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Abstract

Certain interneurons contain large concentrations of specific Ca2+-binding 

proteins (CBP) but consequences on presynaptic Ca2+ signaling are poorly understood. 

Here we show that expression of the slow CBP parvalbumin (PV) in cerebellar 

interneurons is cell-specific and developmentally regulated, leading to characteristic 

changes in presynaptic Ca2+ dynamics (Cai). Using whole-cell recording and 

fluorescence imaging, we studied action potential evoked Cai transients in axons of 

GABA-releasing interneurons from mouse cerebellum. At early developmental stages 

(PN10-12), decay kinetics were significantly faster for basket than for stellate cells, 

whereas at PN19-21 both interneurons displayed fast decay kinetics. Biochemical and 

immunocytochemical analysis showed parallel changes in the expression levels and 

cellular distribution of PV. By comparing wild-type and PV(-/-) mice, PV was shown to 

accelerate the initial decay of action potential-evoked Cai signals in single varicosities, 

and to introduce an additional slow phase which summates during bursts of action 

potentials. The fast initial Cai decay accounts for an earlier report that PV elimination 

favors synaptic facilitation. The slow decay component is responsible for a pronounced, 

PV-dependent, delayed transmitter release which we describe here at interneuron-

interneuron synapses following presynaptic bursts of action potentials. Numerical 

simulations account for the effect of PV on Cai kinetics, allow estimates for the axonal PV 

concentration (150 μM) and predict the time course of volume-averaged Cai in the 

absence of exogenous buffer. Overall, PV arises as a major contributor to presynaptic Cai
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signals and synaptic  integration in the cerebellar cortex. 

In small mammalian synaptic terminals, Ca2+ concentration gradients subside 

on a time scale of the order of 1 ms, after which the Ca2+ concentration may be 

considered homogeneous (review: Meinrenken et al., 2003), as predicted from early work 

on squid axon (Simon and Llinas, 1985; Llinas et al., 1992). Therefore, volume-averaged 

Ca2+ measurements on single terminals give valuable recordings of the Ca2+

concentration intervening > 1 ms after action potential-induced Ca2+entry. This signal is 

called "[ Ca2+]volumeavg" by Meinrenken et al. (2003), and is designated as Cai hereafter for 

simplicity. It has attracted comparatively little attention, probably because it is not 

directly related to phasic neurotransmitter release. It carries however much physiological 

significance. The elevated Cai that follows one or several action potentials contributes to 

setting the duration of the after spike hyperpolarization and hence the maximum firing 

frequency of the presynaptic terminal (review: Rudy et al., 1999). It is responsible for 

delayed transmitter release and facilitation (Goda and Stevens, 1994; Atluri and Regehr, 

1998; Felmy et al., 2003; reviews: Van der Kloot and Molgo, 1993; Zucker and Regehr, 

2002), and it may influence the kinetics of vesicle recycling (e.g., Smith et al., 1998; 

Burrone et al., 2002).  

Measurements of Cai are affected by the presence of the Ca2+ probe, which acts 

as a buffer, as well as by the concentration and binding properties of endogenous buffers 

(review: Neher, 1998). Certain neurons are known to possess large concentrations of 

specific Ca2+ binding proteins (CBPs) such as calbindin D-28k (CB), calretinin (CR) or 

parvalbumin (PV), but the consequences of having one rather than the other on 
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presynaptic Cai dynamics are unknown. Effects of CBPs on synaptic transmission are 

just starting to be considered (Edmonds et al., 2000; Blatow et al., 2003; reviewed by 

Schwaller et al., 2002). 

PV is a particularly interesting case. Because the two EF-hand domains of PV 

have a high affinity for Mg2+, it has a slow apparent binding rate with Ca2+ (Lee et al., 

2000). Moreover, PV displays a rather slow dissociation rate with Ca2+. It can be 

predicted that PV should not affect much the fast Ca2+ signal responsible for phasic 

neurotransmitter release, and that it may act specifically on the slower processes 

governed by Cai. It was shown that at basket cell-Purkinje cell synapses, which contain 

PV presynaptically (Celio, 1986; Meyer et al., 2002), elimination of PV converts a 

depressing synapse into a facilitating one and it was suggested that PV reduces paired 

pulse facilitation by altering presynaptic Cai kinetics (Caillard et al., 2000). We have 

tested this prediction in the present work by comparing the time course of action 

potential-evoked Cai transients in single basket and stellate cell terminals under different

conditions. We found characteristic biphasic decay kinetics associated with the presence 

of this CBP, which explain not only the previously found effect of PV deletion on 

facilitation, but also a newly uncovered effect of PV elimination on delayed transmitter 

release.

Materials and Methods

Preparation and solutions

Sagittal cerebellar slices (180 μm thick) were prepared as previously described 

(Llano et al., 1991) following decapitation after cervical dislocation, from  wild-type (C57 

Black 6 strain; called hereon WT) and PV(-/-) mice, raised on the same C57 background. 
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Two different age groups were studied: PN10-12 : 10 to 12 days postnatal and PN19-21 : 

19 to 21 days postnatal. Experiments were done at 20-23°C in interneurons of the 

cerebellar molecular layer (MLIs). Recordings were obtained from two groups of cells: 

MLIs with somata located in the proximal third of the molecular layer, within 25 μm of 

the Purkinje cell layer, which were considered as basket cells, and MLIs with somata in 

the distal two thirds of the molecular layer, which were considered as stellate cells. Slices 

were perfused (1.5 ml/min) with a saline containing (in mM): 125 NaCl, 2.5 KCl, 1.25 

NaH2PO4, 26 NaHCO3, 2 CaCl2, 1 MgCl2 and 10 glucose, equilibrated with a 95% O2-

5% CO2 mixture (pH 7.3). Tight-seal whole-cell recordings (wcr) were performed with 

pipettes (5 to 8 MΩ) filled with a solution containing (in mM): 140 Kgluconate, 5.4 KCl, 

4.1 MgCl2, 9.9 HEPES-K, 0.36 Na-GTP and 3.6 Na-ATP. Oregon Green-BAPTA 1 (OG1; 

Molecular Probes, USA) was added at a concentration of either 20 or 100 μM. To 

determine the KD of OG1 for Ca2+, we performed in vitro calibration using the same 

intracellular solution (with 20 μM OG1) adjusted to Ca2+concentration values ranging 

from 0 to 1.35 μM with concentrated K2-EGTA and Ca2+-EGTA stocks from the Ca2+ 

calibration buffer concentrate kit (C-3723; Molecular Probes, USA). The estimated KD was 

170 nM.

Data collection times ranged from 8 to 35 minutes after initiation of the wcr, for 

all experimental groups studied. 

Fluorometric Cai imaging:

Fluorescence imaging was done in two different set-ups. Firstly, a digital imaging 

system from T.I.L.L. Photonics (Germany) consisting of a scanning 

monochromator (wavelength for the present study set at 488 nm) and a cooled 
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CCD camera (IMAGO QE; 1376 by 1040 pixels; pixel size: 204 nm after 63X 

magnification and 2 by 2 binning). Secondly, a home-made two-photon fast laser 

scanning system based on the design of Tan et al. (1999), with some modifications. 

Briefly, two-photon excitation was performed with a Ti-Sapphire laser (MaiTai, 

Spectra Physics, Mountain View, CA, USA) set at an excitation wavelength of 820 

nm; average power at the specimen plane was kept between 6 and 10 mW. Axonal 

sub-regions were scanned by displacing the laser beam in the x-y direction with 

two galvanometers, using scanning and signal acquisition procedures as described 

(Tan et al., 1999). The effective pixel size was set at 250 nm. The emitted light was 

focused on the active surface of a photon counting avalanche photodiode (SPCM-

AQR-13, PerkinElmer Optoelectronics, Canada) and sampled at 10 μs/point as 

detailed in Tan et al. (1999). The pseudocolor range for fluorescence images 

obtained through this detector are reported in Hz, calculated from the number of 

photons acquired during the 10 μs sampling interval. For most experiments, 

images were acquired with a dwell time of 50 to 100 ms/image in both, the digital 

imaging system and the 2-photon system. Faster frame rates (10 ms/image) were 

used in a sub-set of experiments carried out to determine the rise time of Cai

transients. Both systems used upright Zeiss microscopes equipped with a 63X 

water immersion lens (numerical aperture: 0.9). 

To induce axonal Cai rises, trains of action potentials (APs; 2 or 4 APs at 20 ms 

intervals) were produced by depolarizing the cell for 3 ms to 0 mV from a holding value 

of -70 mV (Tan and Llano, 1999). Analysis was performed by calculating the average 

fluorescence in "regions of interest" (ROI) as a function of time. The size of the ROIs was 

chosen as to just enclose the entire bouton and ranged from 1.5 to 4.5 μm2. Values are 
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expressed as the percentage change in fluorescence with respect to control, ΔF/Fo = 

100*(F-Fo)/(Fo-B), where F is the measured fluorescence signal at any given time, Fo the 

average from the pre-stimulus period, and B the average value, at each time point, of the 

background fluorescence from 4 regions of the imaged field which do not contain any 

part of the dye-filled cell.

Collection and statistical analysis of ROIs kinetic data

In each experiment, an axonal zone containing several hot spots was examined. 

Data were typically collected from 2 to 6 ROIs in each zone. The signal-to-noise ratio for 

individual ROIs was often improved by averaging over 2 to 4 trials, spaced at 1 minute 

intervals. The resulting average ΔF/Fo signal as a function of time was then fitted by 

single and double exponential functions. The fit was considered biexponential if both of 

the following criteria applied: (i) the ratio of the 2 time constants (fast time constant :τf; 

slow time constant: τs) was > 3 and, (ii) the amplitude coefficients for the slow time 

constant (As) and for the fast time constant (Af) were such that As/(As+Af) fell between 

0.15 and 0.85. Peak ΔF/Fo amplitudes were calculated as the sum of the two amplitude 

coefficients for ROIs described by a double exponential decay. If one of the above criteria 

(or both of them) was not fulfilled, the kinetics were considered monoexponential, and 

the peak ΔF/Fo amplitude was the amplitude coefficient of the single exponential fit. 

After fitting the Cai decay, amplitude and kinetic parameters were averaged over the 

various ROIs belonging to one cell. Finally, results from different cells were pooled 

together to yield the mean values reported. Statistical variations in the text always refer 

to cell-to-cell variations; values of n refer to the number of cells, not of ROIs. These values 

are given as mean±s.e.m. To assess the statistical significance of                 

decay time between different experimental conditions, an ANOVA test was performed in 
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order to control for multiple comparisons. Student's t-tests  were used to identify 

significant differences among pairs; p values < 0.05 were considered significant.

Formulation of the functional equation system:

Each reaction depicted in Table 1 was described by two differential equations according 

to the law of mass action. In the present simulations, the Runge-Kutta of the fifth order 

method was used to solve the differential equations. Numerical simulations were 

performed with routines written in the IGOR Pro environment (Wavemetrix, OG, USA). 

To simulate a 4 AP stimulation, 4 successive instantaneous Ca2+ increases were 

introduced in the model, at 20 ms intervals. The magnitude of the Ca2+ load was 

adjusted at 11 μM/AP to approach the experimentally measured peak ΔF/Fo of PV(-/-) 

data, and then kept constant. A similar value of 12 μM/AP was found in the calyx of 

Held by Helmchen et al., 1997. Altering the Ca2+ load in the range 6 to 15 μM did not 

change appreciably the kinetics of the simulated decay (not shown). 

Exchange out and into the compartment under consideration:

The single compartment under study (varicosity) exchanges Ca2+ with other cell 

compartments, as well as with the extracellular medium, using various processes 

operating on a time scale of tens of ms to seconds. As a first approximation, extrusion 

processes can be represented collectively by a Ca2+ flux that is proportional to the 

difference between the equilibrium Cai value (taken as 40 nM) and the current Cai value 

(Lee et al., 2000). This can be modeled by the simple kinetic reaction: 

k1

Ca → Ca
←

k-1 
Here Ca on the left side of the reaction represents intracellular Ca2+, and Ca on the right 
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side of the reaction represents extracellular Ca2+. This scheme translates into 

d[Ca]i/dt = - k1[Ca]i + k-1[Ca]e

where [Ca]i and [Ca]e represent respectively the intracellular and extracellular Ca2+

concentrations and k1 and k-1 represent the rate constants of Ca2+ extrusion and influx. 

[Ca]e is constant at a value of 2 mM. Note that k1 corresponds to the extrusion rate γ of 

Lee et al. (2000). In the simulations k1 was first determined on the basis of decay kinetics. 

k-1 was then calculated as =k1/50000, such that the equilibrium value of Cai remained at 

40 nM. Simulations are displayed in terms of ΔF/Fo for comparison with experimental 

results. 

Diffusion equilibration :

MLI axons display a succession of "hot spots", where voltage-gated Ca2+ entry 

occurs, and passive regions. Hot spots correspond mainly to varicosities and are spaced 

approximately 5 μm apart (Forti et al., 2000). The time course of equilibration between 

dendritic spines and dendritic shaft in CA1 pyramidal cells was measured as 140 ms 

(Majewska et al., 2000), close to the value of τf in the present study. Since dendritic spines 

have roughly the same size as varicosities, it seemed possible that the fast component of 

decay could be contaminated by diffusion equilibration. If this were the case however, 

one would have expected to observe a fast component both in the WT and in the PV(-/-) 

strains, whereas in the latter case, the percentage of cells showing the fast component 

was significantly reduced. Thus the fast component of biexponential decays is not 

primarily due to diffusion. Nevertheless, it appeared possible that diffusion out of the 

varicosities could have distorted the results, particularly in the younger age group, since 

it has been shown that the separation between varicosities and linking axon segments 
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becomes more apparent with age (Forti et al., 2000; compare in the present work Fig. 

1A1-B2 and 1C1-C2). To address this issue, we compared the analysis of the decay 

kinetics of the signal performed on small ROIs, as illustrated in Fig. 1, and on one very 

large ROI encompassing the entire frame (and hence, including several calcium hot spots 

and intervening "cold" axon). This analysis was performed on basket cell signals from 

PN10-12 WT mice. It was found that the decay required a biexponential fit 

independently of whether small or large ROIs were used, confirming that exit from the 

hot spots is not the main reason for biexponential decay time courses. Furthermore, 

quantitative differences between the results of the two analyses were modest. The largest 

difference concerned τf which was 25% larger with the large ROI than with the small 

ones (respective means, 0.23±0.02 s and 0.18±0.01 s); however, even this difference did 

not reach statistical significance at the P<0.05 confidence level. These results indicate that 

errors linked to the diffusion out of the varicosities are small, and justify our treatment 

with a one-compartment model.

Recording and analysis of IPSCs:

 MLIs were maintained under voltage-clamp in the whole-cell recording 

configuration at a holding potential of –70 mV. The intracellular solution contained (in 

mM): 150 KCl, 2.4 MgCl2, 10 HEPES-K, 1 mM EGTA-K, 0.4 Na-GTP, 2.4 Na-ATP (pH 

7.3). Series resistance values ranged from 15 to 25 MΩ and were compensated for by 60%. 

Currents were filtered at 1.3 kHz and sampled at a rate of 250 μs/point. DL-2-amino-5-

phosphonopentanoic acid (APV) and 6,7-Dinitroquinoxaline-2,3-dione (DNQX), 

antagonists of ionotropic glutamate receptors, were included in the bath solution at 

concentrations of 50 and 5 μM respectively. Extracellular stimulation of pre-synaptic 

axons was performed by applying voltage pulses (100 to 200 μs duration; 40 to 70 V 
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amplitude) between a reference platinum electrode and a pipette filled with a solution 

containing (in mM): 145 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES; input resistance of 2 

to 3 MΩ). This pipette was displaced in the molecular layer until a stable synaptic 

response was evoked. The standard experimental protocol consisted of acquiring 1 sec of 

baseline currents followed by the application of a 50 Hz train of 10 stimulus. This 

protocol was repeated 10 to 20 times, at 10 to 20 s intervals. Detection and analysis of 

IPSCs were performed off-line with routines written in the IGOR-Pro programming 

environment. Results are reported in terms of the frequency of synaptic events as a 

function of time, relative to the pre-stimulus period. 

Immunocytochemistry:

Immunocytochemistry was performed on C57 Black 6 mice from PN10 to PN38. 

Animals were anesthetized by an intraperitoneal injection of 150 μl Pentobarbital (Sanofi) 

diluted 5x in a 0.9 % NaCl solution and transcardialy perfused with a cold (5-6°C) 0.9 % 

NaCl solution, followed by a cold fixative solution consisting of 4 % paraformaldehyde, 

0.2 % glutaraldehyde and 0.2 % picric acid in 0.15 M phosphate buffer at pH 7.4. After 20 

minutes, the cerebellar vermis was removed and post-fixed overnight in the same 

fixative solution, excluding glutaraldehyde. Sagittal cerebellar slices (50 μm thick) were 

cut after 24 hours fixation in cold 0.15 M phosphate buffer with a vibratome (VT 1000S, 

Leica, Germany). All incubations were performed under continuous agitation at room 

temperature in 24-well culture plates. The sections were thoroughly washed in PBS 

(Phosphate buffer 0.03 M with 0.9 % NaCl), then incubated 2 hours in PBS containing 0.2 

% Triton for permeabilization; PBST) and 2 % bovine serum albumin (BSA, Sigma A 

2153). Sections were incubated overnight with one or two of the following pairs of 

antibodies, prepared in PBST: (i) a polyclonal rabbit anti-parvalbumin (SWant PV-28, 
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1/1000) and a monoclonal mouse anti-calbindin D 28-K (SWant 300, 1/1000), (ii) a 

polyclonal rabbit anti-calbindin (SWant CB-38, 1/1000) and a monoclonal mouse anti-

GABA (SWant 3A12, 1/1000). After several washes with PBST, slices were incubated in 

the dark for 2 hours in one of the following pairs of secondary antibodies, both prepared 

in PBST: (i) fluorescein anti-rabbit IgG (Vector FI-1000, 1/200) and Texas-red anti-mouse 

IgG (Vector TI-2000, 1/200), (ii) CY3 anti-rabbit IgG (Jackson Immunoresearch 111-165-

144, 1/300) and Alexa 488 anti-mouse IgG (Molecular Probes A-11001, 1/300). After 

several washes with PBS, slices were mounted on glass slides in Prolong Anti-fade kit 

mounting medium (Molecular Probes P 7481). 

A first control consisted in incubations without the primary antibodies and with 

the two secondary antibodies; no specific signal was detected. The second control was to 

omit one of the two primary antibodies from the incubation medium maintaining the 

two secondary antibodies. The signal was positive for the primary antibody which 

remained and had the same pattern as  that observed in double immunostaining. 

Confocal images were acquired with a Zeiss LSM 510 confocal microscope 

equipped with two lasers, Argon multiray (used at 488 nm) and Helium (543 nm). 

Sections were analyzed using a 40X oil-immersion objective with a numerical aperture of 

1.3. The pin hole aperture and the laser power were respectively 74 μm and 8 % for the 

Argon laser, 65 μm and 30 % for the Helium laser. 

Biochemistry:

Mice (PN5 to PN25 and young adults; n = 3 for each age group) were deeply 

anesthetized by inhalation of CO2 and briefly perfused transcardialy by ice-cold 

phosphate-buffered saline solution (PBS). Cerebella were dissected and homogenized in 

10 mM Tris-HCl, 1 mM EDTA, pH 7.4 (containing 1 tablet of protease inhibitor cocktail 
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(Roche Diagnostics AG, Rotkreuz, Switzerland) per 10 ml of buffer, added just prior to 

use) using a Polytron homogenizer. Soluble protein fractions were prepared by 

centrifugation of homogenates at 30,000g for 30 minutes and recovering the supernatant. 

Proteins (25 μg) were separated by one-dimensional polyacrylamide gel electrophoresis 

(15%) and transferred on nitrocellulose membranes using a semi-dry transfer system 

(Bio-Rad, Laboratories, Glattbrugg, Switzerland). The membranes were controlled for 

even load and possible transfer artifacts by staining with Ponceau red solution. After 

blocking with 10% solution of nonfat milk in TBS-T buffer (TBS with addition of 0.05% of 

Tween 20), membranes were incubated with primary antibodies against PV (PV28, 1: 

1000 SWant Bellinzona, Switzerland) for 90 min. All antibodies used were dissolved in 

TBS-T solution containing 1 % of protease-free BSA. Incubation of membranes with 

primary antibodies was followed by extensive washing using TBS-T solution and 

subsequently by incubation of membranes with anti-rabbit secondary biotinylated 

antibodies (Vector Laboratories, Burlingame, CA, 1:10000). After extensive washing, 

membrane were incubated with avidin-biotin conjugated peroxidase (Vector 

Laboratories) solution in TBS-T and washed again. The bands corresponding to PV were 

visualized and quantified by the Molecular Imager (Bio-Rad) using the ECL 

chemiluminescence method (Pierce, Perbio Science SA, Lausanne, Switzerland).

Results

Decay kinetics of axonal Cai signals are different in basket cells and stellate cells at early 

developmental stages

Interneurons of the molecular layer of the cerebellum (MLIs) are traditionally 

classified as basket and stellate cells. The former neurons have cell bodies in the lower 

13



third of the molecular layer and make extensive synaptic contacts with Purkinje cell  

somata whereas the latter ones have cell bodies in the upper two thirds of the molecular 

layer and innervate preferentially Purkinje cells dendrites. The two classes of neurons are 

closely related and are sometimes considered as a continuum (Sultan and Bower, 1998). 

No functional difference has been revealed so far between them, except for the fact that 

the current evoked in Purkinje cells is larger for presynaptic basket cells than for 

presynaptic stellate cells (Vincent and Marty, 1996). However, we found that at PN10-12, 

there was a striking difference between MLIs with somata located within 25 μm of the 

Purkinje cell layer (hereon called basket cells) and MLIs whose somata were placed in the 

upper two thirds of the molecular layer (hereon called stellate cells) concerning the time 

course of decay of Cai transients. Figures 1A and B illustrate the action potential (AP)-

evoked fluorescence changes reported by OG1 (100 μM) in axons of PN10-12 MLIs. 

Fluorescence signals were collected at small hot spots which represent putative release 

sites onto Purkinje cells and onto other MLIs (Llano et al., 1997; Tan and Llano, 1999; 

Forti et al., 2000). Analysis was performed in terms of the percentage change in 

fluorescence over the baseline period (ΔF/Fo) in small regions of interest (ROIs) whose 

size was set to just encompass the entire bouton (see Methods). Following a 50 Hz train 

of 4 APs, ΔF/Fo increases of 100-150 % were measured, corresponding to over 2-fold Cai

rises. The fluorescence signals decayed back to baseline within a few seconds. The decay 

was much faster in basket cells than in stellate cells. This functional difference is 

exemplified in Figures 1A and 1B, where 2 photon fluorescence images corresponding to 

scans of axonal regions at rest and at the peak of the response to the stimulus are 

displayed, along with the time course at selected ROIs. On average, the time of decay to 

half of peak amplitude (50% decay) was 4-fold slower for stellate than for basket cells 
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(0.813±0.09 s, n= 7 cells and 0.202±0.02 s, n= 6 cells, respectively), a highly significant 

difference (Student's t-test p<0.00018; pooled data in Fig. 1D). Furthermore, whereas a 

large fraction of the stellate cell signals could be well approximated by a single 

exponential function (examples in Fig. 1A3), data for basket cells (examples in Fig. 1B3) 

were much better fitted by a double exponential (red traces) than by a single exponential 

(blue traces). Using the criteria explained in Methods, we found that decay kinetics were 

monoexponential in 49±18 % of the signals from of PN10-12 stellate cells (average τ: 

1.45±0.21 s; n=7 cells) whereas a double exponential was required to describe Cai

transients in 89±7 % of PN10-12 basket cells (τf: 0.18±0.01 s, τs: 1.86±0.48 s, As/(Af+As): 

0.29±0.06; n=5 cells). Thus the kinetic difference between stellate and basket cell signals 

involved not only a difference in overall speed, but also in the very shape of the decay. 

Age-dependent changes in the temporal dynamics of axonal Cai signals in cerebellar 

interneurons

We next explored whether Cai decay kinetics changed differentially for basket 

and stellate cells during development. To quantify the effects, two age groups were 

considered; they covered the ages PN10-12 and PN19-21. Basket cell Cai signals changed 

little between the two age groups which were examined (at PN19-21, 50% decay time : 

0.168±0.03 s; biexponential fits required for 90±10 % of the transients; τf: 0.140±0.02 s, τs: 

1.38±0.46 s, As/(Af+As): 0.33±0.05; n=5 cells). In contrast, the 50% decay time for stellate 

cells was approximately 4 times shorter at PN19-21 (0.234±0.02, n=6 cells) than at PN10-

12, a highly significant change (Student's t test comparison of PN10-12 and PN19-21 

stellate cells: p<0.0002). As a result of this remarkable change with age, at PN19-21 there 

was no significant distinction between the decay time course of the two interneuron sub-

types (see summary results for 50% decay in Fig. 1D). Furthermore, all the stellate cells in 
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the PN19-21 group had a biexponential time course (τf: 0.176±0.02 s, τs: 1.83±0.22 s, 

As/(Af+As): 0.39±0.03; n=6 cells; examples in Fig. 1C) similar to that describing the 

decay of PN10-12 and PN19-21 basket cells.

The expression of PV in the developing cerebellum

Cai kinetics are shaped by a complex interaction between extrusion mechanisms, 

exchange with intracellular Ca2+ stores (reviewed by Pozzan et al., 1994; Berridge, 1998), 

diffusion (Majewska et al., 2000) and endogenous Ca2+ buffers (Neher and Augustine, 

1992). In several systems, the contribution of these processes to the decay of Cai

transients has been inferred from the relative goodness of fit by either a mono- or a bi-

exponential function. Monophasic decays were attributed to linear Ca2+ extrusion 

mechanisms and rapid kinetics of Ca2+ buffers (Lee et al., 2000). Biphasic decay kinetics 

have been interpreted in terms of different mechanisms including non linear Ca2+

extrusion (Fierro et al., 1998), saturation of high affinity CBPs such as CB (Maeda et al., 

1999; Blatow et al., 2003), or delayed buffering by PV (Lee et al., 2000). Since MLIs 

express neither CR nor CB, but are known to be rich in PV (Kosaka et al., 1993), we next 

examined whether a correlation exists between PV expression levels and kinetics of 

presynaptic Cai transients. 

 In the cerebellar molecular layer, PV is present not only in MLIs but also in 

Purkinje cells.  The extensive dendritic arborization of Purkinje cells hinders the 

visualization of the small MLI somata when slices are stained with antibodies for PV. We 

therefore performed double stainings with antibodies for PV and CB, as shown by the 

confocal images presented in Fig. 2A. Due to the choice of secondary antibodies (see 

Methods), cells containing both CBPs (Purkinje cells) appear yellow-orange and MLIs, 
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which express only PV, appear green. At PN10 (Fig. 2A1), the distribution of PV was 

clearly heterogeneous in the molecular layer, with a much lower staining in the outer 

part, corresponding to stellate cells, than in the inner part, corresponding to basket cells 

(see below). These data suggest that the difference between the decay kinetics of basket 

and stellate cells observed at this age is directly determined by the level of PV 

expression: the low PV-expressing stellate cells have a decay that is primarily determined 

by clearance of Ca2+, and which is therefore monoexponential according to the 

predictions of the simple "one compartment model" (Neher, 1998), whereas for basket 

cells, Ca2+-binding to PV accelerates the initial part of the Cai decay, producing a 

biexponential time course.

During development, there was a marked general increase in the level of PV 

expression, as determined by quantitative Western blots from cerebellar slices (Fig. 2B). 

PV was just detectable at PN5. Between PN10 and PN20, the increase was approximately

5-fold. Counts of the number of PV-positive interneurons from PV/CB stains of slices in 

the same age window were in agreement with this developmental trend (example of 

staining at PN20 in Fig. 2A2; quantitative analysis at different ages in Fig. 2A3). 

Furthermore, the pattern of PV expression throughout the molecular layer evolved with 

age, such that at early ages most PV-positive MLIs were located close to the PC layer and

with increased age PV-positive MLIs started to appear farther into the molecular layer 

(Fig. 2A4). To quantify the density of MLIs in the two age groups studied, we performed 

double stainings with antibodies for GABA and CB. Examples of this type of stain are 

shown in Fig. 2C1 (at PN12) and Fig. 2C2 (at PN20). Here, cells containing GABA and CB 

appear red-orange (prominent staining in Purkinje cells), whereas MLIs appear green 

(GABA-positive, CB-negative). The analysis of this type of staining  showed that the 
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density of GABA-positive MLIs was not significantly different between PN12 and PN20, 

whereas the density of PV positive MLIs increases between the two developmental 

stages (Fig. 2C3). 

MLIs derive postnatally from precursors near the IVth ventricle that migrate 

through the white matter to the cerebellar cortex (Zhang and Goldman, 1996). Basket 

cells settle down first in the lower part of the molecular layer. As the depth of this layer 

increases, stellate cells gradually move in to fill more distal locations. Thus at PN10-12, 

corresponding to the final phase of the build-up of the molecular layer, basket cells have 

been occupying their location for some time, whereas stellate cells are new comers. The 

results of Fig. 2 suggest that MLIs have little PV at first, but that they acquire PV a few 

days after settling down in the molecular layer.

In addition, these results parallel the above finding that the decay time course of 

stellate cells changes much more dramatically than that of basket cells with age, and they 

account for the nature of the kinetic change, which converts a monophasic, low-PV decay 

to a biphasic, high-PV decay. Taken together, the results indicate a strong correlation 

between the level of PV expression and the degree of biphasicity of the Cai decay.

Cai signaling in axons from PV(-/-) mice

If the above reasoning and conclusions are correct, eliminating PV expression by 

genetic deletion of a functional PV gene should have little effect in stellate cells from 

PN10-12 mice, but it should convert the biphasic decay of PN10-12 basket cells and that 

of both types of interneurons at PN19-21 into a slower, monophasic decay similar to that 

measured in WT stellate cells at PN10-12. To test these predictions, decay kinetics were 

analyzed in a PV null-mutant, PV(-/-) mouse strain (Schwaller et al., 1999) and compared 

to age-matched controls. The two PN10-12 groups were differently affected by PV-
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deficiency. There was no change in kinetics for stellate cells (50% decay: 0.977±0.13 s, 

Student's t test p<0.37; monophasic decay for 50±28% of the signals, Student's t test 

p<0.97; n= 3 cells ). For basket cells, on the other hand, lack of PV led to a marked 

slowing of the decay (50% decay: 0.618±0.02, Student's t test p<0.00002), which was 

described by a single exponential in 83±16% of the signals (Student's t test p<0.002; n=3 

cells). A representative example of the AP-evoked Cai transients obtained in axonal 

varicosities of a PV(-/-) PN12 basket cell is shown in Fig. 3A. For PN19-21 PV(-/-) mice, 

the decay of Cai signals was much slower than that observed in MLIs from age-matched 

WT animals. Statistical comparisons were performed by pooling data from basket and 

stellate cells together, since at this age the two cell types display similar decay kinetics, 

both in the WT and in PV(-/-)  strain. Average 50% decay values in PN19-21 PV(-/-) mice 

were 0.62±0.12 s (n=10 cells), 3-fold higher than controls (pooled average from age-

matched controls: 0.203±0.019 s, n = 11 cells; Student's t test p<0.003). The difference 

applies as well to the shape of the decay, which was well described by a single 

exponential for 66±10 % of the signals in PV(-/-) mice (average τ: 0.93±0.18 s; n=10 cells), 

whereas in WT MLIs at this age, a double exponential was required to describe Cai decay 

kinetics for 95.5±4.5% of the signals (n=11 cells; Student's t test p<0.00016). These results, 

summarized in Fig. 3B, show that the absence of PV essentially maintains PN19-21 

interneurons at PN10-12 stellate cell kinetics, thus matching exactly the above predictions 

and strongly reinforcing our conclusion that PV is the major determinant in shaping the 

biphasic decay kinetics in MLI axons.

Finally peak amplitudes were compared in WT and in PV(-/-) mice. Since PV has 

slow binding kinetics with Ca2+, the presence of PV is expected to have little influence 

on the peak amplitude and rise time of Cai transients (Lee et al., 2000; Schmidt et al., 
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2003a). In accord with this prediction, peak ΔF/Fo values in PN19-21 PV(-/-) mice 

(147±11 %, 10 cells) were not significantly different from those obtained in age-matched 

WT (109±14 %, 11 cells; Student's t test p<0.06). Furthermore, times from stimulus onset 

to peak for trains of 4 APs, analyzed in a sub-set of experiments performed with 

sampling rates of 10 ms per image, were similar in both groups (WT : 81.9±1.9 ms; PV(-/-

) : 99.1±21.9 ms; n=3 cells per group; Student's t test p<0.48). 

When comparing Cai signals at different ages and PV conditions, the question 

arises as to the possible differences on the wash-out of cytosolic components amongst the 

experimental groups. As mentioned in Methods, data was gathered at wcr times ranging 

from 8 to 35 min in all experimental groups. Neither peak amplitudes nor decay time 

course, including the degree of biphasicity and τ values of the Cai decay in MLIs from 

WT mice showed any correlation with wcr time. We therefore conclude that PV does not 

readily diffuse out of MLIs axons within the time window of the present experiments. 

Modeling AP-evoked presynaptic  Cai transients

We simulated volume averaged Cai for different experimental conditions in 

order to (i) estimate the endogenous PV concentration and (ii) predict the actual shape of 

Cai decay in the absence of exogenous buffer (i.e., Ca2+ indicator). These simulations 

were based on the "one compartment approximation" as developed in chromaffin cells, 

which assumes a homogeneous Ca2+ concentration in the compartment (Neher and 

Augustine, 1992). The simulations obeyed a system of differential equations describing 

(i) the reactions of Ca2+ with its various binding partners (OG1, PV and ATP), (ii) the 

reaction of Mg2+ with PV and ATP and (iii) an exchange of the compartment with other 

cell compartments and with the extracellular medium, based on a simple reaction with 
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Ca2+-independent rate constants (see Methods and Table 1 for reaction parameters). 

Additionally an endogenous fast buffer was included, following the evidence presented 

below. 

Evidence indicating the presence of an endogenous buffer distinct from PV:

Besides PV, MLIs may contain some fast endogenous buffer which could be up 

or down regulated during development, and which could affect the kinetics of Cai decay. 

Dissecting individual buffer contributions in a cell containing PV plus one (or more) fast 

buffers is complicated and can easily lead to erroneous conclusions (see review by 

Markram et al., 1998). PV(-/-) conditions are more advantageous, since the absence of 

slow buffer greatly simplifies the system of equations describing Cai decay. In this 

situation, the strength of the endogenous buffer can be estimated by extrapolating the 

linear relation between τ and probe concentration (Neher and Augustine, 1992; Lee et al., 

2000):

τ = (1 + κS + κB)/ γ (1)

where κS and κB respectively represent the buffering capacity of the endogenous fast 

buffer and of the dye, and γ the rate constant representing extrusion from the 

compartment. We used the predictions of eq. (1) to assess the presence of a fast buffer in 

MLIs. We reexamined PV(-/-) data both in PN10-12 and in PN19-21 animals, using a 

much lower concentration of OG1 (20 μM instead of 100 μM). Even with the low dye 

concentration, good quality signals could be collected, as illustrated in Fig. 4A for a PN19 

PV(-/-) stellate cell. The AP-evoked Cai transients were well described by a single 

exponential in all cells tested (example in Fig. 4A3), with τ values of 1.02±0.10 s (4 cells) 

at PN10-P12 and 0.47±0.15 s (4 cells) at PN19-21. Corresponding average peak ΔF/Fo 
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were 146±18 % at PN10-12 and 204±28% at PN19-21.  Using  eq. (1) κS was calculated for 

the two age groups. Values were 1170 and 350 for PN10-12 and PN19-21 MLIs, 

respectively. Thus, the analysis of PV (-/-) data indicates that MLIs contain a substantial 

amount of a fast endogenous buffer, with a buffering capacity that declines with age. 

We next proceeded to simulate the Cai transients for the PV (-/-) data, focusing 

on the PN19-21 group. Fig. 4B shows the results of the first set of simulations, aimed at 

determining (i) the magnitude of the Ca2+ load and (ii) the kinetic parameters for the 

extrusion from the compartment. Averaged experimental results from the PV(-/-) PN19-

21 group for 20 μM  (black trace) and 100 μM OG1 (blue trace) are displayed along with 

the best approximations to the data (red and yellow traces, for 20 and 100 μM OG1, 

respectively). The simulations, which include an endogenous buffer with a κS of  350 (i. 

e., equivalent to 60 μM OG1), yield a Ca2+ load of 11 μM per AP, and extrusion/influx 

kinetic constants k1 and k-1 of 550 s-1 and 0.011 s-1, respectively. In the absence of 

endogenous buffer, the predicted time course for 20 μM OG1 (green trace) is much faster 

than the experimental data (continuous black trace) in accord with the presence of a 

substantial fast endogenous buffer.

Modeling the effects of PV on Cai decay

Using the parameters which best approximated PV(-/-) PN19-21 results, we set 

out to determine the concentration of PV in axons of WT MLIs. For this, we compared 

numerical simulations with the average experimental data obtained with 100 μM  OG1. 

As shown by the family of curves in Fig. 5A and in accord with previous publications 

(Lee et al., 2000; Schmidt et al., 2003a; reviewed by Schwaller et al., 2002), the decay 

kinetics in the presence of PV are described by a double exponential. Changes in PV 

concentration had little effect on the peak ΔF/Fo value but altered markedly the kinetics 
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of the Cai decay. With increasing PV concentration, the fast time constant of the decay 

became faster, while the slow time constant of the decay slowed down (not shown; Lee et 

al., 2000). However, independently of the PV concentration, these simulations differed 

significantly from the experimental results, represented by the black trace in Fig. 5A. An 

acceptable approximation to the WT PN19-21 data could only be achieved by increasing 

the extrusion rate constants 2-fold. This is shown in Fig. 5B, where a  PV concentration of 

150 μM yields the best approximation to the parameters extracted from WT PN19-P21 

MLIs subjected to 4AP trains, including peak ΔF/Fo, τf and τs, as well as ratio of the 

corresponding amplitude coefficients (average values from 11 MLIs were, peak ΔF/Fo: 

109.5±14.6 %, τf: 0.16±0.01 s, τs: 1.63±0.23 s, As/(Af+As): 0.36±0.03). 

It is important to stress here that changing the extrusion rate from the PV (-/-) 

simulation was the only satisfactory solution to remove the discrepancy shown in Fig. 

5A. In particular, changing the value of κS (the buffering capacity of the fast endogenous 

buffer) between WT and PV(-/-) was unable to produce a satisfactory fit. Likewise, even 

if the affinity and binding rates of OG1 for Ca2+ were artificially modified, no single set 

of parameters could account for WT and PV(-/-) data without altering the exit rate 

between the two conditions (not shown). A compensatory change in the extrusion rate 

was found previously upon deletion of CB in Purkinje cells (Eilers et al., 2003).

All simulations so far assume a resting Cai level of 40 nM, both for WT and PV(-

/-) conditions. Reported neuronal basal Cai values range from 20 nM (Fierro and Llano, 

1996) to 70 nM (Jackson and Redman, 2003). Satisfactory sets of simulations could be 

obtained with different resting Cai values, provided that the model parameters were 

readjusted; thus the best PV concentration was 175 μM for a resting Cai level of 20 nM, 
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and 120 μM for a resting Cai level of 70 nM. 

Does PV saturate during bursts of AP firing?

PV is a high affinity buffer, which is partially Ca2+-bound at resting Cai levels. 

In chromaffin cells which were infused with PV, repetitive stimulation was shown to 

increase the degree of saturation of PV, leading to supralinear Cai increases and to 

slower decay kinetics (Lee et al., 2000). In the present case the calculated apparent 

dissociation constant (based on parameters listed on Table I) of PV for Ca2+ was rather 

high (450 nM) due to the comparatively large concentration of Mg2+ that was included 

in the pipette solution. Accordingly, only 8% of PV was bound to Ca2+ under resting 

conditions. The amount of free PV dropped by 10% of the resting value following one AP 

(calculated 20 ms after the AP), to 23% following a 3-AP train, and to 36 % following a 9-

AP train (simulations not shown). Thus, it is predicted that the kinetics of PV binding to 

Ca2+ will be mildly altered with action potential number, at least for trains of a few 

action potentials.

This was tested experimentally. Results presented so far have been restricted to 

4-AP trains at 20 ms intervals. This protocol was chosen because Cai signals had a good 

signal-to-noise ratio and gave reliable kinetic data. However results with shorter trains 

were also gathered in some experiments in order to explore the possible consequences of 

activity-driven PV saturation. Because τf is related to the PV concentration, as discussed 

above, we focused our attention on this parameter. In WT PN19-21 animals, average τf 

values were 0.14±0.03 s and 0.16±0.01 s for Cai rises evoked by 2 and 4 APs respectively 

(8 and 11 cells respectively; OG1: 100 μM). These results are in agreement with the above 

notion that PV is not saturated for short AP trains.
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Simulation of the dye-free Cai transient

The preceding analysis gives an estimate of the PV concentration as well as the 

buffering capacity of the fast endogenous buffer, but does not allow to estimate 

separately the concentration and the affinity of this buffer. However, within the time 

scale pertaining to this work, knowledge of the buffering capacity is all that is needed to 

simulate the Cai time course dictated by the endogenous buffers, without the 

perturbation of added calcium indicator. Fig.6A shows the calculated decay of the Cai

transient induced by the standard experimental protocol, i.e., a 50 Hz 4 AP train, as well 

as by a stronger stimulus (10 APs, 50 Hz). For both stimulation protocols, comparison of 

the WT (black traces in Fig. 6A) with the PV(-/-) prediction (red traces in Fig. 6A) 

illustrates the dramatic impact of PV on Cai decay. In the absence of PV Cai has returned 

close to baseline levels 1 sec after reaching its peak. In contrast, when PV is present, a 

long-lasting tail characterizes the Cai decay. Actual PV effects could be even larger, for 

two reasons. First, the Mg2+ concentration that was chosen for our intracellular solution 

(660 μM) is at the upper limit of likely physiological values; any lower Mg2+

concentration would increase the apparent affinity for Ca2+ and thus increase PV's 

efficacy to bind  Ca2+, prolonging the slow decay. Secondly, it cannot be excluded that 

some washout of PV occurred during our experiments. For these two reasons, the 

biphasic pattern of WT Cai decay is, if anything, even more marked than is apparent in 

Fig. 6A. 

PV enhances delayed transmitter release:

When MLIs discharge in short bursts at 10-50 Hz, as they do under resting 

conditions in vivo (Eccles et al., 1966; Ekerot and Jörntell, 2001), little summation is 
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expected for the fast component of Cai decay, because of a lack of synchronization. The 

amplitude of the slow decay component, however, increases with the number of spikes. 

Note the contrast in Fig. 6A between the dashed black trace, reflecting the Cai decay 

following 10 APs, with the continuous black trace, simulating 4-AP train data. By 

comparison, residual Cai decay in PV(-/-) conditions is short and almost independent of 

AP number (dashed and continuous red traces in Fig. 6A). Since bursts of up to 10 APs 

have been observed in MLIs following parallel fiber stimulation in vivo (Eccles et al., 

1966), the question arises as to whether the slow return of the presynaptic Cai elevation 

predicted by the model could induce a measurable increase in transmitter release.

To test these predictions, gabaergic synaptic currents were studied in response to 

trains of presynaptic stimulations (10 stimuli at 50 Hz) in WT and PV(-/-) mice. 

Experiments were performed on PN19-21 mice to ensure the presence of PV in all 

presynaptic fibers of the WT group. As observed earlier at other gabaergic synapses (Lu 

and Trussell, 2000; Kirischuk and Grantyn, 2003), asynchronous release was apparent 

during the train, with a frequency that increased with stimulus number (Fig. 6B2, B4 

where vertical arrows point to asynchronous events). However, there was no significant 

difference between WT and PV(-/-) data concerning asynchronous release frequencies 

(WT: 10 ± 4 Hz after the 1st stimulus, and 29 ± 5 Hz after the 10th stimulus; PV(-/-): 8 ± 2 

Hz after the 1st stimulus, and 25 ± 4 Hz after the 10th stimulus). Delayed transmitter 

release (Kirischuk and Grantyn, 2003) was apparent both in the WT (Fig. 6B1) and in the 

PV(-/-) groups (Fig. 6B3). Here, striking kinetic differences appeared between the two 

groups. In WT, delayed release extended up to 2400 ms after the train (Fig. 6C1), whereas 

in PV(-/-) mice, significant delayed release stopped 400 ms following the end of the train 

(Fig. 6C2). Furthermore we found that both in the WT and in PV(-/-), the Cai decay 
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predicted from the model (blue curves in Fig. 6C1-C2) superimposed with WT and PV(-

/-) data after appropriate scaling. The required scaling factors were in a ratio of 1.5, 

indicating that in PV(-/-), a given Cai signal was 1.5-times less efficient than in WT in 

eliciting delayed release. This may be related to the fact that the synapse is depressing in 

WT but facilitating in PV(-/-) (Caillard et al., 2000; likewise in the present experiments, 

the amplitude ratio of the 10th IPSC over the first was on average 0.76 in WT and 1.11 in 

PV(-/-)). We conclude that delayed release is prominent in MLI-MLI synapses, and that 

the presence of PV in the presynaptic terminals markedly prolongs its time course. 

Discussion

The presence of PV governs Cai decay kinetics:

We found 3 situations where the presence of PV determined the shape of the Cai

decay. (i) At PN10-12 PV was present only in basket cells. At this age basket cells had  

biphasic Cai decay, whereas stellate cells mainly displayed a monoexponential decay. (ii) 

PV was present in stellate cells at PN19-21 but not at PN10-12. We found that the Cai

decay of stellate cells was converted from monoexponential to biexponential over the 

same time period. (iii) Finally, WT and PV(-/-) results were compared for PN10-12 

basket cells and for PN19-21 MLIs. In both cases removal of PV converted a 

biexponential decay into a monoexponential one. From these results we conclude that the 

presence of PV in MLI terminals determines a specific kinetic signature for Cai decay, 

characterized by a biexponential time course. This change is accompanied by a marked 

acceleration of the first part of the decay.

In spite of this, a fraction of the decays required a biexponential fit under 

conditions where the PV concentration was small or null: in stellate cells from young WT 

animals, as well as in MLIs from mature PV(-/-) mice.  As discussed elsewhere (Koester 

27



and Sakmann, 2000), non-linear clearance systems and/or deviations from the 

assumptions of the single compartment model are likely explanations for these findings.

Cai decay and intrinsic calcium buffering capacity in gabaergic vs. glutamatergic 

terminals:

Using the "single compartment approximation" (Neher, 1998) and procedures 

developed in chromaffin cells (Neher and Augustine, 1992) estimates have been obtained 

for  κS at various glutamatergic terminals. Results range from 19 (Jackson and Redman, 

2003) to 140 (Koester and Sakmann, 2000) while  the extrapolated dye-free decay time 

constant ranges from 30 ms (CA1-CA3 boutons: Sinha et al., 1997) to 100 ms (calyx of 

Held: Helmchen et al., 1997). From the present study it appears that the buffering 

capacity of PN19-21 terminals amounts to 670 (for PV) plus 350 (for the fast endogenous 

buffer), adding up to a total κS value of 1020. Therefore, MLI terminals have a buffering 

power comparable to that of Purkinje neurons (Fierro ad Llano, 1996), 1-2 orders of 

magnitude higher than that reported for glutamatergic terminals. Because many 

gabaergic interneurons are known to contain high concentrations of CBPs, this may 

reflect a basic difference between the functioning of gabaergic and glutamatergic 

synapses. In cerebellar MLIs, the endogenous fast buffer and PV exert opposite effects on 

the speed of the initial decay phase, so that the estimated dye-free decay time constant 

(39 ms) ends up similar to those calculated for glutamatergic terminals. Thus, the 

presence of PV may have evolved as a mean to combine the large buffering power 

common to many gabaergic neurons with the need to obtain a sufficiently fast initial Cai

decay. In addition, PV induces a prominent second component with a time constant of 

0.6 s.  Below, some of  the functional consequences of the specific shape of Cai decay of 

MLI terminals are envisaged. An additional, more practical consequence of the large 
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buffering power of gabaergic terminals is that perturbations linked to dye loading are 

expected to be much less severe in measurements taken from gabaergic than from 

glutamatergic terminals, making the analysis of presynaptic Cai signals easier.

PV and development:

Our results suggest that PV expression increases precisely at the time when MLIs 

stop migrating and start establishing functional synapses. The appearance of PV 

increases temporal separation between responses to consecutive Cai-raising stimuli by 

accelerating the initial slope of Cai decay. Furthermore, it may increase spatial separation 

between such stimuli, since buffering by PV may decrease the apparent diffusion 

constant of Ca2+. By contrast, the fast buffer that is strongly expressed at PN10-12 slows 

Cai signals and (if it is readily diffusible) may promote their spread along the axon. Our 

PV(-/-) data suggests that the strength of this buffer declines as PV concentration 

increases. Thus, the replacement of the fast initial buffer by PV likely contributes to the 

transition from widespread and slow Cai signals used for trophic effects (cell migration 

and neurite outgrowth) to local and fast Cai signals used for synaptic transmission.

Physiological implications:

The implications of CBPs in cerebellar function has been previously assessed 

through the analysis of somato-dendritic Cai signaling and motor behavior in mice 

lacking the fast buffer CB (Airaksinen et al., 1997; Barski et al., 2003). In the present work, 

we focused on the presynaptic role of the slower buffer PV. As pointed out before 

(Neher, 1998), addition of Ca2+ buffers does not alter the integral of the Cai transient, but 

rather its kinetics. Therefore physiological effects are expected mainly on non linear or 

non integrating calcium sensors. For instance, in hair cells, the presence of high 
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concentrations of a fast endogenous buffer has long been proposed on experimental and 

theoretical grounds to regulate calcium dependent K+ channels, and hence to influence 

the cell responses to fast sensory inputs (Roberts, 1993; 1994; Ricci et al., 1998). This 

buffer has recently been identified as calretinin in frog saccular hair cells (Edmonds et al., 

2000). In the present case, several possible effects of adding or suppressing the slow Ca2+

buffer PV may be envisaged. 

First, for doublet stimulations, the presence of PV insures a quick decay to a 

small amplitude slow component, so that facilitation and asynchronous release are both 

minimal. We found earlier that in WT animals, MLI-Purkinje cell synapses display no 

paired pulse facilitation (inter-pulse intervals: 30-100 ms), whereas these synapses 

display substantial paired pulse facilitation in PV(-/-) mice (Caillard et al., 2000). This 

study was performed in P7-12 MLIs; with retrospect it appears likely that most 

recordings were performed with basket cells, given the present finding of selective 

staining of these cells with a PV-directed antibody. 

Secondly, the presence of PV slows down the late part of the Cai decay. We have 

shown that this effect leads to a prominent slow presynaptic residual Cai signal after a 

train of APs, and is then responsible for a very pronounced delayed release that lasts for 

seconds. Delayed release can be very prominent in gabaergic synapses following trains of 

10 APs or more (Lu and Trussell, 2000; Kirischuk and Grantyn, 2003). Our results  

suggest that this property does not require a special molecular machinery responsible for 

exocytosis, but more simply, that it is due to a prolongation of Cai decay due to the 

presence of powerful Ca2+  buffers. They also suggest that PV is particularly effective in 

this respect because of its slow binding properties. It is important to stress that due to 

delayed release, a bursting MLI generates a significant synaptic signal even during 
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interburst intervals. Indeed, the integral of the delayed signal in the record illustrated in 

Fig. 6b2 is larger than that of the signal generated during the trains, which is limited by 

synaptic depression and by receptor saturation (Auger and Marty, 1997). It is therefore 

interesting to reflect on this unconventional mode of synapse operation. During the 

interburst period, the MLI gives a random, almost steady synaptic output, with a mean 

intensity that is primarily determined by the number of APs in the preceding burst. Thus, 

during bursting, MLIs (and possibly, many other PV-containing interneurons) adopt 

alternately a phasic signaling mode during the bursts and an integrating signaling mode 

between bursts.

Third,  PV's  Ca2+binding kinetics together with its role on "buffered" diffusion 

as discussed above might affect intracellular Ca2+ release channels and could play an 

important role in shaping GABA release at the presynaptic terminals of MLIs. In 

Xenopus oocytes, it has been elegantly demonstrated that overexpression of PV can 

induce Ca2+ puffs, which were attributed to spontaneous Ca2+ release through inositol 

trisphosphate receptors (IP3Rs) (John et al., 2001). More recently, in the same preparation, 

PV was shown to regulate the spatial distribution of IP3R-mediated Ca2+ puffs (Dargan 

et al., 2004). No evidence is as yet available for the existence of functional IP3Rs in MLIs. 

However, work from our laboratory has shown that ryanodine-sensitive Ca2+ stores are 

functional at their axonal terminals and that they produce highly localized spontaneous 

Cai transients (SCaTs) which contribute to neurotransmitter release (Llano et al., 2000). 

The spatial and temporal dynamics of these events will certainly be shaped by the rather 

high PV concentration at MLIs terminals predicted from the present work.
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Table I: Kinetic parameters used for simulations. 

**Data for Calcium Green-1. **  Estimated from in vitro  calibrations performed  as 

detailed in Methods. *** The value used is the one given in this paper for mammalian 

α−PV. 

Definition Symbol Value Source 

OG1 with Ca2+ kon,CaD 

koff,CaD 

kD,CaD

8.24 x 108 M-1s-1 

140 s-1

170 nM 

calculated 

Eberhard and Erne (1991) * 

Measured ** 

PV with Ca2+ kon,PVCa 

koff,PVCa 

kD,PVCa

3.64 x 108 M-1s-1 

4.03 s-1

11 nM 

Coutu et al. (2002) 

id. 

id. 

PV with Mg2+ kon,PVMg 

koff,PVMg 

kD,PVMg

1.42 x 105 M-1s-1 

2.2 s-1

15 µM

calculated 

Westerblad and Lannergren (1991) 

Haiech et al. (1979) *** 

ATP with Ca2+ kon,ATPCa 

koff,ATPCa 

kD,ATPCa

1.5 x 108 M-1s-1 

3 x 104 s-1

200 µM

Baylor and Hollingworth (1998) 

id. 

id. 

ATP with Mg2+ kon,ATPMg 

koff,ATPMg 

kD,ATPMg

1.5 x 106 M-1s-1 

150 s-1

100 µM

Baylor and Hollingworth (1998) 

id. 

id. 

FIGURE LEGENDS
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Figure 1. Age- and interneuron subtype-dependent changes in Cai signaling at 

presynaptic varicosities. A1, A2: 2-photon pseudocolor images of the OG1 Ca2+-

dependent fluorescence from a PN11 stellate cell axon at rest (A1) and at the peak of the 

response to a 50 Hz train of 4 APs (A2). A3: Time course of the relative changes in 

fluorescence (ΔF/Fo) in ROIs identified by arrows in A2. Superimposed on the data

traces are the fits of the decay phase by single (blue dotted lines) and double exponential 

functions (red dotted lines), which in this case are equivalent indicating that the decay 

kinetics are well described by a single exponential. Note that the data traces as well as 

the corresponding fits return to pre-stimulus levels. B1-B3: similar analysis for the AP-

evoked Cai rises in a PN12 basket cell axon. For this type of interneuron, the decay time 

course is fast and follows a double exponential function. C1-C3: At PN21, stellate cell 

axonal Cai rises have evolved towards a fast and biphasic decay. C4 presents the AP-

evoked current traces for this neuron. D: Comparison of the average decay time course, 

estimated as the time to decay to 50% of peak amplitude, for stellate and basket cells of 

the two age groups. The analysis contains data from 6 basket and 7 stellate cells at PN10-

12 and 5 basket and 6 stellate cells at PN19-21. The bars denote the s.e.m. ANOVA test 

for this data yields F= 26.29 (p<0.0001). * indicate groups which are statistically 

significant using Student's t-test. 

Figure 2. Developmental profile of PV expression in cerebellar interneurons. A1, A2 : 

Confocal images from slices of a PN10 (A1) and a PN20 (A2) mouse cerebellum. Double 

staining with PV and CB antibodies, performed as described in Methods. Due to the 

choice of secondary antibodies (see methods) PV-containing cells show as green in these 

images, whereas cells expressing PV and CB appear yellow. Thus, the prominent yellow 

stain identifies Purkinje cells, well known to express both CBPs, and green identifies 
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interneurons, which express PV but not CB. At PN10, PV-containing interneurons are 

located primarily in close proximity to the Purkinje cell layer, and can thus be identified 

as basket cells. At PN20, in contrast, numerous PV-containing interneurons are visible in 

the middle molecular layers, location of stellate cells. A3: evolution of the density of PV 

positive interneurons as a function of age. Bars represent the s.e.m. A4: maximal 

excursion of PV expressing interneurons in the molecular layer as a function of age. The 

blue bars correspond to the height of the molecular layer at each age. B: Age-dependent 

increase in the total quantity of PV in mouse cerebellum, as determined by quantitative 

Western blots parallels the immunocytochemical observations. C1, C2 : Confocal images 

from slices of a PN12 (C1) and a PN20 (C2) mouse cerebellum. Double staining with 

GABA and CB antibodies. MLIs, appear green and are seen to be present throughout the 

molecular layer since PN12. C3: quantitative comparisons for the evolution of PV and 

GABA expression between PN12 and PN20. 

Figure 3. Absence of PV cancels the age-dependent changes in presynaptic Cai signaling. 

A1: resting fluorescence of an axonal region of a PN12 basket interneuron from a PV(-/-) 

mouse. A2: corresponding image at the peak response to a 4 AP train. A3: In contrast to 

the WT phenotype at this age, the time course to the AP-evoked Cai signals acquired at 

the varicosities indicated by the arrows in A2, is slow and well described by a single 

exponential (blue dotted traces). Thus PV removal converts the Cai decay kinetics in 

MLIs back to the slow monophasic decay that is observed at PN10-12 in the WT. A4: 

Action potential currents were not different in PV(-/-) mice and in WT mice (compare 

with Fig. 1C4). B: Comparison of the average decay time course indicates significant 

differences between WT and PV(-/-) basket cells at PN10-12 but no difference for the 

stellate cells of this age group. At PN19-21, deletion of PV(-/-) also leads to a significant 
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change in decay time course. The number of cells for the WT groups are: 6, 7 and 11 for 

the PN10-12 basket cells, PN10-12 stellate cells and PN19-21 interneurons respectively. 

The PV(-/-) groups include 3 basket cells and 3 stellate cells at PN10-12 and 10 

interneurons at PN19-21. ANOVA test for this data yields F=10.20 (p<0.0001). * indicate 

groups which are statistically significant using Student's t-test. 

Figure 4. Measurements of AP-evoked Cai with 20 μM OG1, and estimation of fast 

endogenous buffer capacity. A1, A2: Resting and peak Cai images (following a 4-AP 

stimulus) from an axon dialyzed with 20 μM OG1 (PN19 stellate cell, from a PV(-/-) 

mouse). A3: Time course of decay for the 2 ROIs depicted in a2 (black and red traces). 

Both decay time courses could be approximated with a single exponential (blue dotted 

lines; time constants, 0.58 and 0.69 s). Average  peak ΔF/Fo and 50% decay time from 

similar experiments (4 cells) were: 204±28% and  0.32±0.10 s, respectively B: Average 

decay time course for PV(-/-) data from experiments performed with 20 μM (black trace) 

and 100 μM OG1 (blue trace) are compared with numerical simulations (red and yellow 

traces, for low and high dye concentration, respectively). The best approximations to the 

experimental data were obtained with a Ca load  of 11 μM/AP, extrusion/influx kinetic 

constants k1=550 s-1 and k-1=0.011 s-1 and an endogenous buffer capability equivalent to 60 

μM OG1. The same simulation parameters fail to approximate the 20 μM OG1 

experimental data if the endogenous buffer is not included (green trace). 

Figure 5. Determination of the endogenous PV concentration. A: Numerical simulations 

of the time course of decay of Cai signals for PV concentrations ranging from 0 to 300 

μM, obtained using the simulation parameters which gave the best approximation to the 

PV(-/-) data, namely, a Ca2+ load of 11 μM /AP, extrusion/influx kinetic constants 

42



k1=550 s-1 and k-1=0.011 s-1 and an endogenous buffer capability equivalent to 60 μM OG1. 

Note that, regardless of the PV concentration, there is a large discrepancy with the 

average decay obtained in WT, PN19-21 MLIs (dotted black trace).  B: Family of 

simulations performed with extrusion/influx kinetic constants increased by a factor of 2 

(k1=1100 s-1 and k-1=0.022 s-1). A concentration of  150 μM closely approximates the 

average WT data (dotted black trace).

Figure 6. The time course of Cai governs delayed transmitter release at MLI-MLI 

synapses. A: Predicted averaged Cai time course. The black solid trace represents the 

simulated Cai decay following a 50 Hz train of 4 APs, in the absence of calcium indicator. 

Simulation parameters: Ca load of 11 μM/AP, 150 μM PV, 60 μM OG1-like buffer and 

extrusion kinetic constants k1=1100 s-1 and k-1=0.022 s-1. This Cai decay is characterized by 

a bi-exponential decay (τf: 39 ms, τs: 626 ms; corresponding amplitude coefficients : 144 

and 29 nM). The black dotted trace presents the response to a 50 Hz train of 10 APs. The 

Cai decay for the PV-free conditions (red solid trace: 4AP train; dotted red trace : 10AP 

train), used the following simulation parameters: Ca2+ load of 11 μM/AP; 60 μM OG1-

like buffer; extrusion rates: k1=550 s-1 and k-1=0.011 s-1. Traces have been truncated at 250 

nM in order to highlight differences in the slow decay phase. B: Comparison of delayed 

transmitter release in WT and PV(-/-) mice. B1: representative recording of currents 

obtained from a PN20 WT MLI. The arrow indicates the onset of a 50 Hz train of 10 

presynaptic stimulations. B2: expanded view of the recording during the stimulation 

train, as denoted by the dashed line with arrow in B1. B3, B4: representative experiment 

from a PN20 PV(-/-) interneuron. Glutamatergic activity has been blocked as detailed in 

Methods. C1, C2: Histograms of the temporal evolution of the mean frequency of 

synaptic events over the pre-stimulus frequency, pooled from 9 WT and 6 PV(-/-) 
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interneurons (PN19-21). Error bars represent the s.e.m. Time 0 corresponds to the end of 

the extracellular stimulation. The blue traces display the Cai time course calculated for a 

50 Hz train of 10 APs, from Fig. 6A. Values for the WT group, were significantly different 

from 1 (p<0.05) for all time bins. For the PV(-/-) group, only the first 2 time bins have a 

similar statistical significance.
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