In: CHIMIA International Journal for Chemistry, 2019, vol. 73, no. 1, p. 43–46
We investigate the structure and the dynamics of dense suspensions of NIH 3T3 fibroblast cells. Using two-photon microscopy we obtain three dimensional (3D) images from which the size and the packing structure of the dense cell suspensions can be extracted. In addition, we analyse the global time-dependent behaviour of the suspensions by time-lapse measurements of cell sedimentation. Since...
|
In: European Journal of Nanomedicine, 2015, vol. 7, no. 3, p. 169-179
|
In: MRS Bulletin, 2014, vol. 39, no. 11, p. 984-989
|
In: Nanoscale, 2017, vol. 9, no. 15, p. 4918–4927
Characterizing the morphometric parameters of noble metal nanoparticles for sensing and catalysis is a persistent challenge due to their small size and complex shape. Herein, we present an approach to determine the volume, surface area, and curvature of non-symmetric anisotropic nanoparticles using electron tomography and design- based stereology without the use of segmentation tools or...
|
In: Materials, 2020, vol. 13, no. 9, p. 2018
Magnetosomes are near-perfect intracellular magnetite nanocrystals found in magnetotactic bacteria. Their synthetic imitation, known as superparamagnetic iron oxide nanoparticles (SPIONs), have found applications in a variety of (nano)medicinal fields such as magnetic resonance imaging contrast agents, multimodal imaging and drug carriers. In order to perform these functions in medicine,...
|
In: Colloids and Surfaces B: Biointerfaces, 2016, vol. 137, p. 39–49
Nanoparticles possess unique properties beyond that of classical materials, and while these properties can be used for designing a dedicated functionality, they may also pose a problem to living organisms, to human health and the environment. The specific primary routes by which nanoparticles may interact with the human body include inhalation, injection, ingestion and application to the skin....
|
In: Journal of Nanoparticle Research, 2017, vol. 19, no. 8, p. 287
The ability to detect and accurately characterize particles is required by many fields of nanotechnology, including materials science, nanotoxicology, and nanomedicine. Among the most relevant physicochemical properties of nanoparticles, size and the related surface-to-volume ratio are fundamental ones. Taylor dispersion combines three independent phenomena to determine particle size: optical...
|
In: Particle and Fibre Toxicology, 2016, vol. 13, p. 67
There are justifiable health concerns regarding the potential adverse effects associated with human exposure to volcanic ash (VA) particles, especially when considering communities living in urban areas already exposed to heightened air pollution. The aim of this study was, therefore, to gain an imperative, first understanding of the biological impacts of respirable VA when exposed...
|
In: Environmental Research, 2019, vol. 179, p. 108798
Volcanic plumes are complex environments composed of gases and ash particles, where chemical and physical processes occur at different temperature and compositional regimes. Commonly, soluble sulphate- and chloride-bearing salts are formed on ash as gases interact with ash surfaces. Exposure to respirable volcanic ash following an eruption is potentially a significant health concern. The...
|
In: Environmental Pollution, 2018, vol. 238, p. 977–987
Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It...
|