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We report the first observation of the impact of mesoscopic fluctuations on the photocount statistics of
coherent light scattered in a random medium. A Poisson photocount distribution of the incident light
widens and gains additional asymmetry upon transmission through a suspension of small dielectric
spheres. The effect is only appreciable when the average number 71 of photocounts becomes comparable or
larger than the effective dimensionless conductance g of the sample.

Since Anderson’s discovery that the propagation of a
quantum particle can be blocked by disorder [1] and the
subsequent realization that this ‘“Anderson localization”
can also take place for electromagnetic waves (photons)
[2], the quest for observing it has become a very active field
of research [3—14]. Although the observation of microwave
localization in quasi-one-dimensional disordered samples
[3] now seems to be accepted by the scientific community,
the localization of visible light in strongly scattering, three-
dimensional (3D) semiconductor powders [4] has been
questioned [5]. For both light and microwaves, an efficient
way of revealing localization effects is to study fluctuations
and correlations (upon varying frequency for static scat-
terers [6—8] or time for mobile scatterers [8,9]) of the
transmission coefficient 7' of the random sample, or even
the full probability distribution of 7' [3,10-12].

Statistics of T, as well as many other mesoscopic optical
phenomena (coherent backscattering and weak localiza-
tion [13], long-range spatial intensity correlations [6],
universal conductance fluctuations [14], etc.) have been
understood and discussed in the framework of classical
physics, without appealing to quantum mechanics. The
impact of quantum-mechanical effects on the coherent
backscattering of light has been demonstrated in beautiful
experiments on light scattering in cold atomic clouds [15].
The quantum nature of scatterers (atoms) had to be taken
into account to understand the low value of the coherent
backscattering enhancement factor. Experimental studies
revealing the quantum nature of /ight in multiple scattering
have been reported only very recently [16], despite a con-
siderable theoretical interest in this subject [17]. In par-
ticular, Kindermann et al. have predicted that disorder can
substantially alter photon statistics of degenerate incoher-
ent radiation. In the present Letter we report the first
experimental observation of the impact of one of the
precursors of Anderson localization—mesoscopic, long-
range correlations—on the photon statistics of degenerate
coherent light emitted by a conventional continuous laser.

We interpret our results in the framework of the semiclas-
sical theory of photoelectric detection [18], which appears
to be sufficient under conditions of experiments reported
here.

As first noted by Einstein 100 years ago [19], the quan-
tum nature of light can be directly probed by the photo-
electric effect. As the energy of the electromagnetic wave
is quantized in portions e (with 7 the Planck constant and
w the frequency of light), only an integer number # of such
quanta (photons) can be absorbed by a photoelectric effect-
based detector during a given time interval 7. Today’s
electronic equipment allows us to measure n in a wide
dynamic range and to determine the probability distribu-
tion of photocounts P(n, i7), where 7 is the average number
of photocounts in the interval 7 = 7i/f and f is the average
photocount rate (number of counts per unit time). P(n, 1)
carries fundamental information about interaction of light
with the medium. In a “random laser”, for example,
P(n, 1) can be used to characterize different regimes of
lasing [20]. In a different domain of physics—mesoscopic
electronics—the “full counting statistics™ of electrons in
disordered conductors is also under active study [21].

In our experiment we measure the distribution of photo-
counts of laser light transmitted through an optically dense
slab (see Fig. 1). The sample cell (thickness L = 0.5 mm)
is filled with a charge stabilized aqueous colloidal disper-
sion of a commercial titanium dioxide powder (Warner
Jenkinson Europe Ltd.), particle diameter ~200-300 nm,
at an initial density of 18 = 1% per volume. To further
increase the density we let the sealed suspension settle
under gravity. Because of the electrostatic repulsion be-
tween the particles, the sedimentation is asymptotically
slowed down and an equilibrium layer of ~0.2-0.25 mm
thickness (volume fraction ca. 35%—-40%) is formed after
about 10 hours. From diffusing-wave spectroscopy mea-
surements we have checked that the particles in this layer
remain mobile and undergo Brownian motion. Following
the approach described in Ref. [9] we estimate the trans-
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FIG. 1 (color online). Experimental setup: The incident laser
beam is focused on the vertically oriented sample holder. The
glass window directed towards the laser is highly absorbing
while the opposite window is transparent. The windows hold a
sealed liquid layer (thickness L) of colloidal titanium dioxide
suspended in water. Light transmitted through the sample is
collected by a light guide and recorded by a single photon
detector (not shown).

port mean free path at this density to /* = 0.7 = 0.1 wm.
Our sample is therefore deep in the multiple scattering
regime: a typical transmitted photon experiences (L/[*)*> ~
10° elastic scattering events, whereas the coherent incident
beam is destroyed after a distance [ << L and hence does
not contribute to the measured signal. The glass window
directed towards the laser is highly absorbing (transmission
coefficient = 0.001) in order to suppress multiple reflec-
tions [9] while the opposite one is transparent. A frequency
doubled Nd:YV04 laser (““Verdi” from Coherent) operat-
ing at the wavelength A = 532 nm illuminates the sample
through a microscope objective that focuses the laser beam
to a small spot (spot size w = 3 um) on the sample
surface. The light transmitted through the cell is collected
by a light guide (core diameter 5 mm), recorded by a single
photon detector with short dead time, and processed by a
digital photon counter (correlator.com, New Jersey, USA).
The high temporal resolution (12.5 ns) of the latter assures
that no more than one photon is arriving every time step for
a typical photon count rate f of 9 MHz. In a typical
experiment the photon trace is recorded over 1 h. From
the recorded data we compute the probability distribution
P(n, 1) and the time averaged correlation function of total
transmission C,(f) =(T(0)T(1))/T?* — 1 following standard
procedures [22]. To suppress contributions from slow drifts
the data is analyzed in 30 s intervals and subsequently
averaged. Some representative results for different beam
spot sizes are shown in Figs. 2 and 3.

Because the detection process is of probabilistic nature,
the detection of a photon is a random event and P(n, 77) is
expected to be the Poisson probability distribution [18].
However, as follows from Fig. 2, this is only true when the
incident laser beam is sufficiently wide. For a focused
beam we observe that the distribution widens and becomes
more asymmetric than one would expect for the Poisson
distribution. This indicates that additional fluctuations ex-
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FIG. 2 (color online). Probability distributions of photon
counts for an expanded incident beam (black squares) and a
focused beam (beam waist w = 3.4 um, red circles) for four
different sampling times 7. The former distribution follows the
Poisson law (black line), while the latter one is well described by
the Fourier transform of our Eq. (3) (red line). Small deviations
for the shortest 7 can be explained by the finite detector dead
time [26]. The number of data points for the two longest 7 has
been reduced to improve readability.

ist in the latter case. These additional fluctuations are due
to the random motion of scatterers. Since we collect all the
transmitted intensity (total transmission measurements),
and since the surface of our sample is much larger than
the typical size ~A of speckle spots, one could naively
expect spatial speckle to average out, as it is indeed the
case for large w. However, if w is small and the scattering
is sufficiently strong, coherent interferences of scattered
light give rise to weak but long-range correlation of distant
speckle spots, which acquire a synchronous component in
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FIG. 3 (color online). Correlation function of total transmis-
sion T for different beam spot sizes w (distance between 1/e in-
tensity values of a focused Gaussian beam). Lines are fits to the
data.
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their fluctuations. This results in enhanced fluctuations of
the total transmitted signal [7,9,10].

The enhanced fluctuations of the total transmission T
can be studied assuming that light is a classical wave
described by Maxwell equations [10,23]. As long as local-
ization effects are weak, the statistical distribution P,(T)
of T appears to be very close to Gaussian (because the
many speckle spots contributing to 7 are only weakly
correlated and the central limit theorem applies), but with

enhanced second and nonzero third central moments M(Tz)

and MY, where M¥ = (T — T)*)/T*. Therefore, the
characteristic function of 7' can be approximated by

1 i
xr(q) = eXp<th - ETZM(Tz)q2 —~ 6T3M(T3)q3>. (1)

When the measurement of 7 is not instantaneous but in-
volves time integration, the second moment is given by
[18]

me =2 f T<1 - 5)Cz(t)dt. 2)
T 0 T

The third moment M(T3 ) of the distribution of T can be
shown to be proportional to the square of the second one:
M(T3) = aM(Tz)z, where the proportionality constant o =
16/5 for a wide (w > L) Gaussian beam [23]. The limit
w = L has also been studied both in frequency- [7] and
time-domain [9] correlation experiments. In our experi-
ments, on the contrary, the beam width w is much smaller
than the thickness L of the sample (typically, w/L ~
1072). In this situation, by performing calculations similar
to that of Ref. [7] we find C,(r) = (2/3g) exp(3t/4t,) X
[1 — ®(/3t/41,)], where @ is the error function [24].
Leaving the discussion of the microscopic expressions
for g and ¢, for a future publication, we just note here
that g scales with the beam spot size w and hence the
magnitude of the total transmission fluctuations (~ 1/g)
can be varied by adjusting w, similarly to the wide-beam
situation [7,9]. By analogy with the case of the disordered
waveguide [3,11,12], we will further term g the ‘“‘effec-
tive” dimensionless conductance. The above expression
for C,(1) with g ~ 10° and f, ~ 107°-10"* s provides a
good fit to our measurements (see Fig. 3).

According to the famous Mandel’s formula [18], the
statistical distribution of photocounts P(n, 1) can be ob-
tained by averaging the Poisson distribution Ppgicon (71, 7 =
1nT) over the distribution P4 (T) of the total transmission 7T,
with 7 the quantum efficiency of the photodetector. The
Fourier transform of the Mandel’s formula with respect to
n yields a relation between the characteristic functions

Xx(q) and x7(q):
Xn(q) = xrlin(1 — )/ T]

| .
= exp(iflq - EﬁzMﬁ,z)qz - é#Mff)f), 3)

where the second line is obtained by expanding the first one
in power series in g, which is justified for large 7ii. The
second and the third central moments of # in Eq. (3) are

1
MP =—+MP, “4)
n

(2)
MY = % + MY + 3Mr (5)
The Fano factor is F = ((n?) — %)/ = 1 + aM? > 1,
which indicates photon bunching. The photocount distri-
bution P(n, i7) obtained by the Fourier transform of Eq. (3)
describes our measurements very well (see Fig. 2) when
we use the fits to the correlation function C,(7) obtained

independently (Fig. 3) to determine M(T2 ) and M(T3 ). Note
that there is no trivial relation between our P(n, i) and
P;(T) studied previously for light [10] and microwaves
[11] in transmission through static disordered samples. In
our experiments the microscopic configuration of scatter-
ers changes during the time 7 that it takes to accumulate n
photons, whereas T is the value of the transmission coef-
ficient corresponding to a given (fixed) configuration of
scatterers, and P(T) of Refs. [10,11] does not contain any
information about the decorrelation of 7 with time.
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FIG. 4 (color online). Second and third central moments of the
photocount distribution P(n, i) for the same beam spot sizes as
in Fig. 3. Lines are theoretical results (4) and (5). The third
moment plot is a fit to the data with & = 3.02, 2.59, and 2.00 (for
curves from top to bottom).
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The first terms on the right-hand sides of Egs. (4) and (5)
correspond to the results expected for Poisson distribution
of photocounts. As we show in Fig. 4, these results are
recovered for small 7 << g, when the photocount distribu-
tion is dominated by the shot noise due to the discreteness
of n and is not sensitive to the randomness of the scattering
medium. Deviations from the Poisson-like behavior start to
become important when 7 becomes comparable to the
effective dimensionless conductance g. The long-range
character of the correlation function C,(f) ~ 1//f is re-

sponsible for new scaling laws quz) ~1/ Vi and Mff) ~
1/7 in the limit of large 7i. This behavior is well confirmed
by our measurements: as can be seen in Fig. 4, the data
points indeed follow the 1/+/7 and 1/7 asymptotes shown
by dashed lines [25]. Mesoscopic fluctuations of the total
transmission 7 due to the random motion of scatterers in
the disordered sample become dominant in this regime,
whereas the shot noise is negligible. We see therefore that
the transition between small- and large-7 regimes in
P(n, i) is governed by localization effects, the strength of
the latter being measured by the dimensionless conduc-
tance g.

In conclusion, mesoscopic fluctuations of coherent light
transmission through a random medium produce measur-
able deviations of photocount distribution P(n, 1) from
Poisson law, provided that the average number of photo-
counts 71 is comparable or larger than the effective di-
mensionless conductance g of the random sample. An
interesting continuation of this work would be to analyze
P(n, i) for incident light in chaotic or in nonclassical
(Fock, squeezed, etc.) states. Our preliminary calculations
show that for the incident light in the single mode one-

photon Fock state M 512) = 1/i — 1, i.e., the photon number
fluctuations are suppressed below the 1/7 shot-noise limit
and are independent of the fluctuations of 7. On the other

hand, for a single mode chaotic incident beam ME,Z) =

I/a+1+ 2M(T2), provided that the coherence time of the
beam exceeds the sampling time 7.
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