In: Chemical Senses, 2010, vol. 35, no. 4, p. 335-346
|
In: Genetics, 2014, vol. 199, no. 1, p. 25–37
Genetic manipulations of neuronal activity are a cornerstone of studies aimed to identify the functional impact of defined neurons for animal behavior. With its small nervous system, rapid life cycle, and genetic amenability, the fruit fly Drosophila melanogaster provides an attractive model system to study neuronal circuit function. In the past two decades, a large repertoire of elegant genetic...
|
In: Journal of Comparative Neurology, 2014, p. –
Drosophila larvae are able to evaluate sensory information based on prior experience, similar to adult flies, other insect species and vertebrates. Larvae and adult flies can be taught to associate odor stimuli with sugar reward and prior work has implicated both the octopaminergic and dopaminergic modulatory systems in reinforcement signaling. Here we use genetics to analyze the anatomy, up to...
|
In: PLoS ONE, 2012, vol. 7, no. 10, p. e47518
The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory...
|
In: The Journal of Comparative Neurology, 2012, p. -
The characteristic crawling behavior of Drosophila larvae consists of a series of rhythmic waves of peristalsis and episodes of head swinging and turning. The two biogenic amines octopamine and tyramine have recently been shown to modulate various parameters of locomotion, such as muscle contraction, the time spent in pausing or forward locomotion and the initiation and maintenance of rhythmic...
|
In: The Journal of Neuroscience, 2010, vol. 30, no. 32, p. 10655-10666
Insect mushroom bodies are required for diverse behavioral functions, including odor learning and memory. Using the numerically simple olfactory pathway of the Drosophila melanogaster larva, we provide evidence that the formation of appetitive olfactory associations relies on embryonic-born intrinsic mushroom body neurons (Kenyon cells). The participation of larval-born Kenyon cells, i.e.,...
|
In: Chemical Senses, 2010, vol. 35, no. 4, p. 335-346
Associative plasticity is a basic essential attribute of nervous systems. As shown by numerous reports, Drosophila is able to establish simple forms of appetitive and aversive olfactory associations at both larval and adult stages. Whereas most adult studies on aversive learning employed electric shock as a negative reinforcer, larval paradigms essentially utilized gustatory stimuli to...
|