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Abstract

We analyze the pricing and informational efficiency of the Italian market for options written

on the most important stock index, the MIB30. We find several indications inconsistent

with the hypothesis that the Italian MIBO is an efficient market. We report that a striking

percentage of the data consists of option prices violating basic no-arbitrage conditions. This

percentage declines but never becomes negligible when we relax the no-arbitrage restrictions

to accommodate for the presence of bid/ask spreads and other frictions. The result holds in

general for all levels of moneyness and time to maturity. We also document abrupt changes

of the implied volatility surface that can hardly be explained by changes in market beliefs.

Finally we investigate the informational efficiency of the MIBO and conclude that option

prices are poor predictors of the volatility of MIB30 returns.
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1. Introduction

In this paper we investigate the efficiency properties of the market for options on the Italian MIB30

index, the so-called MIBO market, one of the most important segments of the Italian Derivatives

Market (IDEM). Following the creation of the index futures market (FIB30) by approximately

one year, trading on the MIBO started in November 1995. The birth of the MIBO has been

a crucial step towards the completion of the Italian stock market. MIB30 index options have

soon become an important financial instrument, especially for institutional investors (like mutual

funds) whose portfolios have typically a large share allocated to securities with a high degree of

correlation with the MIB30 index.1 More recently, new financial derivatives have been introduced

so that the IDEM is bound to undergo further, important developments.

The importance of the Italian MIBO market parallels the prominent role of index options

markets in the structure of modern financial markets. In the first place, these markets are essential

instruments for risk sharing. On one hand, options enable portfolio managers to substantially

improve their ability to hedge the risk of unpredictable changes of financial prices. On the other

hand, investors may also easily and swiftly take speculative positions consistent with their views

on future asset price movements. In the absence of well functioning option markets both these

activities – hedging and speculation – would either be too costly or simply not feasible. Second,

index options markets represent the best available instrument for aggregating investors’ opinions

concerning the future volatility of asset returns. Therefore an efficient options market should: (i)

foster the implementation of hedging and speculative activities at affordable costs (risk-sharing

and pricing efficiency), and (ii) accurately aggregate market beliefs concerning asset returns

volatility (informational efficiency). The main objective of our paper is to assess the efficiency of

the Italian MIBO market using a high frequency data set that spans a 9 months interval, April

1999 - January 2000. The systematic investigation of the efficiency properties of the MIBO30

market gives us an opportunity to contribute to at least three distinct literatures.

First, the analysis of the risk-sharing efficiency of a financial market always raises issues on

the existence of arbitrage opportunities, the starkest antithesis to risk sharing. The assessment of

the presence of arbitrage opportunities has a long tradition in empirical finance.2 In fact one may

derive from abstract models of frictionless markets well defined constraints on options prices that,

whenever not respected, provide evidence of arbitrage opportunities that may be exploited by

explicit portfolio strategies. These constraints have the advantage of being free of any assumption

1During 1999, the year to which our analysis refers, the volume of trades on stocks belonging to the MIB30

basket accounted for approximately 76.4% of the total trading volume on the Italian stock exchange. The ratio of

the volume of trades on the MIBO with respect to that of the MIB30 basket stocks accounted for approximately

53%.
2Seminal papers are Stoll (1969), Gould and Galai (1974), and Klemkosky and Resnik (1979). More recently

this issue has been addressed by Ackert and Tian (1999, 2000), George and Longstaff (1993), Kamara and Miller

(1995), Nisbet (1992), Ronn and Ronn (1989), and Yadav and Pope (1994). Needless to say, most of these papers

focus on North American markets, especially on S&P 100 and S&P 500 options.
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on the stochastic process of the price of the underlying asset, and provide sensible predictions

based solely on first principles. The best example of this approach is the test of the put/call

parity, which has been repeatedly performed over the years for different markets and samples

(see Stoll (1969) for pioneering work). We will perform this analysis in Section 3. On this point

we improve on the previous literature by entertaining and testing a wider and more complete

set of no arbitrage restrictions. In particular, we develop and test a new condition, the maturity

spread, that is particularly useful in establishing a link between the level of efficiency of options

and futures markets. Also, we carefully distinguish between tests that jointly rely on the efficiency

of the markets for options and the underlying from more restrictive tests exclusively measuring

MIBO efficiency (see Ackert and Tian (2000)). While in some papers (see Nisbet (1992)) it is

simply shown that most arbitrage opportunities vanish after the introduction of frictions,3 in

Section 4 we take the view that the amount of market imperfections needed in order to restore

absence of arbitrage opportunities should itself be considered an indicator of market efficiency,

more precisely of the efficiency of the market microstructure. Therefore, differently from previous

contributions, we avoid conducting a simple test of the hypothesis of market efficiency given

transaction costs but instead treat frictions as a parameter and represent efficiency as a curve

on a graph with axes representing the frequency and entity of arbitrage violations vs. the size of

transaction costs.

Second, recent years have witnessed many attempts at modeling the structure of the pricing

mechanism at work in modern options markets by looking at the structure and dynamics of the

implied volatility surface. Since the world market crash of October 1987, it is widely known that

many option markets (certainly the North American markets) are characterized by systematic

deviations from the constant volatility benchmark of Black and Scholes (1973). These anomalies

have been described either in terms of a volatility smile vs. moneyness (or a smirk, see Rubinstein

(1994) and Dumas et al. (1998)) or as the presence of a term structure (Campa and Chang

(1995)). Similar patterns have been documented for other markets as well (see Peña et al. (1999),

Cavallo and Mammola (2000)). In Section 5 we take on the task of modeling and estimating the

implied volatility surface characterizing the MIBO market. Furthermore, we try to characterize

and measure the instability of the implied volatility surface using a Markov chain, hidden state

approach. We consider the efforts of Sections 5.1 and 5.2 as directed at gaining further insights in

the efficiency of the MIBO since abrupt changes in the implied volatility surface in a high frequency

context are possibly indicative of a market dominated by “rumors” rather than fundamentals.

Third, starting from Canina and Fliglewski (1993) several authors have measured the in-

formational efficiency of options markets by testing the unbiasedness of implied volatility as a

predictor of ex post, realized volatility of stock returns. The common finding has been that im-

plied volatilities are poor forecasts of future volatility and that a prediction based on option prices

can easily be improved upon by using variables commonly included in the agents’ information

3Cavallo and Mammola is an example directly pertaining to the MIBO30. However other Authors (see Ackert

and Tian (2000)) establish that arbitrage violations persist despite the frictions, although to a lesser extent.
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sets.4 In Section 5.3 we couple traditional methods of investigation (such as GMM) with novel,

panel-oriented econometric tools. Furthermore, we explore the relationship between pricing and

informational efficiency by probing the robustness of our results to the use of data sets exposed

in different degrees to the presence of arbitrage opportunities.

Our results for the Italian options market are only partially consistent with previous findings

concerning North American markets. The no arbitrage restrictions are not satisfied for a high

percentage of the data and this suggests that market frictions should be incorporated when

fictitiously implementing arbitrage strategies.5 We then compute the level of frictions which

would be consistent with a reasonably low ratio of arbitrage opportunities. Implied frictions are

quite substantial and this casts doubts on the overall risk-sharing efficiency of the MIBO market.

Our assessment of the degree of efficiency of the market is even weakened by the investigation

of the implied volatility surface. The surface is subject to dramatic changes often taking place

in the span of a few hours only. It is at least doubtful that on a regular basis the IDEM might

be affected by news of such an impact to completely unravel the structure of market beliefs with

such a high frequency. Finally, and this time in full accordance with results concerning other

markets, we assess a very low degree of MIBO informational efficiency: MIBO implied volatilities

are lousy predictors of future volatility.

Our work has antecedents in a limited number of papers that have already examined the

Italian index options market (see Barone and Cuoco (1989)). In particular, in a recent paper

Cavallo and Mammola (2000) also investigate the efficiency properties of the MIBO market.

Similarly to us, they use high-frequency observations.6 However they only test the put-call parity

relation and apply their tests to at-the-money, short-term contracts only, while we extend our

investigations to all categories of contracts. Cavallo and Mammola partly use available data on

the bid-ask spread, and partly guess the relevant transaction costs, while (as stressed above) we

treat frictions endogenously and consider them as a crucial component of the notion of market

efficiency.

The paper is organized as follows. In Section 2 we describe our data set and some of the

institutional characteristics of the MIBO30 market. In Section 3 we run the no-arbitrage tests,

showing in detail which conditions are more often violated, in which segment of the market this

happens more frequently, and what is the level of the average profits associated to each type

of violation. In addition to the usual no arbitrage conditions, we introduce a new one, not yet

tested in the literature, named maturity spread, and discuss its features. Given our finding of

pervasive violations of the most basic no-arbitrage restrictions, in Section 4 we proceed to imply

4Other references are Ahmed and Swidler (1998) and Christensen and Prabhala (1998).
5Although in Shleifer and Vishny (1997) it is correctly noticed that also the amount of capital necessary to

exploit arbitrage opportunities should be considered, we follow the literature and focus on operational costs only,

such as the bid/ask spread or fixed transaction costs when short-selling of the underlying is required.
6Their data set is shorter and refers to an earlier period (July 29, 1996 - February, 1997). Markets rule differ

slightly.
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out of the data the level of frictions compatible with pricing efficiency. Section 5 documents the

intrinsic informational inefficiency of the MIBO market, both by applying direct tests and by

modeling the dynamics of the implied volatility surface. We obtain indications of instability and

of the importance of arbitrage violations in estimating the law of motion of the surface over time.

Section 6 concludes by offering some hints to policy issues and directions for future research.

2. The Data

We analyze a high-frequency data set on European-style options written on the most important

Italian stock index, the MIB30. Our sample contains data collected at a frequency of 30 minutes

from 9 a.m. to 6 p.m. each day starting on April 6, 1999 and ending on January 31, 2000, for

a total of 300 calendar days and approximately 15 different infra-daily observations a day. Each

observation reports the value of the MIB30 index, the risk-free interest rate, the cross-section of

MIBO30 option prices (over alternative strikes and maturities) and the bid and ask volumes. The

interest rate is computed as an average of the bid and ask three months LIBOR rates. Although

far from constant over the whole period, the risk-free rate shows only two major breaks in its

mean, May 5, 1999 and September 29, 1999 when the mean switches respectively from about

2.95% to 2.69% and then from 2.69% to approximately 3.37%. Figure 1 plots the time series of

the LIBOR interest rate. To give a clear picture of the market dynamics during the period to

which our analysis refers to, Table I also reports summary statistics for the MIB30 index level

and the (annualized, continuously compounded) MIB30 returns. Figure 1 also plots the high-

frequency time series of the MIB30: between the Spring and the Fall of 1999 the market was

bearish, to become strongly bullish instead during the last 3 months of the year.

The vector of option prices reports the transaction price for contracts with different strike

prices and maturities. According to IDEM market rules, prices are quoted for the option with

strike price nearest to the index, two strikes above and two below it. Strike prices differ from one

another by 500 “index points”, each of the value of 2.5 euro. Furthermore, prices are quoted for

options with the three shortest maturities in the calendar month and the three shortest quarterly

maturities. We therefore have a vector of approximately 25 prices for call and for put contracts

at each point in time (day/time of the day) which sum up to a total of 116, 772 prices. From this

sample we preliminary discard 40, 872 prices for which either the price itself or the underlying

where not correctly reported or for which we do not have a positive bid or ask volume. We are

therefore left with a total 75, 900 prices, of which 37, 920 refer to calls and 37, 980 to puts.7

Call St the value of the MIB30 index at time t, K the strike price of a given option contract,

and τ the number of days to the maturity of the contract. A major characteristic of an option

is moneyness (zt), i.e. either the ratio of the spot index over strike (St/K, for a call) or its

inverse (K/St, for a put). By distinguishing contracts on the basis of moneyness and the length

7This makes the dimension of our data set considerable with respect to other works in this field. For instance,

Cavallo and Mammola (2000) effectively use only 3,642 observations.
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of their residual life we can obtain a detailed description of the composition of the sample. In

Table II we have adopted the following definitions: an option is considered being at the money

(ATM) if the strike price is within 2% from the index; if it is within 5% (but apart for more than

2%) the option will be considered in the money (ITM) or out of the money (OTM) respectively,

depending on the sign of its intrinsic value; an option is said to be deep in-the-money (DITM)

or deep out-of-the-money (DOTM) if its strike price differs from the value of the underlying by

more than 5%. We also adopt the following maturity classes: a contract has very short time to

expiration if τ ∈ (0, 7], short if τ ∈ (7, 25], medium if τ ∈ (25, 50], long if τ ∈ (50, 90] , and
very long when τ ∈ (90,∞). It is evident from Table II that more than half of the sample is

composed of options which expire within a month, while almost no option appears with residual

life exceeding three months. This last remark entitles us to discard this group from the sample

and gives the main justification for choosing a three months reference for the risk-free interest

rate. The most important class in the sample is that of ATM options with short residual life

(16%). More generally, ATM options represent more than one third of the data set, while short-

and medium-term contract account for almost 80%.8

Finally, it is worthwhile to stress that the high-frequency structure of our data set allows us

to avoid two common problems plaguing empirical studies of option markets: the potential non-

synchronicity between option and stock index prices, and liquidity issues, potentially reflecting

the fact that some of the prices could be of little economic significance because of the limited

transaction volume. As far as synchronicity is concerned, the high frequency structure of the data

set excludes that the non simultaneous recording of the option price and of the index may be

troublesome for options that are liquid enough. Furthermore, to restrict our attention to liquid

option prices only, we check for the bid and ask volumes recorded simultaneously with the option

price, and discard prices for which either of these values were nil.

3. Arbitrage Tests

In abstract terms, for frictionless options markets absence of arbitrage is equivalent to the pricing

rules

ct (K, τ) = EQ,t
£
e−rτ max (ST −K, 0)

¤
(1a)

pt (K, τ) = EQ,t
£
e−rτ max (K − ST , 0)

¤
, (1b)

where ct and pt indicate the time t price of a call and a put with strike K and time to maturity

τ ≡ T − t. Q is the risk neutral probability measure. For the sake of simplicity, we will assume

throughout that the interest rate r is constant. It is then possible to derive from (1) some explicit

relationships that have to be satisfied by option prices if arbitrage is absent. We consider the

following conditions:9

8These simple figures stress the arbitrariness of restricting the analysis to either ATM or short-term contracts

only.
9Dependence of ct and pt on K and τ is omitted when no ambiguity arises.
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Lower bound:

ct ≥ St −Ke−rτ (2a)

pt ≥ Ke−rτ − St (2b)

Strike Monotonicity (K0 > K):

ct (K) ≥ ct
¡
K 0¢ (3a)

pt (K) ≤ pt
¡
K0¢ (3b)

Maturity Monotonicity (τ2 > τ2):

ct (τ2) ≥ ct (τ1) (4a)

pt (τ2) ≥ pt (τ1) +K
£
e−rτ1 − e−rτ2¤ (4b)

Butterfly (K 00 > K > K0):

K −K0

K00 −K 0 ct
¡
K00¢+ K 00 −K

K00 −K 0 ct
¡
K0¢ > ct (K) (5a)

K −K 0

K 00 −K 0pt
¡
K 00¢+ K 00 −K

K 00 −K 0pt
¡
K0¢ > pt (K) (5b)

Put/call parity:10

pt (K)− ct (K) + St ≥ Ke−rτ (6a)

pt (K)− ct (K) + St ≤ Ke−rτ or (6b)

pt (K)− ct (K) + St = Ke−rτ .

All of these restrictions are well known and have been repeatedly tested on data from many

different markets (see, among others, Klemkosky and Resnik (1979), Phillips and Smith (1980),

Figlewski (1989), Nisbet (1992), George and Longstaff (1993), and Kamara and Miller (1995)).

For this reason we will not make explicit the trading strategies that ensure arbitrage profits

whenever any of these conditions is not satisfied. In all cases, buying and selling option contracts,

the underlying and the riskless asset according to the sign with which the corresponding prices

appear in the above conditions (expressed as non negativity constraints) leaves the investor with

a portfolio giving a positive payoff at maturity. Hence the current price of such a portfolio ought

to be positive. If not, an arbitrage opportunity exists. For example, if (4a) is violated, an investor

could buy a call with long maturity, sell one with short maturity and if the latter is in the money

at maturity, sell the index short while lending the amount K on the money market. This would

give the investor ct (τ1)− ct (τ2) > 0 at the initial date, 0 at t+ τ1 and

max (St+τ2 −K, 0) +Ker(τ2−τ1) − St+τ2 ≥ max (K − St+τ2 , 0) > 0
10The trading strategies needed to exploit violations of (6) are quite different, depending on which inequality

prevails: this motivates our choice to write that condition as a double inequality.
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at t+ τ2 (and analogously for the put condition (4b)).11

The informational content of conditions (2)-(6) differs significantly because of the role played

by the underlying. The outcome of a market efficiency test using (2) - (6) does very much depend

on the existence of arbitrage profits on the underlying market as well as on the derivatives market.

Thus (2)-(6) are truly joint conditions and it is hard to disentangle the contributions of the two

markets to possible violations. The actual implementation of the corresponding trading strategies

is also rather delicate, because in order to exploit violations some of the conditions in (2)-(6) (for

instance, (2a) or (6a)) the investor is required to take a short position in the underlying and

this is going to be very complex and costly (if possible at all). In order to partially overcome

these problems and gain more detailed information on the actual degree of efficiency of the MIBO

market in isolation, we also consider the following conditions:

Reverse Strike Monotonicity (K1 > K2):

ct (K2)− ct (K1) ≤ (K1 −K2) e−rτ (7a)

pt (K1)− pt (K2) ≥ (K1 −K2) e−rτ (7b)

Box Spreads:

[pt (K1)− ct (K1)]− [pt (K2)− ct (K2)] ≥ (K1 −K2) e−rτ (8a)

[pt (K1)− ct (K1)]− [pt (K2)− ct (K2)] ≤ (K1 −K2) e−rτ (8b)

i.e.

[pt (K1)− ct (K1)]− [pt (K2)− ct (K2)] = (K1 −K2) e−rτ .

Maturity Spreads:

[pt (τ1)− ct (τ1)]− [pt (τ 2)− ct (τ2)] ≥ K
£
e−rτ1 − e−rτ2¤ (9a)

[pt (τ1)− ct (τ1)]− [pt (τ 2)− ct (τ2)] ≤ K
£
e−rτ1 − e−rτ2¤ (9b)

i.e.

[pt (τ1)− ct (τ1)]− [pt (τ2)− ct (τ2)] = K
£
e−rτ1 − e−rτ2¤

11It is often believed that the value of a call option increases with time to maturity only in the Black and Scholes

model. To show that this is not true one derives from (1a) the inequality

ct (τ1) = EQ,t
©
max (St+τ1 −K, 0) e−rτ1

ª
≤ EQ,t

©
max

¡
St+τ1e

−rτ1 −Ke−rτ2 , 0¢ª
= EQ,t

©
max

£
EQ,t+τ1

¡
St+τ2e

−rτ2¢−Ke−rτ2 , 0¤ª
≤ EQ,t

©
EQ,t+τ1

©
max (St+τ2 −K, 0) e−rτ2

ªª
= EQ,t

©
max (St+τ2 −K, 0) e−rτ2

ª
= ct (τ2)

and similarly for a put contract. As we will make clear shortly, condition (4) will mainly be used as a control on

the quality of the data set.
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(8) and (9) directly follow from (6) evaluated over a pair of different strike prices and maturities,

respectively and taking the difference between the values so obtained. (7) follows from combining

(8) with (3). The advantage of (7)-(9) over (6) is that they do not depend on the underlying and

therefore the corresponding portfolios do not imply any position but in the options market. (7)

and (8) have been introduced recently by Ronn and Ronn (1989). Only (9) is, to our knowledge,

entirely new, and this justifies a more detailed analysis.

Suppose that (9a) is violated and consider an investor that buys a put and sells a call maturing

in τ1 days with the same strike price K. The final payoff of her position and that of an investor

who sells a future with identical maturity differ by the deterministic quantity K − F (t, t+ τ1)

only. Given that the initial value of a future is 0 by construction, it must be that pt (K, τ1) −
ct (K, τ1) − e−rτ1K = −e−rτ1F (t, t+ τ1). Taking the reverse position for options with time to

maturity τ2 > τ1 may be compared to buying a futures maturing at t + τ2. Summing the two

positions and subtracting the amount K [e−rτ1 − e−rτ2 ] raised issuing debt is therefore entirely
analogous to buying a futures maturing at t + τ2 and selling one maturing at t + τ1. Then the

value of such a portfolio must be:

0 = e−rτ2F (t, t+ τ2)− e−rτ1F (t, t+ τ1)

= [pt (K, τ2)− pt (K, τ1)]− [ct (K, τ2)− ct (K, τ1)] +
£
e−rτ1 − e−rτ2¤K

If this quantity is positive, then F (t, t+ τ1) ≤ e−r(τ2−τ2)F (t, t+ τ2) and it would be strictly

convenient to buy the synthetic futures with short maturity while selling the one with long

maturity at t + τ1. Condition (9) is then to be considered more as a test on the absence of

arbitrage opportunities on the futures market, as mimicked by the market for options: for this

reason we will not include it when computing the total number of arbitrage opportunities on

the MIBO market and simply exploit it as a device to check the robustness and meaning of our

results.

Tables III and IV give aggregate and disaggregated results of this battery of no-arbitrage

tests.12 Table III shows first of all that the number of arbitrage violations is indeed outstanding,

approximately 50% of the sample. For what concerns the different conditions tested, it clearly

emerges that the most often violated are Box spreads (8), the put/call parity (6) and Butterfly

spreads (5). The two Box conditions are violated almost equally often, but the put-call parity

condition is highly asymmetrical and it is the short hedge (6a) the most relevant one. This

finding reflects the higher difficulty and costs to take a short position in the index required to

exploit this violation.13 Also the convexity condition (Butterfly) is often not satisfied. This is

due to the very general form in which we test it.14 For an option appearing in the nth position

12When tracking deviating options, one is faced with the problem of how to identify such contracts when the

condition tested implies more than one contract at the time, as in the put/call parity. In order to avoid duplications

we arbitrarily impute violations of such conditions to put contracts.
13Cavallo and Mammola (2000) report the same conclusion.
14In most studies the butterfly condition is tested by confronting each contract with just a pair of contracts,

those with strike price immediately larger and smaller.
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inside a vector of 25 option prices sorted by the strike price, there are in fact (n− 1)× (25− n)
possible hedges, n = 2, . . . , 24, for a total of 2, 300. The small number of violations of the

vertical spreads (Strike Monotonicity and Maturity Monotonicity) provides some evidence that

lack of synchronicity between the MIB30 and option prices is not serious in our data set. In fact,

whenever an option contract have not been traded for a while it would easily be the case that

the intervening variation in the value of the index results in a vertical misalignment of option

prices.15 The distribution of the number of violations across moneyness, time to maturity and

type of condition violated is also interesting (Table IV). It is clear that the number of arbitrage

opportunities detected increases the shorter the time to maturity and higher the moneyness.

Short-term, ITM and DITM options are normally considered not very liquid: Those investors

who own option contracts which are in the money and with short time to maturity have good

prospects of receiving a positive final payoff if they hold their contracts rather than trade for

arbitrage profits. We thus find some correlation between mispricing and liquidity. Nevertheless,

even the more liquid segments of the market tend to display ratios above 30%, i.e. inefficiency is

maximum when coupled with low liquidity, but it characterizes in general the MIBO30.

The maturity spread condition (9) is also frequently violated and, as remarked already, this is

to be interpreted as a signal of the inefficiency of the futures (FIB30) market. The striking fact

here is the deep asymmetry between the short side (9a) – which is negligible – and the long side,

which is often violated. Remember that (9b) is equivalent to buying long maturities and selling

short ones on the futures market and reflects the expectation of long-term increases of the index,

which is consistent with the bull market of the last part of 1999 shown by Figure 1. This finding

has an interesting interpretation in terms of market microstructure. Current IDEM rules imply

an almost complete lack of maturity overlap between the options and the futures markets. The

shortest maturity for which futures contracts are traded is one month, Section 2 shows that 54%

of traded option contracts expires within 25 days. Hence the synthetic futures created by trading

options with the aim of exploiting arbitrage opportunities arising from the maturity spreads do

not find correspondence in any actual futures contract. One possibility is that such synthetic

positions are set up for hedging purposes, rather than for arbitrage operations. Especially in this

case, a better synchronization of the MIBO30 and the FIB30 cycles might affect the incidence of

this type of mispricing and improve the overall efficiency of the IDEM.

4. The Role of Frictions

The real issue remains the interpretation and explanation of our findings. Whereas conditions

(2)-(9) refer to a model of frictionless markets (such as Black and Scholes (1973)), frictions are

obviously important in actual markets. Therefore, a first way to look at the preceding results

is to consider them as an indication of the distance between abstract, frictionless finance theory

15Problems with the automatic quoting system made such an event extremely frequent in the first months of

1999. For this reason these additional 3 months were not included in our study.
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and the real world.

An initial assessment of the role of frictions on the MIBO may be simply obtained by com-

puting the exact amount of the arbitrage profits corresponding to Tables III-IV. Obviously, it

is not only interesting to quantify the number and incidence of arbitrage opportunities but also

to measure the level of the implied profits. This information is contained in Table V, in which

we report average profits for each arbitrage condition and type of contract, along with other

descriptive statistics of their empirical distribution. Taking into account that the average price

of contracts in the sample is about 1, 250 index points, it turns out that while some conditions,

such as the butterfly spread, provide (loosely speaking) an average profit of about 5%, other

conditions such as the Lower Bound for call contracts (2a) and the long put-call parity (9) offer

substantial arbitrage returns, ranging from 30 to 40%. The whole distribution of arbitrage profits

is interesting and plotted in Figure 2. It turns out that conditions (3) through (7) are rather

concentrated around modest profit levels and that more than 60% of the sample of arbitrage

profits are below 200 index points. Nevertheless, conditions (8) and (9) display much higher

profits so that the maximum available arbitrage profits (reported in panel C of Figure 2) have a

distribution that is right-skewed. As expected, the short side of the put/call parity (6a) is more

profitable than the long one. Figure 3 gives details on the empirical distribution of profits as a

ratio of the price of the corresponding contract(s). To make the plots readable, in Panel A we

only report the distributions of some conditions (namely (5), (8a) and (9b)) as the remaining

ones would anyway lie in between. Panel B shows the distribution of the overall rate of profit.

Although for some conditions the rate of arbitrage profits seems to be rather low (for instance,

for the butterfly spread), among those contracts that allow for an arbitrage operation, about half

guarantee a rate of at least 10% and about one fifth of the contracts provide a rate of at least

30%.

In a market with no “real” arbitrage opportunities, arbitrage profits deduced from theory

should indicate nothing but the amount paid by investors as commissions, margins, taxes, etc.

Table V may then be simply interpreted as reporting the average amount of transaction costs of

trading on the MIB30 index and/or the IDEM. When trying to understand the nature of such

costs, it is reasonable to restrict attention to the following aspects:

1. Microstructural issues. Inserting more than one order in the market maker’s book does

not guarantee that all of them will be instantaneously executed. In volatile asset markets,

possible delays tend to make the final payoff of the trading strategy uncertain. Although it

may be objected that – at least for certain groups of investors, such as market makers (their

orders take priority over the others) – automated market circuits reduce this evenience,

it is not clear how to take this aspect in due account. Similarly to previous literature (see

Gould and Galai (1974), Nisbet (1992), and Ackert and Tian (2000)) we check whether

arbitrage opportunities are still available in the observation that immediately follows the

one in which it was originally detected, i.e. whether arbitrage opportunities persist for at
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least half-an-hour.16 We obtain results very similar to those reported in Tables III and IV

and therefore omit them.

2. Taxation. When constant tax rates apply to capital gains, the existence of taxes does not

alter the existence of arbitrage profits (but clearly affects their amount). However the main

problem when assessing the impact of taxes is that they it depends on the overall fiscal

position of investors so that identical transactions could in principle undergo very different

tax regimes, depending, for example, on whether the investor is home-based or foreign. As

most papers, we prefer to omit this element rather than take a totally arbitrary approach.

3. Dividends. Known future dividends can be easily accommodated into option pricing models,

although in practice (especially for a stock index) dividends are rarely known in advance.

Although it may be observed that historically dividends on the Italian stock market tend

to be small and therefore not a major factor (especially for short- and medium-term option

contracts), a simple test of the relative importance of dividends for our purposes can be

derived by noticing that dividends are most often paid out in the months of June and July.

Figure 4 plots the monthly distribution of the percentage incidence of mispricing. Arbitrage

violations are not particularly concentrated in any particular month, with the exception of

April 1999. No special concentration of mispricing is noted in June and July. Nevertheless

we follow the literature and try to imply a high frequency series of the dividend yield out

of the available data set in three alternative ways: (i) from the spot-future parity, following

Äit-Sahalia and Lo (1998);17 (ii) from the put-call parity;18 (iii) from the maturity spread

condition. The results obtained are very similar in all three cases: Approximately 70% of

the computed dividend yields turns out to be negative, which is clearly meaningless while

the average yield is approximately 0.02%. Incorporating these values into our exercise has

almost no effect.

4. Transaction costs, in particular the presence of bid/ask spreads. Given our conclusions

concerning the frictions under 1. - 3., we devote the remaining part of this section to

transaction costs properly said.

16For end-of-the-day misspricings, the test checks whether the opporunity persists until the market opening, the

following business day. Notice that allowing for such delays without conflicting with the idea that arbitrage is a

sure profit would in pricinciple require a data set with much higher frequency than ours. However the literature

reports examples of ex-post arbitrage profits analysis based on daily data sets (for instance, Ackert and Tian (2000))

in which the implementation of the tests has little significance since the free lunch nature of arbitrage profits is

obviously not preserved.
17Call δt,τ the continuous dividend yield between time t and t + τ , and Ft,τ the time t price of FIB30 futures

contracts with maturity in t + τ . Then δt,τ =
1
τ
ln
³

St
Ft,τ

´
+ rt,τ . In our case calculation of δt,τ for all maturities

requires some interpolation as the FIBO30 market only trades quarterly maturities, while the MIBO30 trades many

more maturities.
18δt,τ (K) =

1
τ
ln
³
pt(K)−ct(K)+St

K

´
+ rt,τ . Of course, given the high ratio of put-call parity violations even for

ATM contracts, the method is at least doubtful.
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Let TSt represents the fixed cost of a given date t sale of the underlying, the MIB30 index,

the superscript a denotes ask prices, and b bid prices. In Table VI we rewrite the arbitrage

profits arising from violations of the conditions introduced in Section 3 and taking into account

transaction costs and bid/ask spreads. Apart from TSt , we adopt the choice of treating all

proportional costs related to buying or selling assets – for example brokers’ commissions –

together with the bid/ask spread. As for TSt , it represents the differential impact of transaction

costs when the arbitrage strategy requires the investor to sell the underlying index short, and

therefore it appears in conditions (2a) and (6a). Selling a stock index short can be accomplished

in different ways. The exact replication of an index sale can only be obtained by selling the

future on the MIB30. This is an ordinary sale transaction so that no particular costs apply apart

from the corresponding bid/ask spread. Unfortunately, this strategy is not always available in

the Italian stock market since the expiration dates of futures and options match only imperfectly.

All the alternatives to a short position in the matched futures have the disadvantage to display

high but imperfect correlation with the underlying and therefore imply implicit costs (risk). One

obvious possibility is of course to sell the index according to the amount already existing in an

arbitrageur’s portfolio. Apart from correlation issues, this is a cheap alternative in which no true

transaction cost appears other than the bid/ask spread on the stocks composing the index.19

Finally, another possibility is for the investor to participate to a stock loan (riporto), a contract

that has some importance in the Italian stock market and by which investors gain temporary

possession of the stocks upon lending a corresponding amount of money at a prescribed rate,

often lower than the current market short interest rate. In this case the transaction cost can be

measured in terms of the interest loss implied by the contract.20 Bid/ask spreads turn out to be

the major type of friction in our analysis. Two main difficulties arise. First of all one should in

principle reconstruct the bid /ask spread on the index as an average of the corresponding spread

on the individual assets composing the index, and this is clearly unfeasible. Therefore the spread

must be estimated rather than exactly computed. A second concern refers to the fact that the

bid/ask spread is not uniform: it varies considerably across classes of options and categories of

investors. A MIBO market maker taking position of her own, rather than playing an intermediary

role, would actually pay no such spread when buying or selling options (if not as a shadow cost);

even the spread on the index would be considerably smaller relative to other investors. In a sense,

for arbitrage strategies purely involving options positions market makers’ face equations not very

dissimilar to those introduced in Section 3. On the opposite, for other investors the spreads

19Of course this strategy is actually available only to investors who already have a long position in the MIB30

and who are not committed to satisfy binding portfolio constraints.
20The costs implied by the stock loan contract appear to be of little significance if significant at all. To quan-

titatively assess this suspicion, we compute the interest rate that makes the put/call parity hold at each point in

time and compare it with the actual level of that rate. It turns out that the implied rate is often negative and very

rarely its spread with respect to the actual rate is below 100%. It appears that in the presence of the low nominal

riskless rates of the period under examination almost any reasonable interest loss incurred by investors because of

transaction costs (the use of riporti) would hardly modify Tables III and IV.
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do apply but also vary considerably from one contract to the other. According to IDEM rules

upper bounds to the spreads for each class of options are imposed as a function of moneyness.

Nevertheless both moneyness and the spread are expressed in absolute values, which may result

in the corresponding bounds on the ratio of the spread to the option price being extremely wide.

Finally, to make the profit formulas in Table VI more tractable we will assume that both the

bid/ask spreads and the transaction cost TSt are constant ratios of the corresponding asset value.

In particular we call α the spread on the option – for instance, cbt = (1− α) ct and c
a
t = (1 + α) ct

in the case of a call – β the spread on the MIB30 – Sbt = (1− β)St and S
a
t = (1 + β)St –

and γ the fixed transaction cost on sales of the underlying, TSt = γSt. Then the bid/ask spread

is 2α and 2β for options and the MIB30, respectively. Under these assumptions – and assuming

K1 < K2 so that K
λ = λK1 + (1− λ)K2 – we derive the following lower bounds for arbitrage

profits:21

Lower bound:

K exp(−rτ)−
·
St
1− β

(1 + β) + pt (K) (1 + α)

¸
(10a)

−K exp(−rτ) +
·
St
1 + β

(1− β) (1− γ)− ct (1 + α)

¸
(10b)

Strike Monotonicity:

pt (K1) (1− α)− pt (K2) (1 + α) (11a)

ct (K2) (1− α)− ct (K1) (1 + α) (11b)

Maturity Monotonicity (τ2 > τ1):

ct (τ2) (1− α)− ct (τ1) (1 + α) (12a)

pt (τ2) (1− α)− pt (τ1) (1 + α)−K [exp (−rτ1)− exp (−rτ2)] (12b)

Reverse Strike Monotone (K1 > K2):

ct (K1) (1− α)− ct (K2) (1 + α) + (K1 −K2) e−rτ (13a)

pt (K1) (1− α)− pt (K2) (1 + α) + (K1 −K2) e−rτ (13b)

Butterfly (K1 > K > K2, λ =
K−K2
K1−K2 ):

pt (K) (1− α)− [λpt (K1) + (1− λ) pt (K2)] (1 + α) (14a)

ct (K) (1− α)− [λct (K1) + (1− λ) ct (K2)] (1 + α) (14b)

21In equations (10) and (16) we have slightly modified the implemented strategy by imposing that the amount

of the underlying sold (bought) be 1
1+β (

1
1−β ) so that at maturity the investor will pays out (receives) the whole

price of the undelying, less of the spreads. In essence we impose that the investor may hedge today against changes

in future spreads.
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Box spreads:

[pt (K1) + ct (K2)] (1− α)− [pt (K2) + ct (K1)] (1 + α)− (K1 − K2) e
−rτ (15a)

[pt (K2) + ct (K1)] (1− α)− [pt (K1) + ct (K2)] (1 + α)− (K2 − K1) e
−rτ (15b)

Put/call parity:·
St
1 + β

(1− β) (1− γ) + pt (1− α)− ct (K) (1 + α)

¸
−K exp (−rτ) (16a)·

ct (K) (1− α)−
µ

St
1− β

(1 + β) + pt (1 + α)

¶¸
+K exp (−rτ ) (16b)

Maturity spreads:

[pt (τ1) + ct (τ2)] (1− α)− [pt (τ2)− ct (τ1)] (1 + α)−K £e−rτ1 − e−rτ2¤ (17a)

[pt (τ2) + ct (τ1)] (1− α)− [pt (τ1) + ct (τ2)] (1 + α)−K £e−rτ2 − e−rτ1¤ (17b)

Furthermore, when using these formulas we will set α = β. When α = γ = 0 we immediately

deduce that (10) - (17) are exactly equivalent to (2) - (9). For positive values of the parameters,

(2) - (9) are far more restrictive thus explaining how profit opportunities that exist in theory may

not exploitable in practice.

This simplified structure for the allowable frictions is similar to others already used and/or

estimated in the literature. Nisbet (1992, pp. 392-393) estimates transaction costs on the London

Traded Options Market (LTOM) during 1988 finding 1.2% ≤ 2α ≤ 6.8% and 0.2% ≤ γ ≤ 5.7%.
Yadav and Pope (1994, pp. 925-926) investigate the market for futures on the FTSE 100 index

between 1986 and 1990 estimating 2α ≤ 0.6% and γ ≤ 0.75%, i.e. substantially lower values.
Longstaff (1995) studies the S&P 100 index options market (CBOE) over 444 days between 1988

and 1989: he notices that α varies considerably across different classes of options and that for

options that are deep OTM the bid/ask spread can be extremely high (up to 30% of the average

price). Using the same data set, George and Longstaff (1993) study the distribution of the average

spreads. Table VII reports their results. The average of the bid/ask spread is 2.5% but it can

be two or even three times higher in percentage terms for DOTM (and hence low unit price)

contracts.22

Our objective is now to imply out of the available MIBO data a structure for transaction costs

that makes the data compatible with the presence of varying degrees of violation of the basic no-

arbitrage conditions (10) - (16). Since experience with this type of scenario analysis shows that

changing γ makes very little difference for the result on the number and size of the existing

arbitrage opportunities, we set γ = 0 and focus on α only. Table VIII contains the detailed

22Ackert and Tian (2000, p. 45) report that on the S&P 500 for contracts with price above (respectvely, below)

$3 the bid ask spread was about 1/16 (1/32) of a point. Therefore the bid/ask spread should at least 2% for low

price (DOTM) options and can be as high as 4% for medium price options.
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outcomes of our scenario simulations (for α = β = 5%) while Table X describes outcomes as α is

increased from 0 to 10%. Correspondingly, Figure 5 plots the number and percentage incidence

of violations as a function of α. In panel of A of Figure 5 we plot the ratio of arbitrage violations

over the sample size for conditions implying a low number of violations. Percentage ratios in this

case rapidly converge to zero as α increases.23 Panel B refers to the two sides of the put-call

parity: although it is still clear that violations of the short end occur more frequently that those

of the long side, it is remarkable that the high ratios of these violations quickly drop to zero as

soon as α reaches about 2%. This is entirely consistent with the findings of Cavallo and Mammola

(2000). However, the put-call parity is not the only arbitrage restriction that option prices should

obey: panel C stresses the existence of other conditions that are both frequently violated in the

absence of frictions (box and maturity spreads implied about 20% violations in Table III) and

that remain important throughout the range of all the plausible values for α we consider. For

instance, at α = 4% the two box spread conditions still originate a 5% each of violations, while

the maturity spread condition is still at a very persistent 15%.24 The plot documents that some

kinds of pricing inefficiencies are very persistent and that in particular condition (9b) is scarcely

influenced by the value of the transaction costs.25 Table IX details the findings for α = 5% by

breaking the results down as a functions of moneyness and time to maturity. As expected, most

of the violations keep occurring for DOTM (for which we are probably underestimating the size

of the bid/ask spread on options) and very short-term contracts (which are less liquid and hence

likely to imply frequent mispricing as well as higher transaction costs than allowed for by our

framework).

Summarizing, these findings give three indications. First, even modest frictions can signifi-

cantly reduce the number of violations, implying that most of the violations detected in Section

3 actually corresponded to very thin profit levels. For example, with α = 2% violations of the

monotone spreads (with respect to either strike or maturity) drop to about 1.6% thus confirming

that our data set is not affected by systematic misrecordings. Second, as α increases the arbitrage

conditions that remain into play are the box and maturity (long) spreads. Third, it is not possi-

ble to completely get rid of the mispricing even by raising α beyond reasonable tresholds (8% or

more) as mispricing persist in more than 2.5% of the sample. Although this number is not high

enough to cast doubts on the meaningfulness of our tests, it witnesses the existence of niches of

23Violations of the maturity monotone spread conditions are not plotted altogether because negligeable in number

and economic significance.
24A strong belief that the MIB30 was bound to rise during 1999 is a reasonable explanation for these misspricings.

It would be interesting to consult directly elicited beliefs (polls) from market operators.
25The resilience of the violation of the spread conditions is not totally surprising. Observe that in the spread

conditions the bid/ask spread is less important than in others, given our assumptions. As a pure matter of scale the

spread has high impact especially when applied to the underlying (the MIB30 has a price which is several orders

of magnitude higher than option contracts). Since trading in the underlying is not required to exploit misspricings

evidenced by the spread conditions, increasing bid/ask spreads will reduce their percentage relevance very slowly.
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pricing inefficiencies that cannot be simply explained away by the existence of frictions.26

Notice that a vanishing number of arbitrage opportunities does not imply that the surviving

mispricing cannot be anyway quite profitable. Figure 6 plots average rates of arbitrage profit vs.

the bid/ask spread α. These plots confirm one of our previous conclusions: the profit rate does

not converge to zero as α increases. On the contrary, average profit rates deriving from arbitrage

strategies exploiting violations of conditions such as the butterfly spread seem to be increasing

with α. The reason for this puzzling behavior is that higher bid/ask spreads have two effects:

(i) they discard from the sample of arbitrage opportunities those associated with a lower level of

profits; (ii) they cut down the profitability of those opportunities that remain in the sample. The

combined effect may result in a positive relationship between profits and bid/ask spread whenever

the number of low profit strategies is important. Figure 6 also stresses that the short edge of the

put-call parity is on average, and independently of α, much more profitable than the short edge.

We conclude that the MIBO market is characterized by remarkable arbitrage opportunities

even after considering the role of transaction costs and other frictions. Some inefficiency may

actually be caused by the loose bounds on bid/ask spreads (when expressed as ratios) mandated

by the IDEM. Also, the current structure of the IDEM appears to be responsible for some of the

mispricing we have detected, especially for the most persistent ones that are not much affected

by the introduction of frictions. For instance, we suspect that a relevant percentage of the viola-

tions detected might be easily removed by improving the feasibility of synchronized trading (on

instruments with identical maturity) on the MIBO and FIB30 markets, given that some arbitrage

strategies require investors to simultaneously submit orders on the two markets. On the other

hand, there is no doubt that the level of arbitrage profits detected after filtering for the bid/ask

spread is not at all negligeable, especially if we consider that the spreads do not evenly apply

to all investors. Finally, trading strategies triggering short positions in the index tend to exhibit

higher profitability, and this is maybe a consequence of the existence of portfolio constraints,

particularly for institutional investors. The latter is clearly a kind of market imperfection that

cannot be accounted for by any data analysis although we may conjecture that it does have

significant role.

5. Informational Efficiency

5.1. The MIBO30 IV surface and its determinants

Some valuable information on market efficiency as well as on the pricing mechanism is conveyed by

the structure and dynamics of the implied volatility (IV) surface, i.e. the behavior of Black-Scholes

26Longstaff (1995) reports that violations deriving from conditions such as monotonic or butterfly do not reach

1.5% of his sample, and the associated profits would amount to a few cents. In order to recover the same ratio

in our data set we would need to impose a value of α close to 6%, considerably higher than those documented by

Longstaff. Moreover, residual profits would still be rather high.
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IVs as a function of either moneyness or time-to-maturity.27 In this sub-section we accurately

examine the MIBO IV surface. To this purpose we often distinguish between the original, raw

data set and a sub-sample of option prices obtained after filtering arbitrage opportunities existing

when setting α = β = 5%, a total of 67,962 observations. We will often refer to the latter data

set as the arbitrage-free one.

Starting with IVs vs. moneyness, Figure 7 plots full-sample as well sub-periods averages

and medians of implied volatility when classified in 21 mutually exclusive moneyness intervals

of 1% size, starting at 0.89 and up to 1.10. Overall, IVs describe a very asymmetric smile

when plotted against moneyness. Medians and means are not very different, confirming that

DITM options command an IV which is 5-8% higher than ATM options; while OTM options

have IVs slightly lower than ATM options, DOTM options imply again IVs above the ATM

levels. Although the meaning of averaging (or calculating the median of) the IVs of contracts

with different time-to-maturity is ambiguous, it is clear that one of the basic assumptions of

Black-Scholes – constant volatility independent of the behavior of the underlying spot price

– hardly applies to the Italian options market. The bottom panel of Figure 7 plots average

IVs vs. moneyness for three subperiods of equal length: 04/06/1999 - 07/15/1999, 07/15/1999

- 10/25/1999, and 10/26/1999 - 01/31/2000. While the first and last periods produce jagged

smiling shapes, the second is an asymmetric smile similar to the one obtained for the full sample.

The variety of shapes obtained through a simple decomposition into three subsamples makes us

suspect the presence of remarkable instability in the MIBO IV surface.28

We now examine the IV surface for a few alternative days. For instance consider April 16,

1999. Figure 8 plots four IV curves as a function of moneyness for three consecutive trading

times covered by our data set (11:49 am, 12:19 p.m., and 12:49 p.m.), besides the closest moment

to market closing in our sample, 5:19 p.m. Reading the plots in a clockwise direction, we have

an initial example of stability of the IV surface (between 11:49 am and 12:19 p.m., when it

describes an almost perfectly skewed shape, an asymmetric smile) followed by a sudden shift to

(an almost equally perfect) smile. However, by the end of the day (5:19 p.m.) the IV surface has

once more changed, taking a shape in which DOTM options have much higher IV than all other

moneyness classes. Figure 8 contributes to our consciousness that on the MIBO30 market the

IV surface can take (even in the space of a few hours) many alternative shapes and be subject

to sudden breaks, apparently signalling drastic revisions of market expectations. Figure 9 shows

that similar remarks apply to the other dimension of the IV surface, the term structure of implied

volatilities (IVs vs. time-to-expiration). Focussing on the afternoon of Sept. 7, 1999,29 we can

27The relationship between the option price and the level of volatility is stricly monotonic increasing and we will

therefore interpret implied volatility as a scale change of the original price independently of the actual applicability

of Black-Scholes model.
28Figure 7 refers to the raw data. We have replicated the same type of analysis with reference to the arbitrage-free

data obtaining very similar plots that we omit to save space. Therefore asymmetric smiles in the IV surface do not

entirely depend on the presence of arbitrage opportunities.
29This choice is not totally random, as in order to be able to draw IV term-structure plots we require the trading
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see that not only a variety of shapes of the IV surface vs. time-to-maturity are possible – at first

hump-shaped, then upward sloping, then ‘smiling’, and finally downward sloping – but also that

dramatic changes can occur in half-an-hour only. For instance, on that day the term structure

evolved from hump-shaped to upward sloping between 1:05 p.m. and 2:35 p.m., with two further

breaks between 2:35 p.m. and 3:35 p.m.. At market close, the IV surface was decreasing vs.

time-to-maturity, another possible structure never appeared while the MIBO market was open

during the day. Also in this case, sudden breaks are possible and on the whole the IV shapes are

highly unstable.

Since it is difficult to draw conclusions as to what affects the IV surface by merely observing

a few plots, we also fit a few alternative structural models describing the relationship between

implied volatilities and contract features. We estimate the following nine models:

1. lnσIV (zt, τ t) = β0 + ²(zt, τ t)

2. lnσIV (zt, τ t) = β0 + β1 ln zt + ²(zt, τ t)

3. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + ²(zt, τ t)

4. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ITMt)
2 + ²(zt, τ t)

5. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ln zt)
2 + ²(zt, τ t)

6. lnσIV (zt, τ t) = β0 + β1OTMt + β2 (ln zt)
2 + β3ITMt + ²(zt, τ t)

7. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + γ1τ t + γ2 (ln zt) τ t + ²(zt, τ t)

8. lnσIV (zt, τ t) = β0 + β1 ln zt + β2 (ln zt)
2 + γ1τ t + γ2 (ln zt) τ t + γ3τ

2
t + ²(zt, τ t)

9. lnσIV (zt, τ t) = β0 + β1NSt + β2NS
2
t + γ1τ t + γ2NStτ t + ²(zt, τ t)

Models 1-6 follow the specification search in Peña et al. (1999, pp. 1159-1160), apart for the fact

that the regressand is specified as the logarithm of the IV. Since by construction σIV (zt, τ t) > 0,

the right-hand side is always well defined.30 The advantage of this specification is to make the

random regressands consistent with the errors ²(zt, τ t), commonly interpreted as (possibly normal)

random draws from a distribution symmetric around zero. Model 1 corresponds to the assumption

of constant volatility (eβ0) independent of contract features of Black-Scholes’ model. It is a useful

benchmark as it allows to measure which is the percentage of variability captured by additional

regressors. Models 2 and 3 correspond to the case of an IV surface which is either a linear or a

quadratic function of moneyness, although the IV surface does not depend on time-to-expiration.

As for models 4-6, define the following piecewise functions:

OTMt =

(
ln zt if zt < 1

0 if zt ≥ 1
, ITMt =

(
0 if zt < 1

ln zt if zt ≥ 1
. (18)

The former indicator measures moneyness when the contract is OTM and zero otherwise, while

the latter measures moneyness when the contract is ITM. Clearly, OTMt + ITMt = ln zt ∀zt.
days to have at least three different maturities simultaneously traded.
30Ncube (1996, p. 74) makes the same point.

18



Consequently, model 4 captures an asymmetric smile, linear for zt < 1 and quadratic for zt ≥ 1.
Model 5 still represents an asymmetric smile, as for zt < 1 the IV surface is described by a

polynomial of second degree, while for zt ≥ 1 the IV surface reduces to the upward sloping

branch of a quadratic function. Model 6 is yet another variation, in which for zt < 1 the IV

surface is a polynomial of second degree with coefficients β1 and β2, while for zt ≥ 1 a different
polynomial of second degree is fitted, this time with coefficients β2 and β3. Models 7 and 8 are

inspired by Dumas et al. (1998, p. 2068). Model 7 allows the IV surface to change as a function

of time-to-expiration τ t. τ t also appears in an interaction term, τ tzt. Model 8 differs from 7 as

also a quadratic term in τ t is used as a regressor. Finally, model 9 follows Gross and Waltner

(1995) in using an alternative to the variable zt, the (so-called) normalized strike, NSt.
31 Model

9 is otherwise identical to model 7.

Although it is well known that traditional OLS estimates are not efficient and produce a bi-

ased estimate of the covariance matrix, in the following we take the non-sphericality of the pricing

errors into account by running OLS regressions of models 1-9 but calculating heteroskedasticy-

autocorrelation consistent estimates of the covariance matrix of the estimated regression coeffi-

cients as in Newey and West (1987).32

Panel A of Table XI reports the estimation output for the original data set purged of the

observations violating the lower bound condition only. In general all models and estimated

coefficients are highly statistically significant, even when the possible non-sphericalities are taken

into account in the estimation of the covariance matrix of the OLS estimates.33 In spite of this,

there are substantial differences in the explanatory power of the alternative structural models.

In particular, models 7 and 8 – those reflecting a possible term-structure in the IV surface

and the interactions between time-to-maturity and moneyness – provide a R̄2 (0.13-0.14) which

is much higher than all other models.34 For instance, focussing on model 8, it turns out that

the ATM volatility for a typical medium-term option 50 days to maturity ought to be 23%.

However this value grows to 24.2% for a contract DOTM (zt = 0.9) and to 48% for a contract

DITM (zt = 1.1), holding time-to-maturity constant. These numbers are perfectly consistent

with a strongly asymmetric smile (smirk). However, even taking into account that this data set

contains a certain percentage of observations violating basic arbitrage conditions as well as the

high frequency with which the option prices are sampled, an adjusted R-square of 0.14 is quite

modest in the light of the literature. For instance, Ncube (1996) obtains a 0.48 estimating a model

with similar structure. Panel B of Table XI estimates the same models on the arbitrage-free data

set. Although also in this case most of the estimated coefficients are highly significant, there is

31NSt =
ln

µ
Ste

(rt−δt)τt
K

¶
√
τt

,where τ t is expressed as a fraction of a 365 days’ year.
32In a companion paper we explore other econometric methodologies able to account for heteroskedasticity and

serial correlation of the random shocks affecting the IV surface, see Cassese and Guidolin (2001).
33Following the suggestion in Newey and West (1987), the truncation lag is set equal to the integer part of

4
¡
T
100

¢ 2
9where T is the sample size.

34Model 9 and the alternative definition of standardized moneyness it employs perform quite poorly.
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now an important change as model 9 – employing a standardized definition of moneyness –

provides a much higher R̄2 than all other models, 0.26. It seems then that the particular shape

that best fits the MIBO30 IV surface does depend on the fact that the data might contain some

observations out-of-line, i.e. violating basic no-arbitrage conditions (see Cassese and Guidolin

(2001)). The better R̄2 achieved is only partially surprising if we think that prices that are

not arbitrage-free are likely to be the reflection of either misrecordings or pure noise. On the

other hand, the overall explanatory power of our structural models remains rather limited. The

implication is that the time variation in the structure of the MIBO30 IV surface is so strong

that simple structural models relating IVs to basic contract features hardly explain the sudden

shifts in the surface. This result casts further doubts on the fact that MIBO30 prices might be

actually changing as a result of information flows affecting market expectations. This motivates

our investigation of the informational content of MIBO30 prices.

5.2. Heterogeneity and instability of the IV surface

Given the heterogeneous shapes of implied volatility as a function of both moneyness and time-to-

maturity documented in 5.1, we classify these shapes in a few alternative categories. This provides

another set of descriptive measures that allows us to document in precise ways the instability of

the IV surface and to suggest possible explanations for the unusually low explanatory power of

the IV surface regressions.35 At each point in time (day and time of the day) for which at least

3 observations on option prices for alternative moneyness levels are available, we classify the

MIBO30 IV curve as a function of moneyness in five distinct categories:36

1. Smiles, if the average implied volatility DITM and DOTM are above the average near-ATM

volatility;

2. Smirks, if the average DITM implied volatility exceeds the average near-ATM which in its

turn exceeds the average DOTM implied volatility;

3. Reverse smirks (downward sloping shapes), if the average DOTM implied volatility exceeds

the average near-ATM which in its turn exceeds the average DITM implied volatility;

35David and Veronesi (2000) have recently stressed the instability of the implied volatility curves in the US (S&P

500) options market and the possibility that at times implied volatilities would show either ‘frowns’ or upward

sloping shapes when plotted against the ratio K/St (put moneyness). Interestingly, they use these observations

and the fact that smiles and smirks are anyway deemed to be prevalent as a benchmark for the empirical assessment

of their theoretical option pricing model.
36The information from OTM and ITM options is ignored and that accomodates for very imperfect smiling or

sneering shapes, in which irregularity of OTM and ITM IVs behavior occurs. Also, we drop IV curves in which

either both DOTM and OTM or both ITM and DITM options are absent. Finally, we avoid mis-classifying any

of the shapes when the average IVs are actually not very different for different moneyness classes, by requiring a

minimum distance of δ = 1% (in annualized percentage terms) when running pairwise comparisons. One implication

is that category 5, besides collecting many irregular and odd shapes, will also sweep up all the cases of near-flat

(BS-consistent) IV curves.
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4. Frowns (reverse smiles), if the average near-ATM implied volatility exceeds both the average

DITM and the average DOTM volatilities;

5. Other shapes, all the cases that cannot be classified in any of 1.-4. above.

In the original data we find that for the full sample smirks dominate appearing 48% of the

time, followed by other shapes (including flat, BS-type shapes, 27%) and by smiles (21%). Frowns

and upward sloping smirks are relatively uncommon, representing a combined 4% only. Table XII

reports these results along with the unconditional probabilities (sample frequencies) for the three

sub-samples defined above. The frequencies are remarkably stable over time, with one exception:

in the third subperiod covering November 1999 to January 2000 there are many less cases of

smiling IV shapes (11%) and a peak (9%) of upward sloping smirks. Table XII also stresses that

the frequencies are quite robust to changes of the parameter δ, at least in the sense that excluding

the residual shapes, smirks always dominate over smiles and a part of the smiles seem to become

reverse smirks during the third subperiod, which is interesting.37 The bottom panel of Table XII

applies these criteria to the arbitrage-free data set obtained in Section 4. Apart from a small

increase in the importance of smiles, the picture is essentially unchanged.

Another feature of MIBO30 option prices is that the corresponding IV surfaces are highly

volatile, changing (often in dramatic ways) quite rapidly in a matter of days or even during

the same trading day. We try to quantify the speed of change of IV curves vs. moneyness by

calculating the frequency with which switches occur from shapes of type i to shapes of type j,

i, j = 1, ..., 5 and where 1 stands for smiles, 2 for smirks, etc., 38 Interpreting IV shapes as market

states and assuming a first-order homogeneous Markov chain, our calculations yield a sample

estimate of the transition matrix describing the stochastic behavior of the market state. Table

XIII reports the findings for both the full data set and for the three subsamples. Looking at the

full-sample results, it is evident that not all the states ‘communicate’, meaning that starting from

uncommon shapes it is not possible to land in all other states, and viceversa. In general all the

sample frequencies (estimated transition probabilities) are low, implying a remarkable degree of

dynamics in the IV surface. For instance, interpreting the sample frequencies of the 5 shapes as

their stationary distribution, we have that the unconditional probability of remaining in any of

the five states for two consecutive periods (often as short as half an hour) is 0.4183 meaning that

almost 60% of the time the IV shape vs. moneyness at t will switch to another shape at t+1, an

37There is an obvious structural effect in the sense that as δ increases the percentage of IV curves that fall into

the residual, ‘other shapes’ category cannot but increase. In other words, if we apply a very restrictive criterion to

classify a pair of IVs for different maturities as different, clearly we will get a substantial number of shapes that

are classified as flat curves.
38Notice that since at each point in time contracts for different maturities are traded, it is important to quantify

the dynamics of IV shape switches by comparing ‘slices’ of the IV surface having (approximately) identical time-

to-expiration. We therefore impose a bound of (approximately) 5 hours on how distant in time two trading dates

(defined by day and hour of the day) can be for a switch between shapes of identical maturity to be accounted for.
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unequivocal sign of instability of the IV surface. The corresponding unconditional probabilities

of remaining in a state for two consecutive periods are 0.382, 0.460, and 0.422 for the three

sub-samples, a sign that the instability in the IV surface is structural and does not depend on

some short, aberrant period of time. Table XIII also documents that – although the estimated

transition matrix changes over time – the underlying instability of the IV surface is pervasive.39

The bottom panel of Table XIII describes the transition frequencies for the arbitrage-free data

set. The unconditional probability of a switch in the IV surface is in this case 0.59, confirming

that the impression of a latent instability in the pricing function at work in the MIBO market

does not entirely derive from situations of obvious mispricing.

We repeat similar experiments with reference to the shape of the implied volatility function

vs. time-to-maturity. The multiplicity of traded strike prices at each point in time forces us

to ‘slice’ the IV surface at a precise moneyness level, ATM, and to compare IVs for different

maturities. Since at most three maturities are traded at each point in time, we classify the term

structure described by IVs in five mutually exclusive categories:

1. Upward sloping structures, if the average implied volatility for ATM options with the longest

maturity exceeds volatility for intermediate maturity, which in its turn is above the IV for

shorter maturities;

2. Downward sloping structures, in the opposite situation (long is less than medium which is

less than short);

3. Smiling term structures, if the IV for medium term ATM contract is above the IV of both

short- and long-term ATM contracts;

4. Hump-shaped structures, if the IV for medium term ATM contract is below the IV of both

short- and long-term contracts.

5. Other shapes, all the cases that cannot be classified in any of 1.-4. above.

We drop observations in cases in which for ATM options less than three maturities are traded

at a point in time. Similarly to what done above, we prevent mis-classifications in the presence

of minimal differences of the ATM IVs for different maturities by requiring a minimum distance

of δ = 1%. We apply these criteria of classifications to the original data set. Since the MIBO30

39As a robustness check on our findings, we recalculate the transition matrix for the full sample ignoring switches

that involve different days. Notice that our criterion of a maximum difference of 5 hours between subsequent

observations does not rule out that one IV shape be classified (say) on Monday evenining and the subsequent valid

IV shape with corresponding (but notice, not identical) maturity be classified on Tuesday morning. Since the two

maturities are then different (and this may matter a lot for very-short term options) and the passage of the night

might easily bring in new information (for instance, from North-American markets) that should be reflected in the

IV surface, we decide to run this experiment. We find that the resulting transition matrix is very similar to the

one reported in Table XIII.
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market is not very deep as far as the variety of traded maturities, the resulting classification

concerns many less days/hours than in the case of moneyness. Unconditionally, we find that the

IV surface tends to be flat (61.09%), and for the rest of the time it is either hump-shaped (14.53%)

or ‘smiling’ (14.46%). The typical upward sloping term structures studied in the US options

markets (see Das and Sundaram (1999) and Campa and Chang (1995)) are on the opposite quite

uncommon in the MIBO30 (5.45%), and anyway as likely as downward sloping ones (4.47%).40

5.3. The Informational Content of Implied Volatilities

A much debated question in the literature concerns the informational content of implied volatil-

ity. The idea is that, given the one-to-one relationship between option prices and Black-Scholes

volatility, if the options market efficiently incorporates all available information through efficient

pricing mechanisms, then it should not be possible to improve volatility forecasts over and above

the implied volatility themselves. Notice that this type of tests is independent of the actual ap-

plicability of Black-Scholes model to option pricing in the MIBO market. For instance, the tests

might allow the market to revise the IV characterizing a given contract as a function of changes

of the underlying, of interest rates, of the passage of time, etc. (see the discussion in Canina

and Fliglewski (1993, p. 661)). Also, these tests link two different notions of market efficiency,

informational and risk-sharing efficiency, in the sense that testing and measuring informational

efficiency assumes that the market is risk-sharing efficient, so that no arbitrage opportunities

exist.

We conjecture that the MIBO market is informational inefficient. Sections 3 and 4 have

provided plenty of indications against the pricing efficiency of the MIBO30 market. We suspect

that an imperfect pricing mechanism may prove unable to serve as an unbiased aggregator of

beliefs. In particular, in the following we will try to sort out the link between informational

and pricing efficiency by comparing econometric tests for the original data and the arbitrage-free

one.41 Subsections 5.1 and 5.2 have also shown that the MIBO30 IV surface is highly unstable

over time, to the point that the typical structural models proposed in the literature have little

explanatory power. This suggests the Italian options market might be dominated by noise and

therefore be a poor information aggregator.

A first issue in implementing this type of tests is defining the realized volatility of returns

on the underlying asset. Given a series of high-frequency (sampled at half an hour intervals)

MIB30 prices {Sj}τj=t we follow Canina and Fliglewski (1993) (CF for short) and define realized
40The dates/hours we are able to classify are not enough to allow a meaningful disaggregation based on the three

subperiods used above. In practice, for long intervals of time only two maturities were traded. Also, we check the

robustness of our finding by using either δ = 0.5% or δ = 1.5%, and by using arbitrage-free data only. Results are

quite robust.
41Most of the previous literature does not pay any attention to the effects of arbitrage violations on the tests

of informational efficiency, apart from the preventive elimination of all prices violating the lower bound conditions

(i.e. of all negative IVs). Therefore, pricing efficiency is simply assumed. Cf. Canina and Fliglewski (1993, p. 664).
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volatility between t and τ as the annualized standard deviation of the continuously compounded

MIB30 returns {Rj}τj=t+1. Since in general we have observations on 15 half-an-hour periods per
trading day, the annualized volatility of the MIB30 can be simply obtained by multiplying the

high-frequency standard deviations by the square root of 15×252 = 3, 780. We call this measure
σ∗ (t, τ) .

Assuming that at time t the IV on an option with maturity in τ > t represents the MIBO

market’s prediction of the future volatility over the interval [t, τ ],42 it is well known that a fun-

damental test of rationality of this forecast can be obtained from the regression

σ∗ (t, τ) = α+ βIV (t, zt, τ) + u(t, zt, τ), (19)

in the sense that rationality implies α = 0 and β = 1 so that E[σ∗ (t, τ) |zt] = IV (t, τ) (unbi-

asedness, from E[u(t, τ)|zt] = 0, where zt is the information set available to the market at time
t). Deviations of α and/or β from the values 0 and 1 illustrate the presence of biases and hence

the irrationality of markets’ forecasts. Notice that the notation IV (t, zt, τ) stresses that at time

t several IVs corresponding to different moneyness levels zt are available with maturity t + τ .

Analogously, since IV (t, zt, τ) should be formed by an efficient market able to incorporate all

available information into beliefs and hence prices, if xt ∈ zt is any piece of public information,
then the (encompassing) regression

σ∗ (t, τ) = α+ βIV (t, zt, τ) + γxt + u(t, zt, τ) (20)

should still give α = 0, β = 1, and also γ = 0. In the following we use two alternative definitions

of xt. First, following CF (p. 671) we employ a 30 (trading) days moving average of realized

daily volatility σ∗, appropriately annualized.43 Second, we use IV (t− 1, τ), the IV of the trading
period (normally half-an-hour) immediately before the one under consideration. Obviously, both

these variables belong to zt.
Unfortunately, it is not possible to simply estimate regressions (19)-(20) using all implied

volatilities corresponding to different days/time of the day, moneyness, and time-to maturity

levels by OLS. The problem is that since the observations come from a panel data set the random

disturbances u(t, zt, τ) are unlikely to be spherical, i.e. to have identical variance and to be

uncorrelated. For instance, it is plausible that because of the lower liquidity, certain categories

of contracts (for instance, DITM and DOTM) be characterized by more volatile random shocks

to their forecasting power, a source of heteroskedasticity. Similarly, it is likely that in a high

frequency data set certain times of the day (like opening, lunch time, etc.) be characterized by

more volatile random influences than others. Finally, depending on the dynamics of the market’s

42This assumption is quite common in the older literature, see Poterba and Summers (1986) and Day and Lewis

(1988) among the others.
43The moving window refers to the 30 days preceding time t. CF used a 60-days average, but given our shorter

sample size (in terms of days, not of overall number of observations) we opt for 30. However CF expressly point

out that similar results were obtained using 30 instead of 60.
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(risk neutral) beliefs underlying the pricing of derivative securities, it is plausible that disturbances

to the informational efficiency of the options market be correlated across moneyness classes and/or

across maturities. Shocks affecting beliefs and thus prices might also be long-lived thus creating

serial correlation across random disturbances for all option contracts. It is well known that in

these circumstances OLS estimates are inefficient and would produce a biased estimate of the

covariance matrix. In the following we follow three strategies to take the non-sphericality of the

pricing errors into account: (i) we estimate the regression coefficients using Parks’ (1967) method

after applying suitable procedures of reduction and transformation of the original data sets; (ii)

using the same transformed data set, we apply feasible GLS estimation to each separate class of

moneyness/maturity; (iii) as in CF, apply GMM estimation.

First, we take two steps:

a. We subject our data set to a reduction process by which, for each recorded trading time,

we extract only 20 observations, corresponding to all the possible combinations (the order

does not matter) of 5 categories of moneyness (DOTM, OTM, ATM, ITM, DITM) and 4

categories of time-to-maturity (very short, short, medium, long). The classes of moneyness

and time-to-expiration are defined as in Section 2. It often happens that a given moneyness

class contains multiple observations. In these cases we extract the observation with the

lowest (highest) moneyness in the case of DOTM (DITM) options, and simply use the mid-

point observation based on a moneyness ranking for the remaining three classes. Since our

high frequency sample consists of 3,434 observations over time, the resulting panel data set

is in principle composed of 68,680 observations, thus implying a minimal loss of information.

In practice, it happens that a few classes of moneyness may not be represented; especially in

the case of time-to-maturity, at most two classes are simultaneously present throughout the

sample. It turns out that the ‘reduced’ data set consists of 21,240 observations, between 1/3

and 1/4 of the original number. On the other hand, the resulting data set has the structure

of a balanced panel in which the cross-sectional identifier are now the 20 moneyness/time-

to-maturity classes.

b. We allow the covariance matrix of the random errors affecting (19)-(20) to have arbitrary

patterns of heteroskedasticity, as well as serial and cross-sectional correlation, as synthe-

sized by a full rank covariance matrix Ω.

Write the generic model for time t (defined by day/hour of the day) as

yit = β0 + x
0
itβ + uit i = 1, ..., 20 or

yt = β0ι20 +Xtβ + ut

where E[ut] = 0 and E[utu
0
t] = Σt. yit collects the ex-post realized volatility between time t and

t+ τ , while the row vector x0it contains the regressors, IV (t, zt, τ) in (19) and [IV (t, zt, τ) xt]0 in
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(20). Let’s now stack the 3,434 observations on the different times in the sample and write the

model in compact fashion as:

Y = β0 +Xβ + u

where β0, β and X appropriately incorporate any restrictions on the parameters between cross-

sectional units. Following Parks (1967), we initially assume Σt is constant over time and that

no serial correlation patterns be present, so that the overall covariance matrix of the IV errors

can be effectively described by Ω = Σ ⊗ IT , where T = 3, 434.44 It is well known that the GLS
estimator

β̂
GLS

= (X 0ΩX)−1X 0ΩY

is consistent and efficient, and also yields consistent estimates of the covariance matrix of the

estimated coefficients, (X 0ΩX)−1. Unfortunately, Ω is unknown and must be first replaced by a
consistent estimate, such as

bΩOLS = Σ̂OLS ⊗ IT = "T−1 TX
t=1

(ûOLSt )(ûOLSt )0
#
⊗ IT

where ûOLSt = ŷt − β̂
OLS
0 ι20 −X0tβ̂

OLS
. The resulting estimator

β̂
FGLS

=
³
X 0bΩOLSX´−1X 0bΩOLSY

is called the feasible GLS.45 Under a variety of conditions (see Parks (1967)) it has been shown to

be consistent and unbiased. Asymptotically, it is also equivalent to the MLE and therefore is fully

efficient. Even in the absence of normality, it can be interpreted as a pseudo-maximum likelihood

estimation that retains all the asymptotic properties of MLE estimators (see Gouriéroux and

Monfort (1984)). Notice however that the assumption of Σt constant over time is easily rejected

by most data sets. In our case, it is likely (at least within a given class of contracts) that

forecasting errors might be long-lived and hence serially correlated. Therefore we resort to a

further step. We regress (by OLS) the panel residuals on their lagged values and estimate the

matrix R in the multivariate model

ûFGLSt = RûFGLSt−1 + νt (21)

where νt is spherical. Finally, we apply OLS to the (so called Prais-Winsten) transformed model

yt − R̂yt−1 = β0(I − R̂) + (Xt −XtR̂)β + νt,

44Since in our case the time dimension of the panel (3,434) is much larger than the cross-sectional dimension,

some Authors have argued that this is often the natural approach (see Davidson and MacKinnon (1993, p. 321)),

no other corrections being required.
45In practice we iterate over the two steps of finding a consistent estimator for Ω based on the residuals obtained

in step i−1, estimating β̂
FGLS

(i) (Ω̂(i−1)) and then calculating the corresponding residuals for step i until convergence

of the estimates of β is obtained. Although our data set is relatively large, convergence is always obtained quickly.
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which yields consistent and efficient estimates of β̂
Parks
0 and β̂

Parks
, along with an unbiased

estimate of their covariance matrix.

Table XIV reports descriptive statistics (mean, median, and standard deviation) for each of

the 20 classes defined above. Most of the contract classes are represented in the sample in a well

balanced way, although (as it is to be expected) long-term, deep ITM and OTM contracts are

under-represented (less than 1,000 observations each). As for the estimation result, in the case of

the original data set we find that the first-stage, FGLS residual do indeed display a high degree

of persistency (ρ̂ = 0.999). Therefore we apply the second stage of Parks’s method. We estimate

by OLS the model:

ûFGLSt = ρI20û
FGLS
t−1 + νt,

a simplification of (21) to the case in which serial correlation is common in intensity to all classes of

option contracts. Since we do not have any theoretical reason to assume that random disturbances

to informational efficiency have a different persistence as a function of moneyness and/or time-

to maturity, and this assumption remarkably simplifies the task, we proceed to derive our final

(Parks) estimates from the Pras-Winsten modified regression:

yt − bρyt−1 = α(1− bρ) + (Xt − bρXt)β + νt.

We thus find (p-values in parenthesis under the estimates):

σ∗ (t, τ) = 0.213
(0.0000)

− 0.0027
(0.0000)

IV (t, zt, τ) + u(t, zt, τ).

The R2 is of 0.8% only. Using the same econometric techniques we obtain a much higher ex-

planatory power by estimating the encompassing regressions

σ∗ (t, τ) = 0.36
(0.0000)

− 0.0021
(0.0000)

IV (t, zt, τ)− 0.8754
(0.0000)

σ∗MA (t− 30, t) + u(t, zt, τ) (R2 = 0.2183)

σ∗ (t, τ) = 0.214
(0.0000)

− 0.0037
(0.0000)

IV (t, zt, τ)− 0.0025
(0.0000)

IV (t− 1, zt, τ) + u(t, zt, τ) (R2 = 0.0105).

Particularly in the first case, the R2 is quite high, and a simple 30-days rolling window standard

deviations forecasts future MIB30 volatility much better than IVs. As expected, the MIBO

market seems to couple pricing and informational inefficiencies in large amounts. In the case of

the arbitrage-free data, the results are very similar. For instance (and through the same steps

above), the forecasting regression is estimated to be:

σ∗ (t, τ) = 0.237
(0.0000)

− 0.0003
(0.1169)

IV (t, zt, τ) + u(t, zt, τ).

Although the panel-FGLS estimate of the common β stops being significantly negative, this is

meaningless as IV forecasts remain largely biased and the R2 is negligible. Also from this econo-

metric exercise we conclude that the clues of informational inefficiency are strong and probably

unrelated to pricing efficiency.46

46Results from encompassing regressions are similar and therefore not reported.

27



Second, we estimate equations (19)-(20) by FGLS separately for each of the 20 classes of

moneyness/time to maturity. This choice remarkably simplifies the econometrics, since with only

one observation per day we only have to worry about serial correlation of the disturbances.47

Furthermore, the exercise is meaningful as it may reveal which segments of the MIBO30 market

are more inefficient. Table XV presents the results for the different classes. Panel A refers to

the original data: for all subsamples IVs fail the rationality tests as predictors of future MIB30

volatility during the life of the contract. The intercept is significantly positive (with p-values of

at most 5%) for all classes of contracts. On the other hand, the slope is most of the time (12

out of 20 cases) not statistically different from zero, and when it is different from zero it is often

negative (7 cases). In general the coefficient of the IVs are very small, and the maximum R2 is

0.0245. Overall, also with this method our first data set seems to strongly reject the hypothesis

of informational efficiency of the MIBO market. These results are similar – if not stronger – to

those of CF. Panel B offers a very similar picture for the arbitrage-free data set. Improvements are

minimal, in the sense that only one of the estimated α fails to be statistically significant, while

there are still four β coefficients which are significantly negative; the R2 coefficient generally

increases, but the fundamental idea is still that options’ IVs have little to do with the ex-post

realized volatility.

A third and final strategy mixes the previous two and corresponds to the one adopted by

CF in their seminal paper. Define θ ≡ [α β]0, xi≡ [1 IVi]0 , X =
£
x1 x2 ... xNm,τ

¤0
and let Nm,τ

denote the total number of observations (over time) that fall in a given class of moneyness and

time-to-maturity (the index m, τ ). CF estimate (19)-(20) by GMM using data for each separate

class of contracts as defined by moneyness and time-to-maturity.48 Although the point estimates

of the regressors coefficients are identical to OLS, the advantage of this estimation method is that

the resulting estimate of the covariance matrix of the estimators,

Cov
³
θ̂
GMM
m,τ

´
= (X 0X)−1

N−1m,τ Nm,τX
i=1

û2ixix
0
i +N

−1
m,τ

Nm,τX
i=1

Nm,τX
j=i+1

Ii,j ûiûj(xix
0
j + xjx

0
i)

 (X 0X)−1,

(22)

is robust to arbitrary forms of correlation in the errors u(t, zt, τ) arising from the fact that many

contracts overlap. In particular, the indicator variable Ii,j = 1 if and only if two observations

are associated with overlapping contracts, and zero otherwise. By running a few Monte Carlo

experiments, CF show that for the problem at hand even in small samples the standard errors

47It turns out that most of the contract classes are characterized by strongly persistent residuals (the first order

autocorrelations range from 0.91 to 1) and hence very low levels of the D-W statistics. Therefore GLS corrections

for serial correlations are most needed and result in the estimates of Table XV. In any case it is true that most of

the OLS estimates for α were positive, while most of the OLS βs were negligible and sometimes negative.
48Notice that no restriction of panel nature is imposed, in the sense that in correspondence to a day/hour of the

day it is possible (and highly likely) to have multiple observations belonging to the same category. Therefore Nm,τ

can exceed the total number of points in time for which observations are available. From this point view the data

used are not obtained by reduction but fully corresponds to each of the two data sets under examination.
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extracted from (22) are quite accurate. Table XVI reports the results of this last set of tests for

the original data set. Although α̂GMM is never significant, β̂
GMM

is also never close to 1; in 12

cases out of 20 β̂
GMM

is not even significantly different from zero, in one case it is significantly

negative. The R2 coefficients are in general very small, between 0.38% for OTM, very short-term

options and 15% for ATM, very short-term contracts. For the 7 classes of contracts for which

α̂GMM is statistically nil while β̂
GMM

> 0, β̂
GMM

is always statistically less than one and in 6

cases the IVs anyway fail the encompassing tests (20). In general, a moving window volatility

index calculated on high frequency MIB30 returns seems to have a good forecasting power (the

R2 in the encompassing regression always doubles), although the sign of γ̂GMM is significantly

negative for 13 categories of contracts, possibly an indication of mean reversion. All in all, it

seems clear that (with the exception of ATM, very-short term contracts) also this battery of tests

reveals strong informational inefficiency of the MIBO market. This conclusion is confirmed by

GMM estimation and tests applied to all the original data (bottom right cell of Table XVI).

Our findings improve only slightly when GMM methods are applied to arbitrage-free data.

This confirms that pricing efficiency is not sufficient for informational efficiency to result. Table

XVII reports on the arbitrage-free data set estimates: we obtain higher values for the R2s (38%

for OTM, short-term options). However, with the only exception of ITM short-term contracts

(that anyway fail the encompassing tests), it remains true that the estimated slope coefficients are

in general quite small, often not even significantly positive (occasionally significantly negative),

which is again inconsistent with informational efficiency.

6. Conclusion

This paper has analyzed the pricing and informational efficiency of the Italian market for options

on the most important stock index, the MIB30. We find several indications inconsistent with pre-

vious findings of the literature (see Cavallo and Mammola (2000)) that have led to the conclusion

that the Italian MIBO30 is quite an efficient options market favoring risk-sharing activities and

unbiased aggregation and dissemination of information. On the opposite, we report that a strik-

ing percentage of the data consists of option prices violating some basic no-arbitrage condition.

This percentage declines but never becomes negligible when we relax the no-arbitrage restric-

tions to accommodate for the presence of bid/ask spreads and other frictions. The result holds

generally for all levels of moneyness and time-to-expiry. We also tentatively map the presence of

niches of resilient arbitrage opportunities to a few microstructural features of the Italian deriva-

tives market, such as the mismatch between the calendar cycle of futures (FIB30) and options

markets, and the fact that maximum bid/ask spreads are set in absolute values and therefore can

be particularly wide for low-price contracts (DOTM). We also document abrupt changes of the

implied volatility surface that – using high-frequency data as we do – can hardly be explained

by changes in market beliefs. We suspect that option pricing on the MIBO can at times become

erratic and prone to microstructural factors hardly consistent with the roles a developed, efficient
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options market ought to play. Finally, using a variety of econometric tools and approaches for the

treatment of our high-frequency panel, we investigate the informational efficiency of the MIBO

and conclude that option prices are indeed very poor aggregator and predictors of future volatility

of MIB30 returns.

There are many possible extensions of this work. First, although Section 5 insists on check-

ing the robustness of the results concerning the dynamics of the IV surface and the degree of

informational efficiency to the presence of observations potentially violating the basic conditions

of Sections 3 and 4, we believe it is still a long way before obtaining a clear understanding of

how the pricing efficiency and microstructural aspects of a derivatives market may influence our

perceptions of the IV surface as well as of the informational efficiency of option prices.49 For

instance, a more systematic approach mapping frictions into models of the IV surface or fore-

casting ability of IVs might be fruitful. Second, in many points in the paper we have speculated

that apparent mispricing might be due to the objectives and constraints of the actors involved in

the MIBO market, such as market makers and institutional investors. To perform analysis in the

style of the current paper but with the benefit of better data sets including the characteristics of

the trader, etc. (practically, using information from market makers’ books) would be an exciting

challenge to our speculations.
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Table I 
Summary Statistics. 

Summary statistics of the financial prices (options, the MIB30 index, and the interest rate) used in the paper. All 
the values are expressed in MIB30 index points. MIB30 index returns are continuously compounded and 
annualized. 

 
 

 Minimum Maximum Mean Std Dev. 
Call prices 1 5,260 1,003.99 855.41  
Put prices 1 4,300 882.25 667.97  
All contracts - price 1 5,260 942.55 768.97  
Strike price 31,000 44,000 37,500 3,968.63  
Residual Life 1 109 26.07 16.93  
Black-Scholes implied volatility 0.0393 1.5474 0.2548 0.0775  
ATM – BS implied volatility 0.0515 0.7755 0.2437 0.0477  
MIB30 index 31,518 43,476 35,821 2,923.63  
MIB30 index returns (%) -107.15 68.22 0.141 0.178  
Risk-free Rate (LIBOR) 2.48 3.54 2.99 0.3605  

 

 

Table II 
Summary Statistics – Percentage Composition of the Data Set By Moneyness  

and Time to Maturity. 
Moneyness is measured by KSz = for a call option and SKz = for a put option. In the case of a call, 
moneyness classes correspond to: 95.0<z  (DOTM), 98.095.0 <≤ z  (OTM), 02.198.0 ≤≤ z  (ATM), 

05.102.1 ≤< z  (ITM) and z<05.1  (DITM). The classes for time to maturity (τ) are defined as follows: 7≤τ  
(Very Short), 257 ≤<τ  (Short), 5025 ≤<τ  (Medium), 9050 ≤<τ  (Long) and 90>τ  (Very Long). 
 
 

 Very Short Short Medium Long Very Long Total 
DOTM 1.29 5.13 5.69  0.69  0.01 12.81  
OTM 2.55 9.97 9.02  2.25  0.13 23.92  
ATM 4.36 15.76 13.75  3.39  0.22 37.48  
ITM 2.14 8.12 5.97  1.29  0.10 17.62  
DITM 1.06 3.62 3.03  0.39  0.07 8.16  
Total 11.40 42.60 37.46  8.01  0.52 100  

 
 

 



34 

Table III 
Arbitrage Opportunities: Absolute Number of Violations. 

The table reports the number of arbitrage opportunities detected in the sample for each listed condition. The last 
line reports the number of contracts that violate at least one of the first seven conditions (thus excluding Maturity 
spreads). Maturity spreads are not included because, as explained in the text, they are considered more of a test of 
the FIBO30 market. The last column indicates the ratio of the whole sample in which the corresponding 
condition is violated. 
 

  Violations Total % of the sample 
Put 943   Lower Bound Call 1,428  2,371  3.12 

Put 628   Strike Monotonicity Call 715  1,343  1.77 

Put 31   Maturity Monotonicity Call 0  31  0.04 

Put 938   Reverse Monotonicity Call 1,322  2,260  2.98 

Put 5,448   Butterfly Call 5,545  10,993  14.48 

Short 17,516   23.08 Box spread Long 16,441  33,957  21.66 
Short 18,699   24.64 Put/call parity Long 11,581  30,280  15.26 
Short 223   0.29 Maturity spread Long 13,429  13,652  17.69 

Overall  39,277  39,277  51.75 
 
 

Table IV 
Arbitrage opportunities. Sample Composition by Maturity and Moneyness 

The table reports the distribution over maturity and moneyness classes of the arbitrage opportunities detected in 
the sample for each condition. Moneyness and maturity classes are defined in Table II and in the main text.  
 

 Very Short Short Medium Long Total 
521 1,438  1,339 103  DOTM (52.95%) (36.77%)  (32.25%) (19.29%) 3,401  (34.82%)

1,020 527  2,893 578  OTM (52.47%) (6.93%) (42.07%) (31.85%) 7,818  (42.86%)

1,785 6,543  5,727 1,453  ATM 
(53.70%) (54.45%) (54.63%) (52.80%) 

15,508
 
(54.27%)

1,286 4,026  1,532 485  ITM 
(78.80%) (65.03%) (33.66%) (45.75%) 

8,329
 
(61.99%)

642 1,984  1,465 130  DITM 
(79.46%) (71.88%) (63.42%) (37.04%) 

4,221
 
(67.84%)

5,254 17,318  13,956 2,749  Total 
(60.45%) (53.32%) (48.86%) (42.27%) 

39,277
 
(51.52%)
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Table V 
Average Arbitrage Profits: Absolute Numbers and Rates of Return 

The table reports mean, standard deviation, and fifth and ninety-fifth percentiles of arbitrage profits in Tables III 
and IV. The last column reports the average ratio of profits over the price of the option(s), a sort of instantaneous 
rate of return from the arbitrage strategy. Profits are expressed in MIB30 index points. 

  Average Std. Dev. 5% 
percentile

95% 
percentile % ratio

Call 492.38 Lower Bound Put 132.54 349.26 654.22 5.54 2001.08 186.78 

Call 224.21 Strike Monotonicity Put 239.75 231.47 361.50 2 730 37.83 

Call 0 Maturity Monotonicity Put 130.37 130.37 147.54 12.93 458.37 4.85 

Call 125.44 Reverse Monotonicity Put 114.63 114.63 266.64 0.18 360.06 21.21 

Call 68.47 Butterfly Put 53.62 61.12 125.98 2.5 200 4.71 

Short 150.47  477.98 5.62 368.89 75.16 Box spread Long 89.95  164.24 4.38 275.70 70.06 
Short 127.17  346.19 4.74 331.13 48.34 Put/call parity Long 80.30  159.31 3.44 252.76 51.40 
Short 93.60  107.73 5.50 274.55 70.06 Maturity spread Long 394.81  177.15 130.32 710.77 387.29 

Overall  165.31  402.85 7.85 409.3 74.38 

Table VI 
Expressions for Arbitrage Profits Inclusive of Transaction Costs 

The table reports formulas for the no-arbitrage conditions once transaction costs (fixed costs of buying and selling 
the underlying index and bid/ask spreads) are taken into account. In the table, TtS represents the fixed cost of a 
given date t transaction on the underlying, the MIB30 index. The superscript a denotes ask prices and b the bid 
prices. These formulas also reflect that on the IDEM options contracts are settled in cash.  

Condition Formula 
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Table VII 
Average Bid-Ask Spreads As a Function of Moneyness and Time-to-Expiration for S&P 

100 Index Options (from George and Longstaff (1993)) 
The table reports the values in Figures 1 and 2, and in Table 1 of George and Longstaff (1993). Contracts are 
classified as short-term if they are less than 30 days to maturity, as medium-term if they are between 30 and 60 
days to maturity, and as long-term if they are more than 90 days to maturity. In the case of put options, DOTM 
means that their strike is more than 7.5 points less than the index, OTM between 7.5 and 2.5 points below the 
index, ATM between 2.5 points below and 2.5 points above the index, ITM between 2.5 and 7.5 points above the 
index, and DITM if their strike is more than 7.5 points above the index. Switching the strike with the spot index, 
the relevant definitions for call options are obtained. 
 

 Short-term Medium-term Long-term 
 Put Call Put Call Put  Call 

DOTM 7.34 6.82 3.48 3.44 5.38 4.12 
OTM 3.99 4.16 3.19 2.79 3.58 3.19 
ATM 3.04 2.81 2.54 2.14 2.91 2.82 
ITM 2.29 1.92 2.34 2.05 3.15 2.91 

DITM 2.46 2.09 2.83 2.31 3.23 2.71 

Table VIII 
Arbitrage Opportunities with Bid/Ask Spreads: Absolute Numbers and  

Percentage Incidence (αααα = ββββ = 5%) 
Number of arbitrage opportunities for each listed condition, in the presence of bid/ask spreads. The last row 
indicates the number (absolute numbers and percentage ratios, respectively) of contracts that violate at least one 
of the first seven conditions (thus excluding Maturity spreads). The scenario simulations set γ=0 and α = β = 5%. 
 
  Number of violations Total % 

Put 0  Lower Bound Call 0  0 0

Put 503  Strike Monotonicity Call 634  1,136 1.50

Put 5  Maturity Monotonicity Call 0  5 0.01

Put 129  Reverse Monotonicity Call 164  293 0.39

Put 483  Butterfly Call 679  1,162 1.53

Short 2,573  3.39Box spread Long 1,590  4,163 2.09
Short 70  0.09Put/call parity Long 0  70 0
Short 21  0.03Maturity spread Long 11,627  11,648 15.32

Overall    6,065 7.99
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Table IX 
Arbitrage Opportunities with Bid/Ask Spreads: Sample Composition by  

Maturity and Moneyness 
The table reports the number of arbitrage opportunities for each listed condition, in the presence of bid/ask 
spreads. These scenario simulations set γ=0 and α = β = 5%. 
 

   Very Short Short Medium Long Total 
Put 65  51 48 3 167Butterfly Call 42  39 30 0 111 278

Short 98  135 173 0 406Box spread 
Long 73  86 65 1 225

631

Short 0  0 0 0 0Mat Spread 
Long 199  260 5 0 464

464

 320  321 338 9 988 988

DOTM 

Overall 
 (32.68%) (8.24%) (7.83%) (1.69%) (10.16%) (10.16%)
Put 49  8 53 3 113Butterfly 
Call 17  4 18 2 41

154

Short 157  297 126 6 586Box spread 
Long 162  180 94 11 447

1,033

Short 0  0 0 0 0Mat Spread 
Long 941  2,389 58 0 3,388

3,388

 396  524 321 22 1,263 1,263

OTM 

Overall 
 (20.46%) (6.92%) (4.69%) (1.22%) (6.96%) (6.96%)
Put 6  25 116 48 196Butterfly Call 15  21 54 5 95 291

Short 262  574 193 44 1,073Box spread Long 227  281 165 14 687 1,760

Short 0  0 0 0 0Mat Spread Long 1,471  4,384 109 0 5,964 5,964

 517  1,025 621 113 2,278 2,278

ATM 

Overall  (15.62%) (8.57%) (5.95%) (4.12%) (8.01%) (8.01%)
Put 11  97 47 12 167Butterfly Call 47  43 56 0 146 313

Short 77  230 81 16 404Box spread Long 22  98 42 15 177 581

Short 1  6 0 0 7Mat Spread Long 389  1,225 16 0 1,630 1,637

 209  566 296 37 1,098 1.098

ITM 

Overall  (12.87%) (9.18%) (6.53%) (3.51%) (8.21%) (8.21%)
Put 3  26 6 2 37Butterfly Call 9  19 62 0 90 127

Short 9  49 44 2 104Box spread Long 4  25 25 0 54 158

Short 2  12 0 0 14Mat Spread Long 39  140 2 0 181 195

 43  186 204 5 438 438

DITM 

Overall  (5.34%) (6.77%) (8.87%) (1.43%) (7.07%) (7.07%)
Put 134  207 270 68 679Butterfly Call 130  126 220 7 483 1,162

Short 603  1,285 617 68 2,573Box spread Long 488  670 391 41 1,590 4,163

Short 3  18 0 0 21Mat Spread Long 3,039  8,398 190 0 11,627 11,648

 1,485  2,612 1,785 186 6,065 6,065

Total 

Overall  (17.16%) (8.08%) (6.28%) (2.87%) (7.99%) (7.99%)
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Table X 
Arbitrage Opportunities with Bid/Ask Spreads: Absolute Numbers, Percentage 

Incidence, Average Profits and Profitability 
The table reports the absolute number (N), the percentage ratio on the total sample size, the average profit, and 
the average profitability deriving from violations of the no-arbitrage conditions listed in the first column of the 
table, and under the structure of transaction costs assumed in Section 4. Each column refers to a different half-
size of the bid/ask spreads for options and spot index markets. These scenario simulations set γ=0 and also 
impose the restriction α = β. 
 

  Half-size of the bid-ask spread (α) 
  0 1 2 3 4 5 6 7 8 

N 2,371 265 85 12 2 0 0 0 0 
% 3.12 0.35 0.11 0.02 0 0 0 0 0 
π 349 919 600 698 109 0 0 0 0 Lower Bound 

π (%) 186 711 371 170 24 0 0 0 0 
N 1,343 1,274 1,240 1,202 1,177 1,136 1,115 1,021 934 
% 1.77 1.68 1.63 1.58 1.55 1.5 1.47 1.35 1.23 
π 231 22 217 209 199 192 181 167 154 Strike Monotonicity 

π (%) 38 37 36 35 34 33 32 30 29 
N 31 20 13 7 6 5 3 2 0 
% 0.04 0.03 0.02 0.01 0.01 0.01 0 0 0 
π 130 142 151 194 167 133 143 43 0 Maturity Monotonicity 

π (%) 0 5 5 6 5 4 4 1 0 
N 2,260 1,345 900 626 413 293 205 128 89 
% 2.98 1.77 1.19 0.82 0.54 0.39 0.27 0.17 0.12 
π 114 141 160 179 220 260 325 422 519 Reverse Monotonicity 

π (%) 21 32 45 62 90 124 172 263 364 
N 10,993 6,681 4,111 2,683 1,710 1,162 800 463 341 
% 14.48 8.8 5.42 3.53 2.25 1.53 1.05 0.61 0.45 
π 61 65 72 77 88 101 120 162 188 Butterfly spread 

π (%) 4 5 5 6 8 10 12 17 19 
N 17,516 11,699 7,436 4,942 3,485 2,573 1,996 1,314 866 
% 23.08 15.41 9.8 6.51 4.59 3.39 2.63 1.73 1.14 
π 150 177 231 301 383 476 574 786 1,109 Box spread – Short 

π (%) 75 82 97 113 127 139 148 159 180 
N 16,441 10,451 6,192 3,823 2,466 1,590 1,033 524 305 
% 21.66 13.77 8.16 5.04 3.25 2.09 1.36 0.69 0.4 
π 89 91 102 115 130 153 188 263 357 Box spread – Long 

π (%) 70 78 95 112 129 149 174 212 254 
N 18,699 260 191 150 121 70 12 0 0 
% 24.64 0.34 0.25 0.2 0.16 0.09 0.02 0 0 
π 127 1,905 1,696 1,287 823 499 65 0 0 Put/call parity – Short 

π (%) 48 289 275 222 142 80 25 0 0 
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Table X (continued) 
Arbitrage Opportunities with Bid/Ask Spreads: Absolute Numbers, Percentage 

Incidence, Average Profits and Profitability 
The table reports the absolute number (N), the percentage ratio on the total sample size, the average profit, and 
the average profitability deriving from violations of the no-arbitrage conditions listed in the first column of the 
table, and under the structure of transaction costs assumed in Section 4. Each column refers to a different half-
size of the bid/ask spreads for options and spot index markets. These scenario simulations set γ=0 and also 
impose the restriction α = β. 
 

  Half-size of the bid-ask spread (α) 
  0 1 2 3 4 5 6 7 8 

N 11,581 97 46 1 0 0 0 0 0 
% 15.26 0.13 0.06 0 0 0 0 0 0 
π 80 677 323 186 0 0 0 0 0 Put/call parity – Long 

π (%) 51 238 124 88 0 0 0 0 0 
N 223 125 78 40 27 21 16 6 3 
% 0.29 0.16 0.1 0.05 0.04 0.03 0.02 0.01 0 
π 93 102 99 126 132 120 106 82 34 Maturity spread – Short 

π (%) 70 4 4 5 5 4 4 2 1 
N 13,429 13,232 12,994 12,688 12216 11627 11,021 9,270 7,420 
% 17.69 17.43 17.12 16.72 16.09 15.32 14.52 12.21 9.78 
π 394 364 334 306 282 261 241 215 200 Maturity spread – Long 

π (%) 387 347 309 275 250 229 211 192 181 
N 39,277 25,336 17,105 11,661 8248 6065 4,623 3,091 2,253 
% 51.75 33.38 22.54 15.36 10.87 7.99 6.09 4.07 2.97 
π 165 153 170 202 243 292 348 451 560 Overall 

π (%) 74 78 82 91 101 110 118 125 130 
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Table XI 
OLS Implied Volatility Regressions in Pooled Cross Section Time Series Data 

 - Competing Specifications. 
The table reports the output from the OLS estimation of models 1. –9. in the main text. Panel A of the table uses 
the original data set, purged of deviations of the lower bound condition only (73,529 observations). Panel B refers 
instead to the arbitrage-free data set obtained in Section 3 (67,962 observations). In both cases the reported p-
values (in the parenthesis below the estimates) are calculated using the HAC covariance estimator of Newey and 
West (1987). 
 

 Panel A – Data purged of lower bound violations only 
 Regressors Model stats 

 const lnzt (lnzt)2 OTMt ITMt2 100τt lnzt τt 1000×τt2 NSt NSt2 100× NStτt 2R  F-stat  

Model 1 -1.40 
(0.00) 

          0.000 0.00  

Model 2 -1.40 
(0.00) 

1.54 
(0.00) 

         0.066 0.00  

Model 3 -1.43 
(0.00) 

1.47 
(0.00) 

14.92 
(0.00) 

        0.085 0.00  

Model 4 -1.42 
(0.00) 

  0.68 
(0.00) 

32.70 
(0.00) 

      0.077 0.00  

Model 5 -1.40 
(0.00) 

 28.90 
(0.00) 

2.72 
(0.00) 

       0.079 0.00  

Model 6 -1.44 
(0.00) 

 4.34 
(0.00) 

0.42 
(0.00) 

2.51 
(0.00) 

      0.086 0.00  

Model 7 -1.35 
(0.00) 

1.75 
(0.00) 

14.92 
(0.00) 

  -0.29 
(0.00) 

-0.01 
(0.00) 

    0.127 0.00  

Model 8 -1.30 
(0.00) 

1.70 
(0.00) 

15.98 
(0.00) 

  -0.79 
(0.00) 

-0.01 
(0.00) 

0.09 
(0.00) 

   0.147 0.00  

Model 9 -1.35 
(0.00) 

    -0.23 
(0.00) 

  -0.04 
(0.00) 

0.24 
(0.00) 

0.55 
(0.00) 

0.070 0.00  

 

Panel B – Arbitrage-free data set 
 Regressors Model stats 
 const lnzt (lnzt)2 OTMt ITMt2 100τt lnzt τt 1000×τt2 NSt NSt2 

100× NStτt 2R  F-stat  

Model 1 -1.41 
(0.00) 

          0.000 0.00  

Model 2 -1.42 
(0.00) 

1.47 
(0.00) 

         0.071 0.00  

Model 3 -1.44 
(0.00) 

1.42 
(0.00) 

14.45 
(0.00) 

        0.092 0.00  

Model 4 -1.43 
(0.00) 

  0.67 
(0.00) 

32.34 
(0.00) 

      0.086 0.00  

Model 5 -1.42 
(0.00) 

 28.20 
(0.00) 

2.67 
(0.00) 

       0.087 0.00  

Model 6 -1.42 
(0.00) 

 15.34 
(0.00) 

1.73 
(0.00) 

15.72 
(0.00) 

      0.088 0.00  

Model 7 -1.38 
(0.00) 

1.54 
(0.00) 

14.46 
(0.00) 

  -0.23 
(0.00) 

-0.00 
(0.22) 

    0.124 0.00  

Model 8 -1.33 
(0.00) 

1.52 
(0.00) 

15.42 
(0.00) 

  -0.67 
(0.00) 

-0.00 
(0.24) 

0.07 
(0.00) 

   0.142 0.00  

Model 9 -1.42 
(0.00) 

    -0.09 
(0.00) 

  0.05 
(0.00) 

0.66 
(0.00) 

1.11 
(0.00) 

0.258 0.00  
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Table XII 
Classification of Market States According to the Shape of the Implied Volatility  

Function vs. Moneyness – Sample Frequencies 
For each point in time (day and time during the day) for which at least 3 observations on option prices for 
alternative moneyness levels are available, we classify the MIBO30 IV curve as a function of moneyess in five 
categories: smiles, smirks, reverse smirks, frowns, and other residual shapes (see the main text for accurate 
definitions). Classifications are based on the relative magnitude of the MIB30 implied volatility for DOTM, OTM, 
ATM, ITM, and DITM options, where the definitions are given in Section 2. IVs at different levels of moneyness 
are considered different if they diverge by more than δ percent. The following table reports the sample frequency 
(i.e. an estimate for the unconditional probability) of the five states as a function of δ for both the full-sample 
period and for three sub-period of equal length (in months). The bottom part of the table refers to the full-sample 
period when frictions are taken into account (α = β = 5%). 
 

 Smiles Smirks Reverse 
Smirks Frowns Other 

shapes 
 δ = 1% 
Full sample: 04/06/1999 – 01/31/2000 20.71% 48.22% 3.09% 0.95% 27.02% 
04/06/1999 – 07/15/1999 17.96% 49.57% 1.17% 1.05% 30.25% 
07/15/1999 – 10/25/1999 33.85% 43.76% 0.68% 0.17% 21.54% 
10/26/1999 – 01/31/2000 10.66% 51.01% 8.55% 1.65% 28.13% 
 δ = 0.5% 
Full sample: 04/06/1999 – 01/31/2000 27.72% 52.14% 3.95% 1.68% 14.52% 
04/06/1999 – 07/15/1999 25.86% 54.20% 1.85% 2.04% 16.05% 
07/15/1999 – 10/25/1999 40.94% 46.75% 1.20% 0.34% 10.77% 
10/26/1999 – 01/31/2000 16.27% 54.87% 10.02% 2.57% 16.27% 
 δ = 1.5% 
Full sample: 04/06/1999 – 01/31/2000 13.33% 42.99% 2.48% 0.49% 40.72% 
04/06/1999 – 07/15/1999 10.80% 43.64% 0.68% 0.43% 44.44% 
07/15/1999 – 10/25/1999 23.85% 39.23% 0.34% 0.09% 36.50% 
10/26/1999 – 01/31/2000 5.79% 46.05% 7.44% 1.01% 39.71% 
 δ = 1% 
Arbitrage-free data set (67,962 obs.) 21.50% 46.40% 3.48% 0.98% 27.64% 
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Table XIII 
Sample Transition Matrix of Market States According to the Shape of the Implied 

Volatility  Function vs. Moneyness. 
For each point in time (day and time during the day) for which at least 3 observations on option prices for 
alternative moneyness levels are available, we classify the MIBO30 IV curve as a function of moneyess in five 
categories: 1 - smiles, 2 - smirks, 3 - reverse smirks, 4 - frowns, and 5 - other residual shapes (see the main text for 
accurate definitions). Classifications are based on the relative magnitude of the MIB30 implied volatility for 
DOTM, OTM, ATM, ITM, and DITM options, where the definitions are given in Section 2. IVs at different 
levels of moneyness are considered different if they diverge by more than δ = 1% percent. The following table 
reports the sample frequency of the switches from shapes of type i to shapes of type j, i,j = 1,...,5 where 1 stands 
for smiles, 2 for smirks, etc. for both the full-sample period and for three sub-period of equal length (in months). 
The bottom part of the table refers to the full-sample period when frictions are taken into account (α = β = 5%). 
 

 Smiles Smirks Reverse 
Smirks Frowns Other 

shapes 
 Full sample: 04/06/1999 – 01/31/2000 
Smiles 34.86% 33.81% 1.44% 1.04% 28.85% 
Smirks 17.17% 52.83% 3.88% 1.07% 25.04% 
Reverse Smirks 10.17% 54.24% 11.86% 3.39% 20.34% 
Frowns 16.67% 55.56% 2.78% 0% 25% 
Other shapes 24.74% 39.69% 2.47% 0.62% 32.47% 
 04/06/1999 – 07/15/1999 
Smiles 24.25% 37.31% 1.12% 1.87% 35.45% 
Smirks 16.17% 49.85% 0.75% 1.50% 31.74% 
Reverse Smirks 22.22% 33.33% 0% 5.56% 38.89% 
Frowns 25% 75% 0% 0% 0% 
Other shapes 21.46% 46.24% 2% 0% 30.31% 
 07/15/1999 – 10/25/1999 
Smiles 44.79% 30.21% 0.52% 0.26% 24.22% 
Smirks 29.41% 55.99% 0.87% 0% 13.73% 
Reverse Smirks 50% 37.5% 0% 12.5% 0% 
Frowns 50% 50% 0% 0% 0% 
Other shapes 47.06% 23.08% 0.45% 0% 29.41% 
 10/26/1999 – 01/31/2000 
Smiles 25.66% 38.05% 5.31% 1.77% 29.20% 
Smirks 8.18% 53.82% 10.18% 1.45% 26.36% 
Reverse Smirks 4.35% 59.78% 15.22% 2.17% 18.48% 
Frowns 5.56% 38.89% 5.56% 0% 50% 
Other shapes 13.13% 42.09% 4.71% 2.02% 38.05% 
 Arbitrage-free data set (67,962 observations) 
Smiles 36.07% 33.50% 1.54% 1.16% 27.73% 
Smirks 18.39% 51.20% 4.55% 0.70% 25.16% 
Reverse Smirks 10.00% 56.15% 6.92% 1.54% 25.38% 
Frowns 19.44% 50.00% 8.33% 0% 22.22% 
Other shapes 24.05% 39.22% 3.20% 1.14% 32.40% 

 
 



43 

Table XIV 
Descriptive Statistics for the Reduced, Balanced Panel Data Set Used  

in FGLS Estimation 
The table reports means, medians, standard deviations (along with the total number of cross-sectional 
observations) of implied volatility for the two balanced panels built by reduction of the original data sets (lower-
bound violations and arbitrage violations-free, respectively) in Section 5. The reduction is applied by extracting 
information on Black-Scholes IVs and contract features for 20 classes defined along the mutually exclusive 
dimensions of moneyness   {DOTM, OTM, ATM, ITM, DITM}  and time-to-expiration   {very short, 
short, medium, long}. The relevant definitions of the categories of option contracts can be found in Section 2. 
 

Panel A   panel derived from lower bound violation-free data (21,589 obs.) 
 Very short Short Medium Long 

DOTM 

0.4204 
0.3683 
0.2051 
(222) 

0.2363 
0.2263 
0.0502 
(1,020) 

0.2257 
0.2172 
0.0438 
(822) 

0.2125 
0.2068 
0.0244 
(163) 

OTM 

0.3020 
0.2751 
0.1291 
(615) 

0.2380 
0.2195 
0.0846 
(1,890) 

0.2283 
0.2187 
0.0480 
(1,993) 

0.2156 
0.2086 
0.0286 
(536) 

ATM 

0.2507 
0.2503 
0.0554 
(805) 

0.2390 
0.2332 
0.0420 
(2,102) 

0.2421 
0.2378 
0.0420 
(2,373) 

0.2285 
0.2205 
0.0332 
(698) 

ITM 

0.2968 
0.2887 
0.0753 
(675) 

0.2660 
0.2459 
0.1070 
(1,802) 

0.2542 
0.2556 
0.0499 
(1,999) 

0.2469 
0.2396 
0.0343 
(600) 

DITM 

0.4046 
0.3768 
0.1372 
(489) 

0.3096 
0.2620 
0.2126 
(935) 

0.2648 
0.2566 
0.0839 
(1,274) 

0.2528 
0.2437 
0.0464 
(288) 

Panel B   panel derived from lower bound violation-free data (21,165 obs.) 
 Very short Short Medium Long 

DOTM 

0.4157 
0.3659 
0.2075 
(216) 

0.2346 
0.2260 
0.0473 
(1,020) 

0.2234 
0.2151 
0.0244 
(822) 

0.2131 
0.2078 
0.0244 
(163) 

OTM 

0.2929 
0.2769 
0.0971 
(615) 

0.2265 
0.2180 
0.0406 
(1,843) 

0.2251 
0.2176 
0.0406 
(1,986) 

0.2162 
0.2068 
0.0271 
(536) 

ATM 

0.2514 
0.2453 
0.0585 
(804) 

0.2386 
0.2378 
0.0419 
(2,068) 

0.2405 
0.2378 
0.0406 
(2,372) 

0.2328 
0.2245 
0.0323 
(720) 

ITM 

0.3010 
0.2862 
0.0873 
(623) 

0.2489 
0.2424 
0.0436 
(1,764) 

0.2533 
0.2550 
0.0450 
(1,999) 

0.2467 
0.2391 
0.0346 
(600) 

DITM 

0.4263 
0.3858 
0.1662 
(447) 

0.2717 
0.2610 
0.0624 
(905) 

0.2568 
0.2587 
0.0460 
(1,274) 

0.2563 
0.2466 
0.0482 
(288) 
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Table XV 
Informational Content of MIBO30 Implied Volatility – Regression Tests for Classes of 

Moneyness and Time-to-Maturity (FGLS) 
The table reports the FGLS estimates of the coefficients α and β in the regression tests of forecast rationality: 

σ*(t, τ) = α + β IV(zt, t, τ) + u(zt, t, τ), 
where σ*(t, τ) is the annualized standard deviation of MIB30 (infra-daily) log- returns, and u(zt, t, τ) is a white-
noise residual. * indicates that a coefficient is significant at 5%, while ** means significant at 1%.The two panels 
report results for the two balanced panels built by reduction of the original data sets (lower-bound violations and 
arbitrage violations-free) in Section 5. When the IVs represent rational forecasts of future volatility, α = 0 and β = 
1. 
 

Panel A   panel derived from lower bound violation-free data (21,589 obs.) 
 Very short Short Medium Long 

FGLSα̂  
FGLSβ̂  
R2 DOTM 

Numb. Obs. 

  0.2000** 
-0.0060 
0.0137 
(210) 

 0.1610** 
0.0024 
0.0007 
(976) 

 0.1538** 
-0.0040** 
0.0245 
(720) 

  0.1720** 
-0.0002 
0.0000 
(147) 

FGLSα̂  
FGLSβ̂  
R2 OTM 

Numb. Obs. 

0.3800* 
-0.0039* 
0.0095 
(594) 

  0.1556** 
-0.0000 
0.0000 
(1,768) 

  0.2680* 
-0.0005 
0.0005 
(1,747) 

  0.7700** 
0.0008 
0.0056 
(445) 

FGLSα̂  
FGLSβ̂  
R2 ATM 

Numb. Obs. 

  0.1607** 
-0.0020 
0.0001 
(794) 

 0.1667** 
0.0100** 
0.0059 
(1,999) 

  0.1900** 
-0.0012* 
0.0022 
(2,052) 

 0.2000** 
-0.0026* 
0.0133 
(491) 

FGLSα̂  
FGLSβ̂  
R2 ITM 

Numb. Obs. 

  0.1593** 
-0.0043 
0.0045 
(660) 

 0.2070** 
-0.0026* 
0.0030 
(1,682) 

  0.1860** 
0.0002 
0.0002 
(1,742) 

  0.1840** 
0.0015 
0.0001 
(472) 

FGLSα̂  
FGLSβ̂  
R2 DITM 

Numb. Obs. 

  0.1778** 
-0.0002 
0.0001 
(458) 

 0.2190** 
-0.0055** 
0.0139 
(865) 

 0.9540** 
-0.0019** 
0.0120 
(1,109) 

  0.1930** 
-0.0035 
0.0044 
(186) 

Panel B   panel derived from arbitrage-free data (21,165obs.) 
 Very short Short Medium Long 

FGLSα̂  
FGLSβ̂  
R2 DOTM 

Numb. Obs. 

  0.1969** 
-0.0086* 
0.0297 
(201)♣ 

 0.1610** 
0.0076* 
0.0041 
(976) 

  0.1500** 
-0.0003 
0.0001 
(720) 

  0.1552** 
-0.0005 
0.0001 
(147) 

FGLSα̂  
FGLSβ̂  
R2 OTM 

Numb. Obs. 

0.2330 
-0.0010 
0.0005 
(594) 

  0.1584** 
0.0114* 
0.0056 
(1,722) 

  0.2777* 
-0.0000 
0.0000 
(1,726) 

  0.7720** 
0.0007 
0.0043 
(445) 

FGLSα̂  
FGLSβ̂  
R2 ATM 

Numb. Obs. 

  0.1600** 
-0.0034** 
0.0006 
(792) 

 0.1679** 
-0.0004 
0.0001 
(1,950) 

  0.3360** 
-0.0012 
0.0022 
(2,017) 

  0.1828** 
-0.0018 
0.0007 
(573) 

FGLSα̂  
FGLSβ̂  
R2 ITM 

Numb. Obs. 

 0.1647** 
-0.0078** 
0.0181 
(580) 

 0.1711** 
0.0029 
0.0008 
(1,628) 

  0.1917** 
0.0008 
0.0013 
(1,722) 

  0.1843** 
0.0015 
0.0002 
(467) 

FGLSα̂  
FGLSβ̂  
R2 DITM 

Numb. Obs. 

 0.2138** 
-0.0027* 
0.0148 
(405) 

 0.1820** 
-0.0073 
0.0092 
(824) 

  0.3710** 
0.0006 
0.0021 
(1,071) 

 0.1920** 
-0.0037 
0.0040 
(186) 
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Table XVI 
Informational Content of MIBO30 Implied Volatility – Forecasting and Encompassing 

Regression Tests for Classes of Moneyness and Time-to-Maturity (GMM). 
Original Data (Purged of Violations of the Lower Bound Condition) 

The table reports the GMM estimates of the coefficients α, β, and γ in the regression tests of forecast rationality: 
σ*(t, τ) = α + β IV(zt, t, τ) + u(zt, t, τ)  and 

σ*(t, τ) = α + β IV(zt, t, τ) + γ xt + u(zt, t, τ) 
where σ*(t, τ) is the annualized standard deviation of MIB30 (infra-daily) log- returns, and u(zt, t, τ) is a white-
noise residual. xt corresponds to either the rolling window standard deviation of (infra-daily) MIB30 returns over 
the 30 days preceding t, or the lagged value if IV. * indicates that a coefficient is significant at 5%, while ** means 
significant at 1%. In the case of encompassing regressions we only report the estimate of γ for the two definitions 
of xt. When the IVs represent rational forecasts of future volatility, α = 0 and β = 1. In encompassing regressions, 
α = γ= 0 and β = 1. 
 
 

 Very short Short Medium Long All maturities 
GMMα̂  0.1192 
GMMβ̂   0.2562** 

R2 0.1003 
Numb. Obs. (367) 

GMMγ̂ xt = RW vol. 

0.1868 
-0.0143 
0.0060 
(688) 

-1.0621** 

0.1050 
 0.2561* 
0.1320 
(2,567) 
-0.1839* 

0.1246 
0.1231 
0.0781 
(2,685) 

 0.2043** -1.1331** 

0.1395 
0.0907 
0.0773 
(6,307) 
0.0653 

DOTM 

GMMγ̂ xt = IVt-1. -0.0101  0.1755* 0.0891 0.1663** 0.0383 
GMMα̂  0.1224 
GMMβ̂   0.2206* 

R2 0.0561 
Numb. Obs. (1,335) 

GMMγ̂ xt = RW vol. 

0.1571 
0.0183 
0.0038 
(2,006) 

-0.3080** 

0.1322 
0.1217 
0.0711 
(6,362) 
-0.1861 

  0.1693 
-0.0414 
 0.0064 
(5,322) 
-0.2519* -1.0194** 

0.1467 
0.0590 
0.0137 

(15,025) 
-0.1985 

OTM 

GMMγ̂ xt = IVt-1. 0.0132  0.0594* -0.0242 0.1354 0.0410 
GMMα̂  0.0971 
GMMβ̂   0.2992** 

R2 0.0660 
Numb. Obs. (2,590) 

GMMγ̂ xt = RW vol. 

0.1005 
 0.2230* 
0.1516 
(5,210) 
-0.1307 

0.1292 
0.1357 
0.0467 

(10,399) 
-0.1433 

  0.2014 
-0.1638 
  0.0848 
(10,419) 
 -0.2845*  -1.1863** 

0.1408 
0.0846 
0.0104 

(28,618) 
-0.2796* 

ATM 

GMMγ̂ xt = IVt-1. 0.1362 0.0894 -0.1072 0.1953 0.0529 
GMMα̂  0.1116 
GMMβ̂  0.2312** 

R2 0.0470 
Numb. Obs. (1,447) 

GMMγ̂ xt = RW vol. 

0.1332 
0.0698 
0.0589 
(2,183) 

 0.2034** 

0.1541 
0.0317 
0.0143 
(5,801) 
0.0199 

 0.2048 
-0.1643* 
0.1349 
(5,741) 

-0.3555** -1.2281** 

 0.1740 
-0.0505 
 0.0066 
(15,172) 
-0.1569 

ITM 

GMMγ̂ xt = IVt-1. 0.0495 0.0140 -0.1097 0.1605* -0.0167 
GMMα̂  0.1336 
GMMβ̂  0.0544* 

R2 0.0200 
Numb. Obs. (558) 

GMMγ̂ xt = RW vol. 

0.1457 
0.0155 
0.0088 
(1,041) 

 0.3547** 

0.1722 
0.0165 
0.0068 
(3,119) 
-0.3296* 

 0.1890 
-0.0742 
0.0977 
(3,689) 

-0.2239** -1.3585** 

 0.1796 
-0.0340 
0.0138 
(8,407) 
-0.1870* 

DITM 

GMMγ̂ xt = IVt-1. 0.0119 0.0037 -0.0379 0.0282 -0.0154 
GMMα̂  0.1438 
GMMβ̂  0.1000 

R2 0.0136 
Numb. Obs. (6,297) 

GMMγ̂ xt = RW vol. 

 0.1423 
 0.0435 
 0.0264 
(11,128) 
-0.0481 

 0.1062 
 0.2394 
 0.0771 
(28,248) 
-0.1382 

 0.1882 
-0.1113 
 0.0298 
(27,856) 
-0.2874 -1.1610** 

0.1508 
0.0351 
0.0055 

(73,529) 
-0.1747 

All levels 
of 

moneyness 

GMMγ̂ xt = IVt-1.  0.0348 0.1617 -0.0737 -0.0720 0.0236 
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Table XVII 
Informational Content of MIBO30 Implied Volatility – Forecasting and Encompassing 

Regression Tests for Classes of Moneyness and Time-to-Maturity (GMM). 
Arbitrage-Free Data. 

The table reports the GMM estimates of the coefficients α, β, and γ in the regression tests of forecast rationality: 
σ*(t, τ) = α + β IV(zt, t, τ) + u(zt, t, τ)  and 

σ*(t, τ) = α + β IV(zt, t, τ) + γ xt + u(zt, t, τ) 
where σ*(t, τ) is the annualized standard deviation of MIB30 (infra-daily) log- returns, and u(zt, t, τ) is a white-
noise residual. xt corresponds to either the rolling window standard deviation of (infra-daily) MIB30 returns over 
the 30 days preceding t, or the lagged value if IV. * indicates that a coefficient is significant at 5%, while ** means 
significant at 1%. In the case of encompassing regressions we only report the estimate of γ for the two definitions 
of xt. When the IVs represent rational forecasts of future volatility, α = 0 and β = 1. In encompassing regressions, 
α = γ= 0 and β = 1. ♣  indicates that a slope coefficient is not significantly different from 1 at 5%. 
 
 

 Very short Short Medium Long All maturities 
GMMα̂  0.1221 
GMMβ̂   0.2485** 

R2 0.0860 
Numb. Obs. (363) 

GMMγ̂ xt = RW vol. 

0.1737 
0.0016 
0.0001 
(463) 

-0.8217** 

0.0709 
 0.4079** 
0.2967 
(2,507) 

 0.2860** 

0.1182 
0.1522 
0.0948 
(2,550) 

 0.2051** -1.1238** 

0.1326 
0.1249 
0.1067 
(5,883) 

 0.3685** 

DOTM 

GMMγ̂ xt = IVt-1. 0.0008  0.2510* 0.1052 0.1531 0.0632 
GMMα̂   0.1856 
GMMβ̂  -0.0269 

R2 0.0003 
Numb. Obs. (1,274) 

GMMγ̂ xt = RW vol. 

0.1458 
0.0474 
0.0175 
(1,580) 
-0.0015 

0.0461 
0.5168 
0.3774 
(6,182) 
 0.2344* 

  0.1761 
-0.0515 
 0.0054 
(5,012) 

 -0.2107*   -1.2297** 

0.1275 
0.1580 
0.0600 

(14,048) 
0.1569 

OTM 

GMMγ̂ xt = IVt-1. 0.0359  0.2870* -0.0344 -0.0204 0.1071 
GMMα̂  0.3269 
GMMβ̂   -0.6441** 

R2 0.0938 
Numb. Obs. (2,572) 

GMMγ̂ xt = RW vol. 

0.0799 
 0.3076** 
0.2721 
(3,642) 
 0.1620* 

0.0346 
0.5587* 
0.2971 

(10,114) 
0.1912 

  0.1962 
-0.1026 
  0.0108 
 (9,760) 
-0.1293  -1.6943** 

0.1093 
0.2567 
0.0686 

(26,088) 
0.0370 

ATM 

GMMγ̂ xt = IVt-1. 0.1784 0.2899 -0.0635 -0.4245* 0.1552 
GMMα̂  0.3565 
GMMβ̂  -0.7103** 

R2 0.1555 
Numb. Obs. (1,385) 

GMMγ̂ xt = RW vol. 
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DITM 

GMMγ̂ xt = IVt-1. 0.0124 0.3156 0.1003 -0.3712** 0.0485 
GMMα̂  0.2542 
GMMβ̂  -0.3101 

R2 0.0404 
Numb. Obs. (6,140) 

GMMγ̂ xt = RW vol. 
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Figure 1 
Plots of the High-Frequency Time Series of the Interest Rate and of the MIB30 Index 

The upper panel plots the (risk-free) interest rate over the period April 6, 1999 – January 31, 2000. The interest 
rate is calculated as the average of the bid and ask of the three months LIBOR rate. The bottom panel plots the 
MIB30 index over the same time period (in index points, each valued 2.5 Euros). In both plots financial prices are 
sampled throughout the day at regular intervals of 30 minutes, between 9 a.m. and 6 p.m.. 
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Figure 2 
Empirical Distribution of Arbitrage Profits on the MIBO30 Market 

The first two graphs plot the cumulative empirical distribution of arbitrage profits resulting from the violation of a 
few of the no-arbitrage conditions listed in the main text. For clarity, values exceeding 1,500 MIB30 index points 
have been omitted. The bottom panel (C) reports the empirical density and distribution function of the maximum 
arbitrage profits across the different conditions. Arbitrage profits are expressed in MIB30 index points. 
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Figure 3 
Empirical Distribution of Percentage Arbitrage Profits on the MIBO30 Market 

The graphs plot the cumulative, empirical distribution of arbitrage profits resulting from the violation of a few of 
the no-arbitrage conditions listed in the main text as a ratio of the value of the option contract(s) causing the 
violation (or to which the violation has been imputed). For clarity, values in excess of 200% have been omitted. 
Panel B refers to the maximum arbitrage profit across the different conditions.  
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Figure 4 
Monthly Variation of the Percentage Incidence of Arbitrage Violations on  

the MIBO30 Market 
The graph plots the percentage of the sample observations on MIBO30 option prices in each month between 
April 1999 and January 2000 displaying arbitrage violations of any type analyzed in Section 3 of the main text. The 
dotted, straight line represents the average over the entire sample. 
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Figure 5 
Percentage Incidence of Arbitrage Violations As a Function of Alternative Levels of  

the Bid/Ask Spread. 
The graphs plot the changes in the percentage of the data displaying violations of the basic no-arbitrage 
conditions derived in Section 4 as a function of the (half-) size of the bid/ask spreads α and β characterizing the 
MIBO30 (options) and the MIB30 index (the underlying) markets, respectively. These scenario simulations set 
γ=0 and also impose the restriction α = β. Different plots report on different no-arbitrage conditions. 
 

Percentage Ratio of Arbitrage Violations 
as a Function of the Bid/Ask Spread

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10
(Half) bid/ask spread

% Strike Monotone

Reverse Monotone
Lower bound

Maturity short

 
 

Percentage Ratio of Arbitrage Violations as a 
Function of the Bid/Ask Spread

0

5

10

15

20

25

30

0 1 2 3 4
(Half) bid/ask spread

%

Parity short

Parity long

 
Percentage Ratio of Arbitrage Violations 

as a Function of the Bid/Ask Spread

0

10

20

30

40

50

60

0 2 4 6 8 10
(Half) bid/ask spread

Av
er

ag
e 

pr
of

it 
ra

te

Maturity long

Overall

Box long
Box short

 



 52

Figure 6 
Average Arbitrage Profit Rates as a Function of Alternative Levels  

of the Bid/Ask Spread. 
The graphs plot the changes in the average profit rates obtained by exploiting the presence of violations of the 
basic no-arbitrage conditions derived in Section 4 as a function of the (half-) size of the bid/ask spreads α and β 
characterizing the MIBO30 (options) and the MIB30 index (the underlying) markets, respectively. These scenario 
simulations set γ=0 and also impose the restriction α = β. Different plots report on different no-arbitrage 
conditions. 
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Figure 7 
Implied Volatility as a Function of Moneyness 

The graphs plot medians and averages of IVs of MIBO30 options for 21 mutually exclusive intervals of 
moneyness (from 0.89 to 1.1). The reference period is the full sample 04/06/1999 – 01/12/2000 in the top panel 
and three alternative sub-periods (04/06/1999 - 07/15/1999, 07/15/1999 - 10/25/1999, and 10/26/1999 - 
01/31/2000) in the bottom panel (in this case only average IVs are reported). 
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Figure 8 
Implied Volatility as a Function of Moneyness on April 16, 1999 

The graphs plot implied volatilities as a function of moneyness when sampled at four different times on April 16, 
1999. All the contracts considered expired in May 1999 (short-term options). The plots should be read clockwise, 
illustrating a sudden change of the IV surface (stable between 11:49 am and 12:19 pm) between 12:19 pm and 
12:49 pm. The right panel at the bottom shows the IV curve at the end of the day, at market close. 
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Figure 9 
Implied Volatility as a Function of Maturity on September 7, 1999 

The graphs plot implied volatilities as a function of time to maturity when sampled at six different times on 
September 7, 1999. The contracts considered are the closest-at-the-money that were traded at the particular time 
of the day indicated in the graphs. The plots should be read clockwise, illustrating a sudden change of the IV 
surface (stable during the morning of the same day) between 1:05 pm and 2:35 pm and again between 2:35 pm 
and 3:35 pm. The last panel at the right- bottom shows the IV curve at the end of the day, at market close. 
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