In: Advanced Energy Materials, 2018, vol. 8, no. 30, p. 1802060
Organic–inorganic perovskite solar cells have achieved impressive power conversion efficiency over the past years, yet operational stability remains the key concern. One strategy to improve long‐term stability is to replace the thermally unstable organic with inorganic cations comprising the perovskite lattice. Here, for the first time, pulsed infrared light is used to drive the...
|
In: Journal of Materials Chemistry A, 2018, vol. 6, no. 4, p. 1850–1857
Increasing the stability of perovskite solar cells is a major challenge for commercialization. The highest efficiencies so far have been achieved in perovskite solar cells employing mesoporous TiO2 (m-TiO2). One of the major causes of performance loss in these m-TiO2-based perovskite solar cells is induced by UV- radiation. This UV instability can be solved by replacing TiO2 with SnO2; thus ...
|