Ergebnisse einschränken
Dokumententyp
Spezialsammlung
Sprache
- Englisch (55)
Autor
- Lytchak, Alexander (6)
- Wenger, Stefan (5)
- Rätz, Jürg (4)
- Balogh, Zoltán (2)
- Cohen, David (2)
- Hiptmair, R. (2)
- Krause, Rolf (Dir.) (2)
- Aassila, Mohammed (1)
- Abel, Thomas (1)
- Albeverio, S. (1)
- Arias, Alvaro (1)
- Ayupov, Sh (1)
- Bandle, Catherine (1)
- Besson, O. (1)
- Bilu, Yuri (1)
- Blanc, Jérémy (1)
- Bögli, Sabine (1)
- Canci, Jung Kyu (1)
- Capraro, Valerio (1)
- Conen, Lea (1)
- Constantin, A. (1)
- Dadakhodjayev, R. (1)
- Dantzig, J. (1)
- Di Napoli, Paolo (1)
- Edwards, C. M. (1)
- Elkies, Noam D. (1)
- Engulatov, Alexandre (1)
- Finlay, Christopher C. (1)
- Foertsch, Thomas (1)
- Friedli, J. (1) Mehr Weniger
Fachgebiet
Schlagwort
- Abelian groups (3)
- composite functional equations (3)
- Articles (2)
- Hölder regularity (2)
- Sobolev maps (2)
- energy minimizers (2)
- metric spaces (2)
- quasi-convex areas (2)
- $${C^{\infty}_{0}(D)}$$ : Compactly supported functions in C ∞(D), $${{\rm {\bf C}}_{0}^{\infty}(D)=(C^{\infty}_{0}(D))^{3}}$$ (1)
- $${HF^{-\frac{1}{2},k}({\mathsf{d}}, {\partial}{D})}$$ : Trace space of $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HF^{\frac{3}{2},0}({\partial}{D})}$$ : See (5.5) (1)
- $${HF^{k}({\mathsf{d}},D)}$$ : Square integrable k-forms with square integrable exterior derivative (1)
- $${HF^{k}_{0}({\mathsf{d}},D)}$$ : Completion of compactly supported k-forms in $${HF^{k}({\mathsf{d}},D)}$$ (1)
- $${HZ^{-\frac{1}{2},k}({\partial}{D})}$$ : Closed k-forms in $${{HF^{-\frac{1}{2},1}({\mathsf{d}}, {\partial}{D})}}$$ , see for instance (6.1) (1)
- $${H^{\frac{1}{2}} (\partial{D})}$$ : Trace space of $${H^1(D):=\{u\in {L^2(D)}:\nabla {u} \in {L^2(D)}\}}$$ (1)
- $${H{\frac{3}{2}}(\partial{D})}$$ : See (5.3) (1)
- $${S_i,S^{\prime}_{i}}$$ : Inside and outside cuts of D, see Sect. 6.3 (1)
- $${\langle\cdot\rangle}$$ : (Relative) Homology class of a cycle (1)
- $${\mathbf{H}^{-\frac{1}{2}}_{\mathbf{t}}({\rm curl}_\partial, \partial{D})}$$ : Tangential traces of vector fields in H(curl, D) (1)
- $${\mathbf{H}^{s}_{\mathbf{t}}(\partial{D}),\mathbf{L}^{2}_{\mathbf{t}}(\partial{D})}$$ : Tangential trace spaces (1)
- $${\mathsf{T},\mathsf{T}*}$$ : An (unbounded) linear operator and its adjoint (1)
- $${\mathsf{T}_{min}}$$ , $${\mathsf{T}_{s}}, \mathsf{T}_{max}$$ : Min, self-adj. and max closures of a symmetric operator $${\mathsf{T}}$$ (1)
- $${\omega,\eta,\ldots}$$ : Differential forms (1)
- $${\omega^{0},\omega^{\perp}}$$ : Components of the Hodge decomposition of $${\omega \in {HF^{-\frac{1}{2},1}}{(\mathsf{d},{\partial}{D})}}$$ (1)
- $${\star}$$ $$({\star_{g}})$$ : Hodge operator (induced by metric g) (1)
- $${\wedge}$$ : Exterior product of differential forms (1)
- $${{L}^{\sharp}}$$ : Symplectic orthogonal of subspace L of a symplectic space (1)
- $${{\bf grad}_\partial}$$ : Surface gradient (1)
- $${{\mathcal D}(\mathsf{T})}$$ : Domain of definition of the linear operator $${\mathsf{T}}$$ (1)
- $${{\mathcal H}^{1}({\partial}{D})}$$ : Co-homology space of harmonic 1-forms on $${{\partial}{D}}$$ (1) Mehr Weniger