In: PLOS Genetics, 2019, vol. 15, no. 7, p. e1008269
Development of eye tissue is initiated by a conserved set of transcription factors termed retinal determination network (RDN). In the fruit fly Drosophila melanogaster, the zinc-finger transcription factor Glass acts directly downstream of the RDN to control identity of photoreceptor as well as non-photoreceptor cells. Tight control of spatial and temporal gene expression is a critical...
|
In: PLOS Genetics, 2018, vol. 14, no. 4, p. e1007353
The central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of...
|
In: Developmental Biology, 2016, vol. 410, no. 2, p. 164–177
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of...
|
In: PLoS Genet, 2013, vol. 9, no. 12, p. e1004027
Controlling cellular diversity requires a complex interplay of transcription factors. Using the Drosophila larval eye as genetic model we identify distinct mechanisms of how binary cell fate decisions are made, how sensory receptor gene expression is regulated and how cell fate identity is switched during metamorphosis. We show that the transcription factor Senseless fulfills three temporally...
|