Completion of compactly supported k-forms in $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HZ^{-\frac{1}{2},k}({\partial}{D})}$$ : Closed k-forms in $${{HF^{-\frac{1}{2},1}({\mathsf{d}}, {\partial}{D})}}$$ , see for instance (6.1) (1)
- $${H^{\frac{1}{2}} (\partial{D})}$$ : Trace space of $${H^1(D):=\{u\in {L^2(D)}:\nabla {u} \in {L^2(D)}\}}$$ (1)
- $${H{\frac{3}{2}}(\partial{D})}$$ : See (5.3) (1) Mehr Weniger