Perfeziona i miei risultati

Document type

Collection spécifique

Lingua

Université de Fribourg

Engineering an in vitro air-blood barrier by 3D bioprinting

Horváth, Lenke ; Umehara, Yuki ; Jud, Corinne ; Blank, Fabian ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Scientific Reports, 2015, vol. 5, p. -

Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement...

Université de Fribourg

Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering

Balog, Sandor ; Rodriguez-Lorenzo, Laura ; Monnier, Christophe A. ; Obiols-Rabas, Marc ; Rothen-Rutishauser, Barbara ; Schurtenberger, Peter ; Petri-Fink, Alke

In: Nanoscale, 2015, p. -

Light scattering is one of the few techniques available to adequately characterize suspended nanoparticles (NPs) in real time and in situ. However, when it comes to NPs in multicomponent and optically complex aqueous matrices – such as biological media and physiological fluids – light scattering suffers from lack of selectivity, as distinguishing the relevant optical signals from the...

Université de Fribourg

Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure

Endes, Carola ; Müller, S. ; Schmid, O. ; Vanhecke, Dimitri ; Foster, E. Johan ; Petri-Fink, Alke ; Rothen-Rutishauser, Barbara ; Weder, Christoph ; Clift, Martin J. D.

In: Journal of Physics: Conference Series, 2013, vol. 429, no. 1, p. 012008

Cellulose nanocrystals (CNCs) exhibit advantageous chemical and mechanical properties that render them attractive for a wide range of applications. During the life-cycle of CNC containing materials the nanocrystals could be released and become airborne, posing a potential inhalatory exposure risk towards humans. Absent reliable and dose-controlled models that mimic this exposure in situ is a...

Université de Fribourg

Surface charge of polymer coated SPIONs influences the serum protein adsorption, colloidal stability and subsequent cell interaction in vitro

Hirsch, Vera ; Kinnear, Calum ; Moniatte, Marc ; Rothen-Rutishauser, Barbara ; Clift, Martin J. D. ; Fink, Alke

In: Nanoscale, 2013, vol. 5, no. 9, p. 3723-3732

It is known that the nanoparticle–cell interaction strongly depends on the physicochemical properties of the investigated particles. In addition, medium density and viscosity influence the colloidal behaviour of nanoparticles. Here, we show how nanoparticle–protein interactions are related to the particular physicochemical characteristics of the particles, such as their colloidal stability,...

Université de Fribourg

Spatial SPION localization in liposome membranes

Bonnaud, Cécile ; Vanhecke, Dimitri ; Demurtas, Davide ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: IEEE Transactions on Magnetics, 2012, vol. 49, no. 1, p. 166-171

Nanocarriers, including liposomes, offer great opportunities for targeted and controlled therapy. The development in this field has led to a large panel of drug delivery systems, which can be classified into 3 different nanovector generations. However, the success of such smart materials requires the control of a large variety of properties and parameters. Unfortunately, characterization at the...

Université de Fribourg

Nanoparticles and cells: an interdisciplinary approach

Petri-Fink, Alke ; Rothen-Rutishauser, Barbara

In: Chimia, 2012, vol. 66, no. 3, p. 104-109

In this article we present an overview of some of our research in the field of nanoscience. By combining two different scientific backgrounds (chemistry and biology), we investigate nanoparticle-cell interactions from different angles. This requires an interdisciplinary approach involving material synthesis and characterization, cell biology (biochemistry) and microscopy. In particular, we...

Université de Fribourg

Influence of serum supplemented cell culture medium on colloidal stability of polymer coated iron oxide and polystyrene nanoparticles with impact on cell interactions in vitro

Hirsch, Vera ; Salaklang, Jatuporn ; Rothen-Rutishauser, Barbara ; Petri-Fink, Alke

In: IEEE Transactions on Magnetics, 2012, vol. 49, no. 1, p. 402-407

When nanoparticles interact with cells, the possible cellular responses to the particles depend on an array of parameters, in both particle and biological aspects. On the one hand, the physicochemical properties of the particles (e.g., material, size, shape, and surface charge) are known to play a key role in particle-cell interactions. On the other hand, it has been shown that prior to coming...

Université de Fribourg

Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture

Clift, Martin J. D. ; Foster, E. Johan ; Vanhecke, Dimitri ; Studer, Daniel ; Wick, Peter ; Gehr, Peter ; Rothen-Rutishauser, Barbara ; Weder, Christoph

In: Biomacromolecules, 2011, vol. 12, no. 10, p. 3666–3673

Cellulose nanofibers are an attractive component of a broad range of nanomaterials. Their intriguing mechanical properties and low cost, as well as the renewable nature of cellulose make them an appealing alternative to carbon nanotubes (CNTs), which may pose a considerable health risk when inhaled. Little is known, however, concerning the potential toxicity of aerosolized cellulose nanofibers....

Université de Fribourg

Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells

Blank, Fabian ; Gerber, Peter ; Rothen-Rutishauser, Barbara ; Sakulkhu, Usawadee ; Salaklang, Jatuporn ; Peyer, Karin De ; Gehr, Peter ; Nicod, Laurent P. ; Hofmann, Heinrich ; Geiser, Thomas ; Petri-Fink, Alke ; Garnier, Christophe Von

In: Nanotoxicology, 2011, p. -

Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs)...