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Abstract.- The present work makes the case for viewing the Euler-Maclaurin formula as
an expression for the effect of a jump on the accuracy of Riemann sums on circles and draws
some consequences thereof, e.g., when the integrand has several jumps. On the way we give
a construction of the Bernoulli polynomials tailored to the proof of the formula and we show
how extra jumps may lead to a smaller quadrature error.
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1. Introduction

In the present work we discuss the approximation of the definite integral

I :=
∫ L

0
f(x)dx

of a (piecewise) smooth function f from an equidistant sample of its values by the (compos-

ite) trapezoidal rule [Gau, Häm-Hof, Hen, Kin-Che, Kre, Sch]:

Tf (h) := h

[
f(0)

2
+

N−1∑
k=1

f(kh) +
f(L)

2

]
, h :=

L

N
, N ∈ INN.

The appraisal of the error Tf(h) − I, and the basis of one approach to Romberg extrapola-

tion, is the standard Euler–Maclaurin formula (EMF) given in the following theorem [Kre].

Throughout this paper, f (j) will denote the j–th derivative of f and Cq[a, b] the set of all

q–times continuously differentiable functions on [a, b].
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Theorem 1 (Euler–Maclaurin formula (EMF) for the trapezoidal rule)

Let f ∈ C2m+2[0, L] for some m ≥ 0. Then, for every N ∈ INN and with h := L
N

, the error of

the trapezoidal rule may be written as

Tf(h) − I = a2h
2 + a4h

4 + . . . + a2mh2m + L
B2m+2

(2m + 2)!
f (2m+2)(ξ)h2m+2 (1.1)

for some ξ ∈ [0, L], where

a2j :=
B2j

(2j)!
[f (2j−1)(L) − f (2j−1)(0)] (1.2)

and with B� denoting the �–th Bernoulli number.

The speed of convergence of Tf(h) toward I as h ↓ 0 is thus determined by the differences

between the derivatives of odd orders at the extremities of the interval: in general, i.e.,

without the special property f ′(L) = f ′(0), one has O(h2)–convergence; every equality

of another odd order derivative eliminates a further h2j–term. The method is therefore

especially efficient when f is L–periodic and in C2m+2(−∞,∞) [Wei]. Notice that ξ varies

with h and that the h2–behavior of the error may show up only once h is small enough.

The question we address here is the following: how do we understand the fact that for

h small enough the integration error almost solely depends on differences in the behavior of

the function at the extremities and not on what happens in-between ?

Our answer is to view the trapezoidal rule as a Riemann sum on a circle. This interpre-

tation considers the values of f and its derivatives at the extremities as the left and right

limits at a jump and explains why they govern the accuracy; it also leads to a generalization

of the formula to functions with several jumps.

Note that, when the derivatives at the extremities are known, one may use them in (1.1)

to construct quadrature rules with higher orders of convergence. Such rules may also be

obtained without knowledge of the derivatives by replacing the latter with divided differences

[Lyn2, Rok, Alp].

2. Bernoulli polynomials and Bernoulli numbers

The circle interpretation will yield as a by-product a somewhat simpler proof of the EMF.

The Bernoulli polynomials (BP) are an essential ingredient of all such proofs (the Bernoulli

numbers are the values of the BP at zero). They are usually described at the onset, without
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connection to the EMF. We shall instead construct them as recursive integrals of the constant

1 with just the right properties for a self-contained proof.

Let us first give a flavour of the latter. The trapezoidal sum is obtained from an inte-

gration by parts of f(x) = f(x) · 1 over each subinterval [kh, (k + 1)h], where the primitive

of 1 is the line x − ck connecting the points (kh,−h
2
) and ((k + 1)h, h

2
), with ck = (k + 1

2
)h

being the center of the interval:∫ (k+1)h

kh
f(x)dx = (x − ck)f(x)

∣∣∣(k+1)h

kh
−

∫ (k+1)h

kh
f ′(x)(x − ck)dx

=
h

2
[f(kh) + f((k + 1)h)] − h

∫ (k+1)h

kh
f ′(x)

(x

h
− (k +

1

2
)
)
dx.

This yields

I =
N−1∑
k=0

∫ (k+1)h

kh
f(x)dx = Tf (h) − h

∫ L

0
f ′(x)P 1(

x

h
)dx, (2.1)

where P 1 stands for the h–periodic continuation of the function given on [0, 1] by P1(x) =

x − 1
2

(see Figure 1). %
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Figure 1. An example of f and P 1 in equation (2.1) with N = 6

The differences in the derivatives at extremal nodes in the EMF are obtained by re-

cursively applying integration by parts to the last integral of (2.1) on every subinterval

separately, thereby differentiating f ′ and integrating P 1 again and again. The h–periodic
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extensions P � of the primitives of P1 are made continuous at the integer multiples of h, so

that no value at an interior node appears, in contrast with the first integration above. Con-

tinuity is achieved by constructing the P� for � even as even functions with respect to h
2

and

the P� for � odd as odd functions with zero values at the extremities of [0, h]. (A function g

is even with respect to a when g(a−x) = g(a+x), odd when g(a−x) = −g(a+x).) These

primitives are the Bernoulli polynomials, which we denote by P� in order to distinguish

them from the Bernoulli numbers B� := P�(0).
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Figure 2. Bernoulli polynomials P1, . . . , P6 on [0, 1]

The BP are usually constructed and given on [0, 1]. There P1(x) = x − 1
2

is odd with

respect to 1
2
. We obtain two new polynomials simultaneously. Suppose that P2k−1 has been

determined and that it is monic (i.e., the coefficient of its term of highest degree equals

1) and odd with respect to 1/2. Then any primitive of the form a
∫ x
b P2k−1(u)du + c, with

a, b, c ∈ IR, is even with respect to 1/2, and one may choose a = 2k to have a monic

polynomial. We thus consider

P2k(x) = P ∗

2k(x) + B2k, P ∗

2k(x) := 2k
∫ x

0
P2k−1(u)du (2.2)

for some constant B2k. Equation (2.2) splits P2k into P2k(0) and the term by term integral
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of P2k−1. A further integration from 1/2 yields

P2k+1(x) = (2k + 1)

[∫ x

1/2
P ∗

2k(u)du + B2k(x − 1

2
)

]
+ B2k+1 (2.3)

for some constant B2k+1, which we take as 0 in order to make P2k+1 odd with respect to

1/2. Then requiring P2k+1(0) = 0, i.e.,

B2k = −2
∫ 1/2

0
P ∗

2k(u)du = −
∫ 1

0
P ∗

2k(x)dx,

guarantees that P2k+1(1) vanishes, too, and fully determines P2k and P2k+1 in (2.2) and

(2.3). P� is called the Bernoulli polynomial of degree �, the constant B� = P�(0) the �–th

Bernoulli number. Tables and graphs of P� and B� appear in many books, among them the

classical [Abr-Ste].

The parity may be written as

P�(1 − x) = (−1)�P�(x). (2.4)

Although it will not be used in this paper, we notice that this implies a vanishing mean

of P� over the interval [0, 1], i.e.,
∫ 1
0 P�(x)dx = 0 ∀ � (for � even, this is obtained from∫ 1

0 P2k(x)dx =
∫ 1
0 P ∗

2k(x)dx + B2k = 0). P� is often constructed from P�−1 just by requiring

that property [Hen, p. 282].

The relation

P ′

�+1(x) = (� + 1)P�(x), (2.5)

which follows from (2.2) for � even and from (2.3) and (2.2) for � odd, will be crucial in the

development.

3. The circle interpretation of the trapezoidal rule

Let us now come to our main point, namely that the trapezoidal rule and the EMF should be

interpreted on a circle. For that purpose, think of the interval [0, L] as being rolled up on the

circle D of radius L
2π

through the application that maps x onto the point L
2π

(cos φ, sin φ) ∈ IR2

with polar angle φ = 2π
L

x, φ : [0, L] �→ [0, 2π], and let f be correspondingly defined on the

circle. x now also denotes arc length on D. This makes the extremities x = 0 and x = L the

same point on D, and the values of f and its derivatives at 0 and L their left and right limits

respectively at that same point, see Figure 3. In fact, f(0) = f(0+) and f(L) = f(0−)

where, as usual, f(x±) := limε→0+ f(x ± ε). In the generic case, i.e., when f and its

derivatives are not L–periodic, 0 ∼ L becomes a point of discontinuity (jump) of f .
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0 L 0 ≡ L

Figure 3. Composite trapezoidal integration and its circular interpretation

The trapezoidal rule is usually introduced as the area under the piecewise linear inter-

polant of f between equidistant points. It may however also be seen [Ber] as the area under

the — possibly balanced, see [Hen, p. 333] — trigonometric polynomial of minimal degree

p(x) =
[N/2]∑

n=−[N/2]

bnein 2π
L

x

interpolating the same values. (As usual, [x] denotes the entire part of x.) Indeed, in view

of
∫ L
0 ein 2π

L
xdx = L

2π

∫ 2π
0 einφdφ = 0, one has∫ L

0
p(x)dx =

∫ L

0
b0dx = L · b0.

But the bn are the trapezoidal approximations of the Fourier coefficients of f [Hen, p. 352],

so that b0 = 1
L
Tf(h) and Tf (h) =

∫ L
0 p(x)dx. The negative influence of the jump on the

accuracy of the interpolating trigonometric polynomial explains why the convergence of the

trapezoidal rule hinges on the values of f and its derivatives at that point.

After changing f(0) to

f(0) :=
1

2
[f(0) + f(L)] , (3.1)

the trapezoidal rule becomes a Riemann sum on the circle:

Tf(h) = h
N−1∑
k=0

f(kh) = h
N∑

k=1

f(kh).
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In Theorem 1 the location of the jump coincides with a node. It has been known for some

time [Lyn1] that one can prove a similar result for any Riemann sum with equidistant nodes

(and evaluation set identical with the partition), i.e., for every rule

Rf (h) := h
N−1∑
k=0

f((k + t)h) = h
N∑

k=1

f((k − 1 + t)h), 0 ≤ t < 1 (3.2)

(notice that our range for t differs from that of [Lyn1] and [Ell]). On the circle D we define

the L–periodic function

f̂(x) := f(x − (1 − t)h) = f(x − t̂h)

with

t̂ := 1 − t.

Since I =
∫ L
0 f̂(x)dx, one may view Rf(h) for all t as trapezoidal integration:

Rf(h) = T
f̂
(h).

This allows us to start the proof for all t as in (2.1) and eliminates t̂h from most of the

development. The jump in f̂ is located at t̂h in the first interval [0, h]. t is the relative

distance of the jump to the node which follows it, t̂ to that which precedes it. Notice that

the circle interpretation automatically defines f̂ on [0, t̂h].

4. The EMF on the circle

To prove the generalization of Theorem 1 to Rf(h) along Elliott’s lines in [Ell], we first

notice that, in order for the zero values of the periodically extended odd degree Bernoulli

polynomials P 2k+1 to lie at the extremities of the subintervals [kh, (k +1)h], we must define

P � on [kh, (k + 1)h] as

P �(
x

h
) := P�(

x

h
− k)

(this is somewhat simpler than the corresponding function in [Ell]). As sketched in §2, if f̂ ′

is absolutely integrable one can evaluate
∫

f̂(x)dx on each of the last N − 1 intervals as

∫ (k+1)h

kh
f̂(x)dx = hP 1(

x

h
)f̂(x)

∣∣∣(k+1)h

kh
− h

∫ (k+1)h

kh
f̂ ′(x)P 1(

x

h
)dx, k = 1, . . . , N − 1. (4.1)
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If t = 0, (4.1) holds in the first interval also, whereas for t �= 0 the jump is to be taken into

account as∫ h

0
f̂(x)dx =

∫ t̂h

0
f̂(x)dx +

∫ h

t̂h
f̂(x)dx

= h

[
P1(

x

h
)f̂(x)

∣∣∣t̂h
0

+ P1(
x

h
)f̂(x)

∣∣∣h
t̂h

]
− h

∫ h

0
f̂ ′(x)P1(

x

h
)dx, (4.2)

where we have chosen the continuous function P1 as the primitive of 1 and used the fact

that P 1 = P1 on the first interval. In (4.1), P 1(
x
h
) equals 1

2
at every right extremity and

−1
2

at every left one and, similarly, P1(0) = −1
2

and P1(1) = 1
2

in (4.2). The value f̂(t̂h) at

the jump is f(L) on the left and f(0) on the right. Summing over all intervals yields, with

(2.4) for � = 1,

T
f̂
(h) −

∫ L

0
f̂(x)dx = Rf(h) − I = γP1(t)h[f(L) − f(0)] + h

∫ L

0
f̂ ′(x)P 1(

x

h
)dx,

γ =
{

0, t = 0,
1, otherwise.

(4.3)

The right-hand integral may be recursively evaluated over each subinterval, taking (2.5) into

account:∫ (k+1)h

kh
f̂ (�−1)(x)P �−1(

x

h
)dx =

h

�
P �(

x

h
)f̂ (�−1)(x)

∣∣∣(k+1)h

kh
− h

�

∫ (k+1)h

kh
f̂ (�)(x)P �(

x

h
)dx.

For k = 0 and t �= 0 the integrated term may be split as in (4.2) As anticipated in §2, P �(
x
h
)

is continuous, equaling P�(0) at every subinterval extremity kh; the sum of the contributions

of the integrated terms at the nodes vanishes — it telescopes — only the terms at the jump

remain and we have∫ L

0
f̂ (�−1)(x)P �−1(

x

h
)dx =

h

�
P�(t̂)

[
f (�−1)(L) − f (�−1)(0)

]
− h

�

∫ L

0
f̂ (�)(x)P �(

x

h
)dx.

When recursively inserting this into (4.3), the factors h
�

lead to powers of h and factorials.

It remains to change the variable to x + t̂h in the last integral to retrieve f . Considering

that, according to (2.4), the negative sign arising in P�(1 − t) and P �(
x
h
− t) compensates

that of every new integration by parts, and in view of the L–periodicity of all integrands,

we finally obtain the following formula.
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Theorem 2 (EMF for equispaced Riemann sums)

Let f ∈ Cq−1[0, L] with f (q) absolutely integrable on [0, L], q ≥ 2. Let R(h) be any Riemann

sum (3.2) of I on D with f being L–periodically extended and defined at the jump 0 as in

(3.1). Then the integration error may be written as

Rf(h) − I = γa1h +
q∑

�=2

a�h
� − hq

q!

∫ L

0
f (q)(x)P q(t − x

h
)dx (4.4)

with γ from (4.3) and

a� :=
P�(t)

�!

[
f (�−1)(L) − f (�−1)(0)

]
.

Formula (4.4) states that the Riemann sum error is O(h) unless f(L) = f(0) or t = 0

or t = 1/2. With t = 0 one has the trapezoidal rule, in which case γ = 0, P�(0) = 0 for

odd � > 1 and q = 2m + 2 yield formula (1.1) after combining the two terms in h2m+2 and

applying the integral mean value theorem [Häm-Hof, p. 281; Kin-Che, p. 484]. If t = 1/2,

then P�(1/2) = 0 for odd � leads to a similar formula for the midpoint rule [Ell, p. E36;

Lie-Lü-Shi, p. 25].

5. A generalization of the EMF to functions with several jumps

Formula (4.4) and its proof express that the accuracy of a Riemann sum for a function f

with a jump c, at which the value is taken to be f(c−)+f(c+)
2

, is determined for h small enough

by the differences of the left and right values of f and its derivatives at c. Once f is looked

at on a circle, the fact that the jump originated from joining the extremities of the interval

is irrelevant. The coefficients in (4.4) merely depend on the distance th from c to the node

xk that follows it on the circle; if t = 0 or t = 1/2, i.e., if c coincides with a node or lies at

equal distance of two nodes, then the first term vanishes and the error is generically O(h2);

otherwise it is O(h).

The same proof naturally delivers a generalization of (4.4) to functions with several

jumps. Let f be piecewise Cq−1[0, L], i.e., (q − 1)–times continuously differentiable on [0, L]

except at interior jumps, say c1, . . . , cJ , at which the limits of f and its q − 1 derivatives

exist on both sides. Denote by c0 := 0 ∼ L the abscissa of the extremities and, as in (3.1),

set the value at the jumps as

f(cj) :=
f(cj−) + f(cj+)

2
, j = 0, . . . , J. (5.1)
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Let I be approximated with a Riemann sum (3.2). For every jump cj , determine tj ≡
− cj

h
mod 1, the location of cj with respect to the node that follows it. Obviously, t0 =

t. Subdividing the interval [0, L] according to the abscissae kh and to the jumps cj and

repeating the proof of §4, we obtain the following formula.

Theorem 3 (EMF for Riemann sums of piecewise smooth functions)

Let f be piecewise Cq−1[0, L] and let Rf (h) be any Riemann sum (3.2) of I on D with f

L–periodically extended. Let cj denote the jumps of f and define f(cj) as in (5.1) and

tj ≡ − cj

h
mod1, j = 0, . . . , J .

If f (q) is absolutely integrable between every two consecutive cj then the integration

error may be written as

Rf (h) − I = a1h +
q∑

�=2

a�h
� − hq

q!

∫ L

0
f (q)(x)

J∑
j=0

P q(tj − x

h
)dx (5.2)

with

a1 :=
J∑

j=0

γjP1(tj) [f(cj−) − f(cj+)] , γj :=
{

0, tj = 0,
1, tj �= 0,

and

a� :=
J∑

j=0

P�(tj)

�!

[
f (�−1)(cj−) − f (�−1)(cj+)

]
. (5.3)

The factors γj are a means of expressing that the sum in a1 is merely to contain the

terms corresponding to jumps outside the nodes, where the magnitude of the jumps has

an influence. Notice that t, the parameter that determines the Riemann sum, enters the

formula through t0 only: the jump at the extremities is no different from any other.

Equation (5.2) is a generalization of formula (2.11) in [Lyn1]. By summing functions of

compact support one may also derive (5.2) from that formula (2.11); the proof in [Lyn1] is

less elementary though, as it involves the Poisson summation formula and the Fourier series

of P �.

6. Examples

Example 1. Since the jump at the extremities is no different from any other, an interior

jump will not necessarily slow down the convergence of Riemann sums. As an example, use

the trapezoidal rule to integrate

f(x) = cos 60x + r(x)
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on [0, 2], where the function

r(x) :=
{

0, x < 1,
1 + (x − 1)10, x ≥ 1,

is discontinuous in the center of the interval. (The high frequency 60 was chosen to slow

down convergence, so that the cancellation in the computation of the orders – see below

– is not too severe; the relatively high exponent 10 is necessary for the derivatives at the

jump not to vanish.) Table 1 displays the results for increasing even numbers of nodes, so

that the abscissa 1 of the interior jump is not one of them and P�(t1) = 0, � odd. The first

column gives the number of nodes minus 1, the second the calculated orders of convergence

while the following columns contain the orders with the first three Romberg steps, using the

formula for general hk [Sch, p. 133].

Table 1. Experimental convergence orders for f(x) = cos 60x + r(x) on [0, 2]

N Order estimate 1st Romberg step 2nd Romberg step 3d Romberg step

3 1.94790851695372

7 3.25984172808322 -1.85921286236476

15 −0.84025938726864 0.74958411148075 0.63882403712488

31 1.44769002315812 0.86209983657621 0.81505824722645 0.79504194836318

63 2.49453018431671 4.42574316519551 3.36637170662472 3.20800608098070

127 2.09705023858407 4.63735591276022 6.70951901799688 5.55765720679422

255 2.02294955773993 4.13349341257332 6.71571953436765 8.79650553194619

511 2.00564379774331 4.03456602581793 6.15776307487585 8.74619060349973

1023 2.00140301386587 4.00993186507600 6.04335134386092 8.16998453814465

2047 2.00034998470753 4.00317849384084 6.01227420004377 8.26719047830944

The orders clearly reflect the error as an expression in h2, just as without interior jump.

(The orders of convergence were estimated the usual way [Boo, p. 23]: assuming that the

error behaves asymptotically as

eh ≈ C · hp, (6.1)

one divides two of these approximations for h and ĥ to eliminate the unknown C and get
eh
e

ĥ
≈ (h/ĥ)p or

p ≈ log(eh/eĥ
)

log(h/ĥ)
=

log(eh/eĥ
)

log(N̂/N)
. (6.2)
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Here we have N = 2� − 1 for the first � ∈ INN.)

Example 2. The terms in the sums aj may cancel each other and so extra jumps even

lead to a smaller error Rf(h) − I. This is one of those instances in which a numerical

method surprises with better results than those to be expected from the classical theory.

To be specific, suppose that f ∈ C∞[0, L] with f ′(L) �= f ′(0), so that the trapezoidal values

Tf (h) converge toward I as O(h2). We will now construct a sequence of examples with a

knick for which the rule yields an error proportional to h4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

Figure 4. The trapezoidal rule has an O(h2)–error for the smooth function

f(x) = cos 20x (left), an O(h4)–one when subtracting a broken line (right).

For that purpose, we will subtract from f for given h a line broken at an abscissa s,

l(x) =

{
α−(x − s), x ≤ s,
α+(x − s), x ≥ s,

with constants α− and α+ to be determined, and integrate f − l. Since l is continuous, a1

remains 0. a2 = 0 requires

P2(0)
[
(f ′(L) − α+) − (f ′(0) − α−)

]
+ P2(ts)

[
(f ′(s−) − α−) − (f ′(s+) − α+)

]
= 0,

where ts denotes the relative distance of s to the following node. Since f ′(s−) = f ′(s+),

the condition on the slopes is

α+ − α− =
P2(0)

P2(0) − P2(ts)
[f ′(L) − f ′(0)].
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This choice warrants an error O(h4), for f ′′(s+) = f ′′(s−) and [α−(x−s)]′′ = [α+(x−s)]′′ = 0

eliminate the O(h3)–term.

Table 2 gives the results when integrating f − l on [0, 2] for f(x) = cos 20x and the

arbitrary choices s =
√

2 and α− = 0. The better precision of the trapezoidal rule for the

broken functions is obvious. (Estimating the order for f − l by means of (6.2) is suitable:

the constant C in (6.1) does not depend on l since in (5.3) (f − l)(�−1) = f (�−1) for every

� > 2.)

Table 2. Integration errors for f(x) = cos 20x and f(x) − l(x) on [0, 2]

N Tf (h) − I Order estimate Tf−l(h) − ∫
(f − l) Order estimate

1 0.29580628032377 −0.03725565802397

2 0.53735737296329 −0.86122919806707 1.77921264042887 −5.57763558803431

4 −0.09235918212477 2.54055457830827 0.21810463474162 3.02814661004104

8 −0.16193620023028 −0.81009822808470 −0.08432024601368 1.37106944637715

16 −0.02178182701936 2.89422865592582 −0.00237783846521 5.14815645994509

32 −0.00498221601737 2.12826548975059 −0.00013121887884 4.17960350647318

64 −0.00122071894493 2.02905649855289 −0.00000796966030 4.04131325798995

128 −0.00030368194030 2.00709805593859 −0.00000049461914 4.01012824624056

256 −0.00007582769004 2.00176443581766 −0.00000003085974 4.00252013723091

512 −0.00001895113547 2.00044048362570 −0.00000000192790 4.00062716250152

1024 −0.00000473742237 2.00011008188820 −0.00000000012048 4.00012822550482

2048 −0.00000118433300 2.00002751808361 −0.00000000000753 3.99994591053435
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