In: Physical Review B, 2019, vol. 99, no. 15, p. 155103
|
In: Physical Review Letters, 2018, vol. 120, no. 13, p. 136404
The transition metal dichalcogenide 1T−TiSe2-two-dimensional layered material undergoing a commensurate 2×2×2 charge density wave (CDW) transition with a weak periodic lattice distortion (PLD) below ≈200 K. Scanning tunneling microscopy (STM) combined with intentionally introduced interstitial Ti atoms allows us to go beyond the usual spatial resolution of STM and to intimately probe...
|
In: Physical Review B, 2017, vol. 95, no. 8, p. 081104
In Ti-intercalated self-doped 1T−TiSe2 crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it into phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW...
|
In: Physical Review B, 2016, vol. 93, no. 12, p. 125140
The impact of variable Ti self-doping on the 1T−TiSe2 charge density wave (CDW) is studied by scanning tunneling microscopy. Supported by density functional theory, we show that agglomeration of intercalated-Ti atoms acts as preferential nucleation centers for the CDW that breaks up in phase-shifted CDW domains whose size directly depends on the intercalated-Ti concentration and which are...
|
In: Physical Review B, 2015, vol. 92, no. 8, p. 081101
We present a detailed low-temperature scanning tunneling microscopy (STM) study of the commensurate charge density wave (CDW) in $1T-{\mathrm{TiSe}}_{2}$ in the presence of single atom defects. We find no significant modification of the CDW lattice in single crystals with native defect concentrations where some bulk probes already measure substantial reductions in the CDW phase transition...
|