In: Physical Review B, 2013, vol. 87, no. 13, p. 134520
We study the perpendicular transport characteristics of small superconductor/ferromagnetic insulator/superconductor (YBa₂Cu₃O7−x/LaMnO₃₊/YBa₂Cu₃O7−x) tunnel junctions. At a large bias voltage V∼1 V we observe a steplike onset of excess current that occurs below the superconducting transition temperature Tc and is easily suppressed by a...
|
In: Physical Review B - Condensed Matter and Materials Physics, 2013, vol. 87, no. 11, p. 115105
Using polarized neutron reflectometry (PNR) we have investigated a [YBa₂Cu₃O₇(10 nm)/La2/3Ca1/3MnO₃(9 nm)]₁₀ (YBCO/LCMO) superlattice grown by pulsed laser deposition on a La0.3Sr0.7Al0.65Ta0.35O₃ (LSAT) substrate. Due to the high structural quality of the superlattice and the substrate, the specular reflectivity...
|
In: Physical Review B - Condensed Matter and Materials Physics, 2012, vol. 86, no. 18, p. 180402
We have investigated the magnetization profiles in superlattices composed of the two ferromagnets La0.7Sr0.3MnO₃ and SrRuO₃ using spin-polarized neutron reflectometry. In combination with magnetometry, the neutron data indicate a noncollinear spin configuration where orientation of the Ru moments changes from in plane at the interface to out of plane deep inside the...
|
In: Physical Review Letters, 2012, vol. 108, no. 19, p. 197201
Using neutron reflectometry and resonant x-ray techniques we studied the magnetic proximity effect (MPE) in superlattices composed of superconducting YBa₂Cu₃O₇ and ferromagnetic-metallic La0.67Ca0.33MnO₃ or ferromagnetic-insulating LaMnO₃₊. We find that the MPE strongly depends on the electronic state of the manganite layers, being pronounced for the...
|
In: Physical Review B - Condensed matter and materials physics, 2012, vol. 85, no. 5, p. 054514
Heteroepitaxial superlattices of [YBa₂Cu₃O₇(n)/La0.67Ca0.33MnO₃(m)]x (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO₃ (110) and Sr0.7La0.3Al0.65Ta0.35O₃ (001). These substrates are well lattice...
|
In: Europhysics Letters, 2009, vol. 88, no. 3, p. 36004
A silane (tetrakis(trimethylsiloxy)silane) has been confined within a space of a few molecular diameters (9 Å) between two atomically flat opposing mica membranes. The liquid's electron density profile along the confinement direction has been determined by synchrotron X-ray reflectivity for film thicknesses of 8.58 and 11.22 nm. We find the liquid's molecules to be strongly layered at layer...
|