A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media

Philippe Renard,1,2 Gaëlle Le Loc’h,3 Emmanuel Ledoux,1 Ghislain de Marsily,4 and Rae Mackay5

Abstract. Fast upscaling of hydraulic conductivity is a recurrent problem in modeling flow through heterogeneous porous media. We propose a new renormalization technique. It is based on the iterative application of the Cardwell and Parsons [1945] bounds on elementary groups of cells. The combination of the bounds with a heuristic formula allows anisotropy to be taken into account. The new technique is tested and compared with other fast techniques. Among the tested techniques the two most reliable ones are the tensorial renormalization and the new simplified renormalization. The numerical efficiency of the simplified renormalization leads us to recommend it when a diagonal tensor of equivalent conductivity is sufficient.

1. Introduction

Modeling groundwater flow and transport requires a realistic description of the spatial distribution of hydraulic conductivity to capture flow paths and to make realistic forecasts of groundwater behavior. As discussed by de Marsily et al. [1998] and Koltermann and Gorelick [1996], statistical and genetic tools can be used to describe the underground distribution of hydraulic conductivity. Geological models generated by these tools often produce a very high spatial resolution which cannot be used directly in groundwater flow and transport models given currently available computer resources. It is necessary to adopt a much coarser description. This upscaling comprises the calculation of spatial averages of the hydraulic conductivity over blocks of the geological model that can be used directly in the groundwater model. This problem is different from the problem of finding a unique effective conductivity for the whole aquifer. Renard and de Marsily [1997] and Wen and Gómez-Hernández [1996] present extensive reviews of upscaling theories, analytical results, and numerical techniques.

In this paper, we develop a fast real-space renormalization algorithm to calculate block conductivities. The essence of renormalization is to apply composition rules to groups of cells at the local scale to produce “composite” cells and then to successively reapply the same rules to the resulting composite cells until the desired coarse-scale resolution is achieved. The basic assumption is that the upscaling rules are scale invariant. When the probability distribution of the local-scale conductivity is known, it is possible to follow the evolution of the probability distribution of hydraulic conductivity with scale. This approach was initially developed in the field of physics [Wilson, 1971, 1975; Reynolds et al., 1977; Bernasconi, 1978; Shah and Ottino, 1986]. Recently, real-space renormalization has been applied to a broad range of problems related to the physics of groundwater in porous and fractured media [King, 1989; Aharonov et al., 1991; Saucier, 1992; King et al., 1993; Hinrichsen et al., 1993; Zimmerman and Bodvarsson, 1996; Gautier and Néetter, 1997; Xu et al., 1997; Jaeckel and Vereecken, 1997; Hansen et al., 1997; Gavrilenko and Guéguen, 1998]. We do not consider the probabilistic aspect of renormalization group theories, but, instead, we focus our work on the spatial averaging scheme. Previous schemes [King, 1989; Hinrichsen et al., 1993; Gautier and Néetter, 1997] solve a flow problem on the elementary groups of cells at the local scale by fixing the boundary conditions of the groups. Our approach is different and is based on applying Cardwell and Parsons [1945] bounds iteratively. At the end of the iteration process we obtain two values more closely spaced than the bounds that would be obtained by direct calculation on the full mesh, and we average these with a heuristic formula based on the analytical development of Romeu [1994].

Renormalization algorithms are computationally efficient but subject to approximation errors. The major aim of our research is to investigate possible errors and to compare the renormalization schemes with a set of other fast techniques. The comparison is based on a very large number of numerical experiments conducted on synthetic media at two different scales. This approach was pioneered by Warren and Price [1961] and followed by many researchers [Desbarats, 1987; Le Loc’h, 1987; Deutsch, 1989; Ababou et al., 1989; Gómez-Hernández, 1991; Lachassagne et al., 1990; Buchu and Cathiell, 1990; Hinrichsen et al., 1993; Desbarats, 1992; Sánchez-Vila et al., 1995; McCarthy, 1995]. The synthetic media were generated by truncated Gaussian and Boolean methods with strong anisotropy in both cases. They represent a priori nontrivial situations for the upscaling problem.

For each medium a reference block conductivity is calculated by solving numerically the usual Laplace flow equation using finite element or finite difference methods. This step provides reference values to compare the upscaling techniques. It is important to recall that Lachassagne et al. [1990] and later

1Centre d’Informatique Géologique, École des Mines de Paris, Fontainebleau, France.
2Now at Swiss Federal Institute of Technology, Institute of Geology, Zürich, Switzerland.
3Centre de Géostatistique, École des Mines de Paris, Fontainebleau, France.
4Laboratoire de Géologie Appliquée, Université Pierre et Marie Curie, Paris.
5School of Earth Science, University of Birmingham, Birmingham, England.
2. Fast Techniques

A fairly complete review of past research in the area of upscaling has been conducted [Renard and de Marsily, 1997]. The following seven methods were selected and compared with the proposed simplified renormalization.

2.1. Arithmetic μ_a and Harmonic μ_h Means

The arithmetic μ_a and harmonic μ_h means are the upper and the lower bound for upscaled permeability, respectively [Wiener, 1912; Cardwell and Parsons, 1945; Matheron, 1967; Le Loc’ch, 1987; Dagan, 1989]. They are the exact values in the case of a stratified medium with flow respectively parallel or perpendicular to the strata.

2.2. Geometric Mean μ_g

The geometric mean μ_g is the exact upscaled value in an infinite two-dimensional medium, if the normalized local permeabilities $k/E(k)$ and their inverses $k^{-1}/E(k^{-1})$ have the same probability density function (pdf), if this pdf is invariant by rotation of 90° and if the flow is uniform [Matheron, 1967]. This is true in the cases of a chessboard and of a lognormal isotropic medium. In practice, it can be considered as a good effective value in two dimensions, even in radial flow conditions [Meier et al., 1998].

2.3. Landau-Lifshitz-Matheron Conjecture $\mu_{1/3}$

Landau and Lifshitz [1960] in the framework of electrodynamics, and Matheron [1967] in the context of uniform flow through porous media, made the conjecture that the first-order approximation of the effective conductivity of a three-dimensional isotropic heterogeneous medium would be

$$ K_{eff} = \mu_{a}^{1/3} \mu_{h}^{1/3}. $$

An alternative equivalent expression for this conjecture is a power average with an exponent of one third [Neetinger, 1994]:

$$ K_{eff} = \mu_{1/3} = \left(\frac{1}{V} \int_{V} k(x)^{1/3} \, dx \right)^{3}, $$

where V is the averaging volume, k is the local-scale conductivity, and x is the spatial coordinate. This conjecture has been the subject of intensive research [Gutjahr et al., 1978; Gelhar and Axness, 1983; King, 1987; Dagan, 1993; Kozlov, 1993; Neetinger, 1994; Abramovich and Indelman, 1995; De Wit, 1995; Teodorovich, 1997; Pozdniakov and Tsang, 1999]. Numerical experiments have shown a good agreement with the conjecture for lognormal media even for high variances [Dykaar and Kitanidis, 1992; Desbarats, 1992; Neuman and Orr, 1993] even if the latest analytical developments [Abramovich and Indelman, 1995; De Wit, 1995; Teodorovich, 1997] indicate that the conjecture is only an approximation.

2.4. Romeu’s Formula k

Following the idea that the actual conductivity of a heterogeneous medium can be obtained by averaging theoretical bounds with an adequate procedure, one possibility is to use some bounds which are closer than the arithmetic mean and the harmonic mean and then to average them. Whatever the averaging procedure, the closer the bounds are, the smaller the expected errors are.

Duquerroy et al. [1993] and Romeu [1994] proposed such a technique using the Cardwell and Parsons [1945] bounds. Recall that Cardwell and Parsons [1945] and Le Loc’h [1987] showed that the equivalent permeability for a uniform flow in a given direction is bounded by (1) the harmonic mean of the arithmetic means of the local permeabilities, calculated over each slice of cells perpendicular to the given direction (upper bound denoted K_1),

$$ K_1 = \mu_1(\mu_1(\mu_2)) = \mu_1(\mu_1(\mu_2)) $$

and (2) the arithmetic mean of the harmonic means of the local permeabilities, calculated on each line of cells parallel to the given direction (lower bound denoted K_2),

$$ K_2 = \mu_2(\mu_2(\mu_2)) = \mu_2(\mu_2(\mu_2)) $$

Le Loc’h [1987] proposed to take the geometric average of these bounds $K_b = \sqrt{K_1 K_2}$. Lemouzy [1991] introduced, in three dimensions, two intermediate values K_3 and K_4 into the formula:

$$ K_3 = \mu_3(\mu_3(\mu_3)), $$

$$ K_4 = \mu_4(\mu_4(\mu_4)), $$

Finally, Romeu [1994] and Duquerroy et al. [1993] introduced an exponent to account for anisotropy:

$$ K_{eff} = K_{1}^{(1-\theta_1+\theta_1)} K_{2}^{(1-\theta_2+\theta_2)} K_{3}^{(1-\theta_3+\theta_3)} K_{4}^{(1-\theta_4+\theta_4)} $$

The exponents are derived from a small perturbation calculation of the equivalent permeability in the case of an anisotropy due to flat cells and/or to a constant anisotropy of directional permeability in the domain [Romeu, 1994].
2.6. Tensorial Renormalization r_t

The tensorial renormalization was developed for the fast detection of preferential flow paths in heterogeneous media [Gautier and Nötinger, 1997]. The differences from the standard algorithm are the use of a “direct” finite element scheme avoiding the calculation of intermesh transmissivities and the use of periodic boundary conditions that allow the calculation of a complete conductivity tensor. We extended the equations of Gautier and Nötinger [1997] in three dimensions.

3. Simplified Renormalization

The simplified renormalization algorithm allows the estimation of a diagonal tensor of hydraulic conductivity. We describe the algorithm for the estimation of k_{xx}. The procedure is the same for the other directions.

In the first step we group the cells alternatively in parallel and in series with respect to the direction of calculation. If the two cells are in series, they are replaced by a unique cell whose conductivity is the harmonic mean $\mu_h = 2k_1k_2/(k_1 + k_2)$ of the conductivity of the cells (Figure 1). If the two cells are in parallel, we use the arithmetic mean $\mu_a = (k_1 + k_2)/2$ (Figure 1). This basic procedure is systematically repeated until we get a unique value. The order of grouping influences the final result. In two dimensions (Figure 2) we can start with a grouping in series along the x direction, then we group the new pairs in parallel along the y direction, then we repeat this basic algorithm until we get a value that we denote c_{\min}^{xx}, represented by

$$c_{\min}^{xx} = \mu_a^x(\ldots \mu_a^x(\mu_a^x) \ldots).$$

Alternatively, we can start with a grouping in parallel along the y direction, then we group the new pairs in series along the x direction, then we repeat the algorithm to get a value denoted c_{\max}^{xx}:

$$c_{\max}^{xx} = \mu_h^x(\ldots \mu_h^x(\mu_h^x) \ldots).$$

2.5. Standard Renormalization r_s

We call the algorithm proposed by King [1989] standard renormalization. The upscaled permeability is calculated by a series of successive aggregations on elementary groups of four (in two dimensions) or eight (in three dimensions) cells following an electrical analogy. This electrical analogy is equivalent to a finite difference calculation with intermesh transmissivities calculated with a harmonic mean and with prescribed boundary conditions of constant head on two opposite faces and no flow on the other faces.

![Figure 1. Local formula to calculate the upscaled permeability for a group of two cells. It is the arithmetic mean μ_a when they are in parallel and the harmonic mean μ_h when they are in series.](image1)

$$\theta_{ij} = \frac{\arctan \sqrt{a_x}}{\pi/2},$$

$$\theta_{ij} = \frac{\arctan \sqrt{a_y}}{\pi/2},$$

$$\theta_{ij} = \frac{\theta_{ij}(1 - \theta_{ij})}{1 - \theta_{ij}^2},$$

$$\theta_{ij} = \frac{\theta_{ij}(1 - \theta_{ij})}{1 - \theta_{ij}^2};$$

a_x and a_y are the anisotropy factors defined by

$$a_x = (k_x/k^x)(d_x/d_x),$$

$$a_y = (k_y/k^y)(d_y/d_y),$$

where d_x, d_y, and d_z represent the size of the cells and the local conductivity anisotropy ratios k_x/k^x and k_y/k^y which are assumed to be constant over the whole mesh. An alternative empirical technique to average the Cardwell and Parsons [1945] bounds has been proposed by Li et al. [1999] but has not been studied here.

![Figure 2. Simplified renormalization procedure in two dimensions. The cells are grouped two by two iteratively in order to finally obtain two values denoted c_{\min} and c_{\max}.](image2)
In three dimensions, there are four possibilities:

\[
c^{\alpha}_{\min} = \mu_{1}^{\alpha}(\ldots \mu_{i}^{\alpha}(\mu_{j}^{\alpha}(\mu_{k}^{\alpha}(\ldots))) = \mu_{1}^{\alpha}(\ldots \mu_{i}^{\alpha}(\mu_{j}^{\alpha}(\mu_{k}^{\alpha}(\ldots))),
\]

(17)

\[
c^{\alpha}_{\max} = \mu_{1}^{\alpha}(\ldots \mu_{i}^{\alpha}(\mu_{j}^{\alpha}(\mu_{k}^{\alpha}(\ldots))) = \mu_{1}^{\alpha}(\ldots \mu_{i}^{\alpha}(\mu_{j}^{\alpha}(\mu_{k}^{\alpha}(\ldots))),
\]

(18)

\[
c^{\alpha}_{ii} = \mu_{i}^{\alpha}(\ldots \mu_{i}^{\alpha}(\mu_{i}^{\alpha}(\ldots))),
\]

(19)

\[
c^{\alpha}_{ij} = \mu_{i}^{\alpha}(\ldots \mu_{j}^{\alpha}(\mu_{j}^{\alpha}(\ldots))).
\]

(20)

In general, \(c^{\alpha}_{\min}\) and \(c^{\alpha}_{\max}\) are different; \(c^{\alpha}_{\min}\) is always smaller than or equal to \(c^{\alpha}_{\max}\). This is not surprising because we calculated the Cardwell and Parsons [1945] bounds on each elementary group of cells. It is therefore expected that the true conductivity of the medium is between \(c^{\alpha}_{\max}\) and \(c^{\alpha}_{\min}\). Note that (1) the difference between \(c^{\alpha}_{\max}\) and \(c^{\alpha}_{\min}\) is smaller than the difference between the Cardwell and Parsons bounds, and (2) there is no theoretical proof that \(c^{\alpha}_{\max}\) and \(c^{\alpha}_{\min}\) are actual bounds of the equivalent hydraulic conductivity. We have not used the values \(c_{3}\) and \(c_{4}\).

In the case where the cells are not of the same size and their conductivity is not isotropic, the equivalent conductivity of the pair of cells can be calculated with the analytical formula provided by Quintard and Whitaker [1987, equation 3.36]. We have not applied this, but the final equivalent conductivity would be a full tensor.

The anisotropy due to the spatial structure of the distribution of the hydraulic conductivity is taken into account by the iterative procedure described above. Another kind of anisotropy arises when the grid cells are not cubic but are flattened. In this case we propose a formula to estimate \(K_{\alpha}\) as a combination of \(c^{\alpha}_{\min}\) and \(c^{\alpha}_{\max}\), taking into account the anisotropy due to the flattening of the cells. We use the classical technique of an exponent varying between 0 and 1:

\[
K_{\alpha} = c^{\alpha} = \left(\frac{c^{\alpha}}{c_{\min}^{\alpha}}\right)^{\alpha} \quad \alpha \in [0, 1] \quad i \in \{x, y, z\}.
\]

(21)

The anisotropy ratio due to flat cells is defined as

\[
a_{ij} = \left(\frac{d_{i}}{d_{j}}\right)^{2} \quad (i, j) \in \{x, y, z\}^{2},
\]

(22)

where \(d_{i}\) and \(d_{j}\) represent the size of the cells in directions \(i\) and \(j\). The numerical experiments presented below (Plate 1) suggest that \(K_{\alpha}^{ax}\) tends toward \(c_{\min}^{ax}\) when the cells are flattened along the \(x\) direction (\(a_{zx}^{x}\) and \(a_{zy}^{x}\) tending toward 0), while \(K_{\alpha}^{ax}\) tends toward \(c_{\max}^{ax}\) when the cells are flattened in one of the other directions. We propose therefore to modify (8) developed by R. K. Romeu by postulating that there are only two asymptotic values \(\left(\frac{c^{ax}}{c^{\min}}\right)^{\alpha}\) for the conductivity instead of three [Duquerroix et al., 1993, equations 25, 26, and 27]. The composition formula is simplified according to this postulate, and we get

\[
c^{\alpha} = \left(\frac{c^{\alpha}}{c_{\min}^{\alpha}}\right)^{\alpha} \quad \alpha \in [0, 1]
\]

(23)

with \(\alpha\), expressed as a function of the anisotropy ratios \(a_{ij}\) and \(a_{ik}\):

\[
\alpha(a_{ij}, a_{ik}) = \frac{u(a_{ij}) + u(a_{ik}) - 2u(a_{ij})u(a_{ik})}{1 - u(a_{ij})u(a_{ik})},
\]

(24)

\[(i, j, k) \in \{x, y, z\}^{3} \quad i \neq j \neq k \]

Table 1. Number of Small Blocks

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of Small Blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean ellipsoidal inclusion</td>
<td>18,432</td>
</tr>
<tr>
<td>Boolean sinusoidal inclusion</td>
<td>6,144</td>
</tr>
<tr>
<td>Truncated Gaussian short range</td>
<td>2,560</td>
</tr>
<tr>
<td>Truncated Gaussian long range</td>
<td>40,448</td>
</tr>
<tr>
<td>Total</td>
<td>67,584</td>
</tr>
</tbody>
</table>

Figure 3. The seven curves of proportion of lithofacies as a function of depth used to generate the truncated Gaussian media. Sets \(p1, p6,\) and \(p7\) show constant proportions with depth. The others show varying proportions with depth.

Table 2. Sets of Ranges for the Covariance Models

<table>
<thead>
<tr>
<th>Horizontal Range, cells</th>
<th>Vertical Range, cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>8</td>
</tr>
<tr>
<td>a2</td>
<td>50</td>
</tr>
<tr>
<td>a3</td>
<td>50</td>
</tr>
<tr>
<td>a4</td>
<td>5</td>
</tr>
<tr>
<td>a5</td>
<td>15</td>
</tr>
</tbody>
</table>
4. Synthetic Conductivity Fields and Reference Values

To test the fast upscaling rules, 1966 hydraulic conductivity fields were generated on regular grids with $128 \times 128 \times 64$ (\approx1 million) cells. The cells are flattened and have a size of 10 \times 10 \times 1 units. Thirty-two realizations were generated for each parameter set. To investigate the effect of block size on the upscaling techniques, we extracted 67,584 small blocks ($16 \times 16 \times 8 = 2048$ cells) from these large blocks (see Table 1). We now describe the models and parameters used to generate these media.

4.1. Truncated Gaussian Media

The truncated Gaussian media were generated with the HERESIM software (Institut Français du Pétrole/Ecole des Mines de Paris). The model operates by simulating a Gaussian function and truncating it to obtain a discrete variable: the lithofacies [Matheron et al., 1987]. The parameters are a covariance function and the proportions of the different lithofacies. We used four facies, a factorized exponential model of covariance with three different sets of ranges a_1 to a_3 (Table 2). For the proportions, seven sets p_1 to p_7 of parameters were used (Figure 3). Sets p_1, p_6, and p_7 have constant proportions along the depth. For p_1 the four facies are equally represented. For p_6 the proportion of facies 1, 2, 3, and 4 are 0.15, 0.15, 0.15, and 0.55 respectively, while for the set p_7 they are 0.55, 0.15, 0.15, and 0.15, respectively. For the sets p_3 and p_4 the proportions vary linearly with depth. For the set p_4 the global proportions over the whole domain are 0.25 for all the facies. For the sets p_2 and p_5 the proportions are defined in the order that layers with predominating facies are generated. Thirteen combinations of covariance and proportions were used: a_1p_1, a_1p_2, a_1p_3, a_1p_4, a_1p_5, a_2p_1, a_2p_2, a_2p_3, a_2p_4, a_2p_5, a_3p_1, a_3p_6, and a_3p_7. In the last step a conductivity is assigned to each facies: For lithofacies 1, 2, 3, and 4, conductivities k are 1000, 500, 10, and 0.1, respectively. Figure 4 shows one realization of such media for each set of parameters.

4.2. Boolean Media

The Boolean model [Matheron, 1967; Haldorsen and Damsleth, 1990] generates points in three-dimensional space according to a Poisson process and assigns to each point an inclusion whose size, orientation, and shape follow predefined probability functions. The parameters are the density of the Poisson process, which is related to the total number of inclusions, the shape of the inclusions, and the parameters of size and orientation of the inclusions. We used five different densities named b_1 to b_5, four different types of elliptical inclusions e_1 to e_4, and two different types of sinusoidal inclusions s_1 and s_2. Finally, we have eight sets of parameters b_1e_1, b_2e_2, b_1e_3, b_3e_3, b_4e_4, b_5e_4, b_1s_1, and b_2s_2. Figure 5 shows one realization for each set of parameters. To enlarge the domain of investigation, for each realization, we used six different pairs of conductivity values for the inclusion and the medium (Table 3).

4.3. Reference Block Conductivity

The equivalent conductivity (or block conductivity) of any heterogeneous block was calculated following the same ap-
calculations with the finite difference code HIGHDEN developed at the University of Newcastle. HIGHDEN was not applied to the small blocks. The difference between the results obtained with TRIMULEC and HIGHDEN is around 5% on average but can reach 30% for the estimation of the vertical conductivity. These differences indicate that we must compare the fast techniques with both references.

5. Criteria of Classification of the Fast Upscaling Techniques

For all the media we have at least one reference value and one block conductivity for each fast upscaling technique. The most general way to compare the results of a set of values with reference values is to study the scatter diagrams of these pairs of values. However, to rank the techniques we also need numerical criteria. The first one is the relative bias: the ratio of the mathematical expectation (experimentally, the average) of the error and the expectation of the reference value,

\[e = \frac{\sum_i (Y'_{\text{ref}} - Y'_{\text{quick}})}{\sum_i Y'_{\text{ref}}}, \]

where \(i \) is an index over all the synthetic conductivity fields, \(Y'_{\text{ref}} = \log_{10} K'_{\text{ref}} \) is the reference value for the \(i \)th synthetic medium, and \(Y'_{\text{quick}} \) is the estimation of the upscaled conductivity with a given quick technique. The parameter \(e \) is calculated on the logarithm of the conductivity, because the order of magnitude is more important than the value itself.

The bias itself is not sufficient because large positive and negative errors can be averaged in such a way that the bias is small although the estimation is inaccurate. To quantify the dispersion, we need another criterion. We used the linear correlation coefficient:

\[\rho = \frac{\sum_i (Y'_{\text{ref}} - \bar{Y})(Y'_{\text{quick}} - \bar{Y}'_{\text{quick}})}{\sqrt{\sum_i (Y'_{\text{ref}} - \bar{Y})^2 \sum_i (Y'_{\text{quick}} - \bar{Y}'_{\text{quick}})^2}}, \]

where \(\bar{Y} \) represents the mean over all the media, i.e., \(\bar{Y} = 1/n \sum_{i=1}^{n} Y' \). A value of \(\rho \) around 1 indicates a small dispersion around a linear relation between the two variables. Using such
a criterion does not allow detection of nonlinear relations between the variables, but we are not interested in these kinds of relations. We need to find the techniques that give directly the best estimation of the reference value, and we do not want to have to apply an additional empirical correction to the result of the quick technique.

To visually summarize the classification using both the relative bias and the correlation coefficient, we represent the results of the different upscaling techniques in a quality plot: A point corresponds to a technique, and its coordinates are the relative bias and the correlation coefficient. The closer the point is to the upper left-hand corner ($\epsilon = 0$, $\rho = 1$), the more accurate the technique is. For a technique to be reliable, it must stay in this upper left-hand corner when the conditions of the test are changed.

6. Results

6.1. Effect of the Reference Value

Table 4 shows that the classification of the upscaling techniques remains identical even if the values for the bias and for the correlation coefficient are different when we use a reference value calculated with TRIMULEC or HIGHDEN. In the following we will discuss only the classification obtained by using the reference values calculated with TRIMULEC for which the largest number of simulations was done.

6.2. Scatter Diagrams

In each scatter diagram the conductivities calculated with the fast technique are plotted along the abscissa, and the reference conductivities calculated with TRIMULEC are plotted along the ordinate. The better the technique is, the closer are all the points from the bisector $y = x$. Because of the importance of anisotropy and block size the results for K_{xx}^ref and K_{yy}^ref and the results for the large blocks and for the small blocks are plotted separately. We do not present the plots for K_{yy}^ref because they are almost identical to those of K_{xx}^ref.

Plate 1 shows the scatter diagrams that allow the comparison of the Cardwell and Parsons bounds with c_{max} and c_{min} for all block sizes and flow directions. We observe that in accordance with the theory, K_1 and K_2 always bound the reference value whatever the size of the blocks and the flow direction. Values c_{max} and c_{min} are closer to the bisector line than K_1 and K_2, implying that they are closer to the reference values. However, c_{max} and c_{min} do not bound the reference conductivities as the cloud of points is not bounded by the bisector line. Furthermore, (as mentioned in section 3), the anisotropy causes c_{max} to tend toward the reference values for flow in the x direction for large and small blocks (Plates 1c and 1k), while c_{min} tends toward the reference for flow in the z direction for large and small blocks (Plates 1h and 1p).

Plate 2 shows the scatter diagrams that allow an analysis of which fast upscaling techniques are the most accurate for large blocks. Plate 3 shows the same diagrams for the small blocks. A visual check of these scatter diagrams shows that no technique gives a good estimation of the conductivity in the z direction for the large blocks (Plates 2i–2p). Better results are obtained in the x direction for large blocks (Plates 2a–2h) and in all directions for the small blocks (Plate 3). In Plates 2 and 3 the scatter diagrams corresponding to algebraic means (μ_h, μ_g, $\mu_{1/3}$, and $\mu_{1/3}$) are always more scattered and more distant from the bisector and therefore less accurate than those corresponding to the renormalization schemes (c, r_x, and r_y) or to Romeo’s formula K_{xx}.

In Plates 2 and 3 the color of the dot corresponds to the type of medium: red is truncated Gaussian with a long correlation range; dark blue is truncated Gaussian with a small correlation range; green is Boolean media with ellipsoidal inclusions; and light blue is Boolean media with sinusoidal inclusions. This color coding shows that some techniques can give good estimations for a specific type of medium, while they are not accurate for another type. For example, the geometric mean gives an acceptable estimation of the vertical conductivity of Boolean media, while it is not acceptable for truncated Gaussian media (Plate 2k). The color coding also shows that for the Boolean media some nonlinear relations exist between the harmonic mean and the equivalent hydraulic conductivity (Plate 2a). Note, however, that our goal is not to study this type of relation.

6.3. Efficiency of the Techniques

Table 5 shows the mean CPU time for each upscaling technique and the time for full solution using the finite element method. The standard renormalization is slower than the tensorial renormalization technique because it has to solve a linear system 3 times, and the tensorial renormalization has to solve only one linear system. The simplified renormalization does not involve the solution of a linear system of equations.
Plate 1. Scatter diagrams showing the reference equivalent conductivity (ordinate) calculated with finite elements as a function of the Cardwell and Parsons [1945] upper bound K_1 and lower bound K_2 or as a function of the values c_{max} and c_{min} (abscissa). The different diagrams correspond to different flow directions and different block sizes. The points are closer to the bisector for c_{max} and c_{min} than for K_1 and K_2. This indicates that the values c_{max} and c_{min} are closer to the reference values than K_1 and K_2.
Plate 2. Large blocks. Scatter diagrams of the reference equivalent conductivity (ordinate) as a function of the different fast upscaling techniques (abscissa). Definitions are as follows: \(\mu_h \), harmonic mean; \(\mu_a \), arithmetic mean; \(\mu_g \), geometric mean; \(\mu_{1/3} \), Landau-Lifshitz-Matheron conjecture; \(k_r \), Romeu’s formula; \(c \), simplified renormalization; \(r_s \), standard renormalization; and \(r_t \), tensorial renormalization.
Plate 3. Small blocks. Scatter diagrams of the reference equivalent conductivity (ordinate) as a function of the different fast upscaling techniques (abscissa). Definitions are as follows: \(\mu_h \), harmonic mean; \(\mu_a \), arithmetic mean; \(\mu_g \), geometric mean; \(\mu_{1/3} \), Landau-Lifshitz-Matheron conjecture; \(k_r \), Romeu’s formula; \(c \), simplified renormalization; \(r_s \), standard renormalization; and \(r_t \), tensorial renormalization.
Table 5. Mean CPU Time in Seconds on a Sparc 10 Workstation

<table>
<thead>
<tr>
<th>Method</th>
<th>Small Blocks(^a) (2,048 cells)</th>
<th>Large Blocks(^a) (1,048,576 cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebraic means</td>
<td>0.04</td>
<td>27</td>
</tr>
<tr>
<td>Romeu formula</td>
<td>0.04</td>
<td>42</td>
</tr>
<tr>
<td>Simplified renormalization</td>
<td>0.07</td>
<td>49</td>
</tr>
<tr>
<td>Tensorial renormalization</td>
<td>0.36</td>
<td>215</td>
</tr>
<tr>
<td>Standard renormalization</td>
<td>1.04</td>
<td>445</td>
</tr>
</tbody>
</table>

\(^a\)Input and output are taken into account.
\(^b\)There are 461 finite elements in small blocks.
\(^c\)There are 10,286 finite elements in large blocks.

and is therefore faster. Obviously, the algebraic means are the fastest. The comparison of the execution times for the quick techniques and for the finite elements shows a gain of a factor of between 20 and several hundred.

7. Discussion

7.1. Quality Plots

We observe (Figure 7) a group of techniques corresponding to the renormalization algorithms \((r_x, r_y, \text{ and } c)\) that have very good linear correlation coefficients and small bias (mostly lower than 10%) and a second group corresponding to the algebraic means \((\mu_{xy}, \mu_{y}, \mu_{h0}, \text{ and } \mu_{1/3})\) with smaller linear correlation coefficients. Romeu’s formula falls in between. Sometimes it belongs to the first group (for the small blocks experiments); sometimes it belongs to the second (for \(K_d\) for the full domains). The algebraic techniques can, in some cases, present a small bias (e.g., \(\mu_y\) for \(K_d\), see Figures 7b and 7d); however, in general, they present a large dispersion of the estimated conductivity. Among the algebraic techniques the harmonic and the arithmetic means are the least reliable. They can have very strong bias (over 110%) and poor linear correlation coefficients (Figure 7).

7.2. Effect of Block Size and Anisotropy

The differences between Figures 7a–7d show the effects of anisotropy and block size. Concerning the size of the blocks, the accuracy is, in general, better for a small block than for a large one. A rather surprising counterexample is the increase in accuracy of the arithmetic mean for \(K^{22}_{22}\) (compare Figures 7a and 7e). Furthermore, the effect of block size is more important for \(K^{22}_{22}\) than for \(K^{11}_{11}\). Concerning the anisotropy, the accuracy is clearly better for the estimation of the horizontal conductivity than for the vertical one. The worst situation is the estimation of the vertical conductivity of the large blocks. In this case the accuracy of all the techniques is drastically reduced. The relative bias goes from values of less than 5% to values larger than 29% for the best techniques. This effect is more pronounced for \(r_y\) (the bias goes from 0.2% for \(K^{11}_{11}\) in the small blocks to 69.3% for \(K^{22}_{22}\) in the large blocks). In all cases the techniques that remain closest to the ideal point (upper left-hand corner) are \(r_x, r_y, \text{ and } c\).

To study the effect of horizontal anisotropy on the techniques, we also compared the classification in the case of Boolean media with ellipsoidal or sinusoidal inclusions (Figures 7c and 7f). With ellipsoidal inclusions the three renormalization techniques and \(K_{c}\) perform well. With sinusoidal inclusions the accuracy of all the techniques deteriorates. The effect is greatest for \(r_x\).

7.3. Limitations of the Renormalization Schemes

In its present formulation the simplified renormalization can handle only regular rectangular grids with a power of 2 number of cells in each direction. The extension to irregular grids requires weighting the local averages by the size of the cells [Li et al., 1999]. The extension to grids that contain a number of cells that are not a power of 2 can follow the procedure proposed by Hardy and Beier [1994, p. 210–211] for extending the standard renormalization to these situations.

Again, in its present formulation the simplified renormalization requires the local conductivities to be diagonal. This drawback can be overcome easily by using the exact analytical formulae of Quintard and Whitaker [1987, equation 3.36] to aggregate pairs of cells with a full tensor of hydraulic conductivity instead of using the arithmetic and harmonic means. The result will be a full tensor of hydraulic conductivity.

A more important limitation is that the simplified renormalization is not able to detect the principal directions of anisotropy resulting from inclined layers of different conductivities. The consequence is that if the local conductivities are scalar, the upscaled conductivity will be diagonal even if we use the Quintard and Whitaker formula. This results because we work with elementary groups of only two cells. To create such anisotropy, it requires working on elementary groups of at least four cells in two dimensions or eight cells in three dimensions. This is exactly what the tensorial renormalization does, but the cost is a slower algorithm.

Finally, the most important problem that we see is that the simplified renormalization, as well as all the other tested techniques, fails to accurately estimate the vertical conductivity of the large blocks. This kind of inaccuracy was described by Hardy and Beier [1994] and by Malik [1995] for the standard renormalization. It was interpreted as the result of the accumulation of successive errors in the renormalization procedure due to the use of inadequate permeability-type boundary conditions on the elementary group of cells. This interpretation is questionable since both the tensorial renormalization, which uses the rather general periodic boundary conditions, and the simplified renormalization, which does not solve a flow problem on the elementary group of cells, are equally inaccurate to estimate the vertical conductivity of the large blocks.

8. Conclusion

A new renormalization technique was devised and intensively tested on two types of heterogeneous synthetic media (truncated Gaussian and Boolean) with high conductivity contrast and strong anisotropy. The numerical experiments showed that among the tested techniques, the two most reliable ones are the tensorial and the new simplified renormalization. Both proved to be more accurate and faster than the original scheme proposed by King [1989]. The numerical efficiency of the simplified renormalization (it is about 200 times faster than the finite elements and 4 times faster than the tensorial renormalization) leads us to recommend it when a diagonal tensor of equivalent conductivity is sufficient (when the principal axes of anisotropy are aligned with the axes of the grid). If the nondiagonal terms are required (geological models including cross stratifications, e.g.), we recommend the use of the tensorial renormalization. These two techniques are the best of the techniques we tested; however, they are not always accurate. They give very good results for the horizontal conductivity of the large blocks and for the horizontal and vertical
Figure 7. Quality plots for the different flow directions and block sizes. The closer the point is to the upper left corner, the better the technique is. Note that the scales and ranges are not identical in all the plots.
conductivity of the small blocks, but they give inaccurate estimates of the vertical conductivity of the large blocks. Additional research is required to develop fast spatial averaging techniques capable of handling such situations.

An important additional result is the demonstration that even if the algebraic techniques (geometric mean, arithmetic mean, etc.) can be almost unbiased for certain types of media, they always show a large dispersion of the estimated values around the reference values. This is due to the fact that they do not take into account the spatial arrangement of the local conductivities. A justification for using them would be to calculate block conductivity when the spatial distribution is completely unknown. The computed results are available to the scientific community on request to allow further research and other comparisons with new upscaling procedures.

Acknowledgments. This work was supported by the Geoscience 2, Reservoir Engineering Project funded by the commission of the European Communities. The manuscript was greatly improved by review comments from R. W. Zimmerman, S. A. Miller, and an anonymous reviewer.

References

G. de Marsily, Université Pierre et Marie Curie, Laboratoire de Géologie Appliquée, 75252 Paris Cedex 05, France. (Gdemarsily@aol.com)

E. Ledoux, Ecole des Mines de Paris, Centre d’Informatique Géologique, 77305 Fontainebleau Cedex, France. (ledoux@cg.ensmp.fr)

G. Le Loch, Ecole des Mines de Paris, Centre de Géostatistiques, 77305 Fontainebleau Cedex, France. (leloch@cg.ensmp.fr)

R. Mackay, School of Earth Science, University of Birmingham, Birmingham B15 2TT, England. (R.Mackay@bham.ac.uk)

P. Renard, Swiss Federal Institute of Technology, Institute of Geology, 3093 Zurich, Switzerland. (renard@erdw.ethz.ch)