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ABSTRACT: The cubic Prussian blue analogue Mn;[Mn(CN)], - 15 H,O, which has
the advantage of being transparent and magnetic (T, = 35 K) at the same time, has
been investigated by density functional theory (DFT) calculations. The three-
dimensional structure is built of Mn" ions linked to Mn"" ions by u-bridging cyanides,
to form a crystal structure, which is related to the NaCl type. In a first step, the relative
stabilities of the mononuclear complexes [Mn(CN)¢]*~ (z = 2 to 4) have been studied as
a function of the oxidation state, spin configuration, and the linkage isomerism of the
cyanide ligand. The results we have obtained by this investigation are in good
agreement with our chemical expertise. In addition, the calculations have been extended
to the dinuclear [Mn,(CN),,]* (z = 5 and 6) clusters. Furthermore, we used DFT to
model the magnetic properties as well as the °T; — 'T, transition, which has been
observed by single-crystal near-IR spectra of Mng[Mn(CN),], - 15 H,O.
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pects in the field of materials chemistry. The sys-

Introduction tematic investigation of Prussian blue (PB) and its
analogues was started in the 1970s by Buser et al.

Transition metal cyanide chemistry on the one [2]. The potential of the u-bridging cyanides to act
hand has a remarkable history [1] and on the as very efficient mediators of strong magnetic cou-
other hand shows a revival, offering exciting pros- pling between transition metal ions convinced

many chemists to work in the field of PB analogues.
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FIGURE 1. The PB network of Mnz[Mn(CN)g], - 15
H,O, a cubic, face-centered crystal.

magnetization at comparatively high temperature.
Recent milestones in these efforts are based on the
discovery of a room-temperature magnetic PB
phase [3, 4] as well as on the first molecule-based
magnet, which retains magnetization up to 400 K
[5]. It could also been shown that magnetic proper-
ties with electrochemical and optical stimuli can
also be combined in PB analogues [6, 7]. However,
despite this substantial progress, a major drawback
is the air-sensitive and amorphous character of
most of the PB compounds.

In this study, we present a computational inves-
tigation of an air-stable PB, which can easily be
prepared in the form of single crystals with a face-
centered cubic structure and which exhibit trans-
parency, color, and a ferrimagnetic phase (the struc-
tural picture of the compound is given in Fig. 1).
Two approaches to model this compound are fea-
sible: a band structure calculation and a model
cluster approach. The latter one was chosen, and
we used density functional theory (DFT), applying
it first to [Mn(CN)y]*~ (for z = 2, 3, and 4) units and
second to the dimer units [Mn,(CN),;]*~ (for z = 5
and 6), which are mixed valent and used to model
the properties of the compound drawn in Figure 1.
Therefore, a detailed investigation of the
[Mn(CN)¢]*~ unit with bond length and angles
based on X-ray crystallographic data was started.
As a result, relative stabilities were obtained as a
function of the oxidation state, the spin configura-
tion (high-spin/low-spin), and linkage isomerism
of the cyanide ligands. In a second step, the calcu-
lations were extended to the dimeric dinuclear

[Mn,(CN),J*~ clusters. Moreover, the °T;, — 'T,
transition of a Mn"" ion in low-spin configuration,
which could be observed by single-crystal near-IR
spectroscopy, could be simulated by DFT, in good
agreement with the experimental data.

Computational Details

The DFT calculations were performed with the
Amsterdam Density Functional (ADF) program
package (release 2000.02) [8]. For exchange-correla-
tion functionals, the generalized gradient approxi-
mation (GGA) has been used. However, all numer-
ical data presented in this article refer to the GGA
approximation and are expressed in eV. The local
density approximation (LDA) was applied using
the Xa functional for the exchange (a = 0.7) [9] and
the Vosko, Wilk, and Nusair functional for the cor-
relation [10]. The GGA was applied using the ex-
change and correlation proposed by Perdew and
Wang [11]. The frozen-core approximation was
used for the inner-core electrons. The orbitals up to
2p for manganese and 1s for nitrogen and carbon
were kept frozen. The valence shells were described
by a triple-{ Slater-type orbital (STO) set plus one
polarization function.

All calculations were performed as single-point
calculations. In fact, the complexes or clusters stud-
ied in this article are highly negative, and we had to
add positive point charges to act as counterbalance.
This prohibited the ADF package from performing
geometry optimizations. For the mononuclear com-
plexes, the default self-consistent field (SCF) pa-
rameters of ADF were used (DIIS [15-17] [direct
inversion of the iterative subspace] activate, mixing
ratio equal to 0.2, integration [12, 13] equal to 4.0
and convergence criteria fixed to 1 + 10,). For the
dinuclear cluster, the DIIS had to be deactivated,
the numerical integration increased to 8.0 (to ac-
count for the presence of two metallic cations with
almost the same environment), and the mixing ratio
had to be reduced to 0.02. The strategy was first to
run single point calculations using the xyz param-
eters from X-ray crystallography and the desired
charges by applying the restricted formalism. After
analyzing the first output (file resulting from a cal-
culation) and determining molecular orbital, which
is composed of atomic d-orbitals of cations, we ran
single-point calculations with fixed molecular or-
bital (MO) occupations applying the spin-unre-
stricted formalism. For this second set of calcula-
tions, SCF parameters used were the same as those
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FIGURE 2. The two [Mn(CN)gF ~ mononuclear com-
plexes studied by DFT with the cyanide ligand C-coor-
dinated (a) and N-coordinated (b).

described previously. As before, the density was
allowed to relax according to the desired occupa-
tion.

Results and Discussions

INVESTIGATION OF THE MONONUCLEAR
SPECIES: [MN(CN)g1%~

Three aspects for the investigation of the
[Mn(CN)¢J*~ had to be considered. First of all, the
manganese ion can exist in several oxidation states,
namely, 1T (d°), TII (4%, and IV (d°). Second, the elec-
tronic configuration with respect to high-spin (HS)
and low-spin (LS) can be distinguished for the d° and
d* configurations. At last, the cyanide ligand has an
ambidentate nature. It can therefore be linked to the
metal ion by the carbon or the nitrogen atom.

As a result, 10 calculations had to be performed:
four cases for C-coordinated Mn" and Mn"' in HS and
LS states and one for C-coordinated Mn"" and the
same for the N-coordinated cyanide ligand (Fig. 2).

Due to the fact that the complexes are highly
negatively charged, simple DFT calculations result
in electronic occupation of MOs at positive eigen-
values. One way to avoid this problem is to put
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FIGURE 3. The two sets of point charge positions,
corresponding to (a) cubic and (b) ligand positions. We
used this nomenclature throughout.

positive point charges around the octahedral com-
plex. This approach was performed in two ways.
First, the positive charges were placed along the
axis of the ligands (called “ligand position”) and
secondly, they were situated at the corners of a cube
around the octahedral complex (called “cubic posi-
tion”) (Fig. 3).

All studies were performed as single-point calcu-
lations without geometry optimizations. The bond
lengths used for the calculations are based on X-ray
investigations. However, the nitrogen and the carbon
atoms can hardly be distinguished by X-ray analysis,
because they have a similar number of electrons.
Therefore, two geometries were investigated where
the cyanide bridge was inverted (interchange of the
Mn-C and Mn-N bond length) (Table I).

In this report the [Mn(CN)sJ* investigation has two
parts. First, the influence of the positive point charges
was studied, and second, the calculations according to
the geometries defined in Table I were performed.

Influence of Point-Charge Positions for
Geomelry 1

As mentioned above, due to the high negative
charges of the [Mn(CN)]*~ complexes, MOs with

The two sets of coordinates investigated for the mononuclear complex [Mn(CN)sF*~.2

Geometry 1

N-coordinated C-coordinated

Geometry 2

N-coordinated C-coordinated

Ay = 2.1886 A
dyc = 1.1458 A

dync = 1.9751 A
do = 1.1458 A

Ay = 1.9751 A
dyc = 1.1458 A

Ay = 2.1886 A
do = 1.1458 A

2Geometry 1 is more in agreement with our chemical intuition; nevertheless, we investigate the two possibilities.



TABLE 1l

The complete set of energy calculations [eV] for the complex [Mn(CN)}*~ for geometry 1 (see Table I).?

[Mn(CN)g] * Mn" (@®)

[Mn(CN)e] % Mn" (d) [Mn(CN)g] 2

HS LS HS LS Mn"Y (@®)

N-coordinated Cubic —156.78 —155.90 —150.24 —149.79 —138.91
Ligand —-151.50 —150.56 —146.86 —146.38 —137.32

C-coordinated Cubic —154.18 —159.65 —151.67 —154.36 —144.04
Ligand —146.56 —151.96 —146.41 —149.09 —141.21

2 The ligand and cubic notation refer to the point charge position around the complex according to Figure 3.

positive eigenvalues were initially occupied in
the DFT calculations. This could be overcome by
adding positive point charges to balance the ex-
cess of the negative charges of the cyanide ligand.
To check the influence of the positions of the
positive point charges, two possibilities were
taken into account. The first one is with the pos-
itive charges on the corners of a cube surround-
ing the complex [Fig. 3(a)] and the second, with
the point charges situated on the ligand axis [Fig.
3(b)]. The numerical results are given in Table II.
The difference between the HS and LS configura-
tion was then compared and summarized (Table
III). Depending on the positions of the point
charges, the energies of the MOs shift. By build-
ing the difference of the HS and the LS configu-
ration, the shift in the energies is canceled out,
and the influence of the point charges can be
compared. Because the energy differences of HS
and LS of the two possibilities in Table III are
very similar, we can conclude that there is no
influence on the results in which we are inter-
ested. Therefore, in the rest of the current paper,
only the so-called “ligand” point-charge position
is taken into account.

Influence of Bond Length

Geometry 1. The geometry of [Mn(CN)J*™ is per-
fectly octahedral, and the cyanide-to-metal bond
does not deviate from linearity. According to the
discussion above, Table II can be reduced to Table
IV, and the lower energies are emphasized by bold
letters. The manganese ion in N-coordination is
lower in energy in HS configuration, whereas the
manganese ion in C-coordinations is lower in en-
ergy in LS configuration. It should be stressed that
only the energies for the same number of electrons
(same oxidation state) can be compared. This out-
come is consistent with our knowledge of the influ-
ence of the d-electron configuration on the ligand
field splitting and the spectrochemical series.

Geometry 2. Due to the difficulties to distinguish
between carbon and nitrogen in X-ray spectros-
copy, the cyanide was turned around, such that the
Mn-C bond is longer than the Mn—-N bond (Table I).
The energies of this configuration for the point
charges in the ligand positions are summarized in
Table V. At this point, two conclusions can be
drawn: first, all energies for the LS configuration
are more stable than for the HS configuration; and,

TABLE 1l
According to the values of Table Il, we compare the difference between high- and low-spin energies.?
ds E(high spin) E(Iow spin) d4 E(high spin) E(Iow spin) d3
N-coordinated Cubic —0.88 —0.45 —138.91
Ligand —0.94 —0.48 —137.32
C-coordinated Cubic 5.47 2.69 —144.04
Ligand 5.40 2.68 —141.21

a By this, we avoid any shifting process. We can see that for d*, the energy between the two point-charge positions are so close that
we can arrive at the conclusion that point-charge positions have no influence on the result (energies are given in eV).



TABLE IV

Following the reasoning exposed in the section titled “Investigation of the Mononuclear Species:

[Mn(CN)sJ*~,” we reduce Table Il to this one.?

[Mn(CN)¢] * Mn" (d®) [Mn(CN)¢] Mn" (d*) [Mn(CN)] 2
HS LS HS LS Mn" (d)
CN link by N ~151.50 ~150.56 ~146.86 ~146.38 ~137.32
CN link by C ~146.56 ~151.96 ~146.41 ~149.09 ~141.21

2 Bold fonts underline the most stable configuration between HS and LS configuration.

second, the energies for this case are higher than
those for geometry 1. Therefore, geometry 1 is more
stable by 5 to 10 eV.

By this set of calculations, we could demonstrate
that DFT confirmed our chemical experience that
the geometry with the shorter Mn—C bond and the
longer Mn-N bond is favored.

INVESTIGATION OF THE DINUCLEAR
SPECIES: [Mn,(CN),,]7"

In a next step, the calculations were extended to
dinuclear clusters. According to the knowledge we
gained from the previous calculations, it was suffi-
cient to calculate only the equivalent to geometry 1
with the positive point charges in the ligand posi-
tions (Fig. 4).

Two cases with respect to the oxidation states of
the manganese ions were taken into account: first,
the experimentally manifested Mn"-Mn"" situation;
and, second, hypothetical Mn"-Mn"V cluster. In the
first case, the three-dimensional network has to
have vacancies of Mn"(CN), units in order to result
in a neutral three-dimensional network compound
[14], which leads to the experimental formula
Mn;[Mn(CN)g], - 15 H,O. The [Mn,(CN);1]*™ unit
is, on the one hand, five times negatively charged
and, on the other hand, six times negatively
charged. The second case shows the ideal stoichi-

TABLE V

ometry for a neutral cubic PB phase, which is
M,(CN), (M = transition metal).

The input for these calculations was based on the
symmetry C,,. It turned out that the results of the
DFT calculations confirmed our expectations from
previous calculations but with quantitative infor-
mation about the relative stabilities. Tables VI and
VII summarize our results. The empty signs () are
place holders for configurations, where the mixing
of the orbitals was too high and no plausible occu-
pations of the MOs were obtained. For the cases
labeled “not converged,” it was not possible to
reach convergence criteria, because the self-consis-
tent field (SCF) convergence criteria were the same
for all calculations, which were the default param-
eters of the ADF program.

Case Study: Mn"’-Mn™"

Several configurations were taken into account,
namely, the HS and LS configurations and the in-
terchange of the oxidation states of the manganese
cations. Table VI summarizes the total electronic
energies of the possible configurations. The label
HS-LS in the second column of the table indicates
that the first manganese is in HS and the second one
is in LS. The “a—B” column gives the total number
of a and B spins of the clusters. The two possibili-

The set of results for [Mn(CN)g]*~ complexes with bond lengths corresponding to geometry 2 (see Table I) and

point charges in the ligand position (see Fig. 3).

[Mn(CN)]  Mn" (@) [Mn(CN)e] % Mn"" (a%) [Mn(CN)] 2
HS LS HS LS Mn" (@)
N-coordinated ~147.75 -149.79 ~145.71 —146.25 ~134.10
C-coordinated ~150.40 -151.47 ~143.55 ~144.39 ~136.01
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FIGURE 4. The dinuclear cluster with the cyanide
bridging ligand; one manganese is C-coordinated and
the second one is N-coordinated. We present also the
positions of point charges adopted for this case and in
agreement with the conclusion made on the study of
the mononuclear compounds. We chose the ligand po-
sition for practical reasons.

ties for each case, therefore, correspond to an anti-
ferromagnetic and to a ferromagnetic alignment of
the spins of the two manganese ions, respectively,
as indicated at the beginning of the second column
by the labels “AF” (antiferromagnetic) and “F” (fer-
romagnetic).

It is notable that all energy values are compara-
ble, because the total number of electrons is the
same for each case. Clearly the table demonstrates
that the two energies in the same block (antiferro-
magnetic and ferromagnetic) are quite close. But
the energies in different cells differ significantly. In
conclusion, the configuration with the Mn" in ni-

TABLE VI

trogen coordination and the Mn"™ in carbon coor-

dination is the favored one. In addition, the config-
urations with the Mn'" in the LS state are more
stable than the configurations in the HS state. More-
over, the influence of the change of the spin state of
the Mn'"" is slightly bigger than that for the Mn"
ion.

Case Study Mn™-Mn"V

The same set of calculations was performed for
the Mn"-Mn'" unit, resulting in a charge of z =
—5. The number of calculations is reduced by a
factor of two, because for Mn'V (4°) there is no HS
or LS configuration. Table VII summarizes the
results of the calculations. Because this case ex-
hibits a different number of electrons than the
previous one, it is not possible to compare the
energies of the corresponding tables. Neverthe-
less, the same conclusions as above can be drawn:
(1) the more stable configuration is with the man-
ganese in the lower oxidation state linked to the
nitrogen; (2) the manganese in nitrogen coordi-
nation is more stable in the HS state, and (3) the
difference in energy between the two possible
total spins is not very large.

NEAR-IR SPECTRA

Figure 5 shows the near-IR spectrum of a single
crystal of Mng[Mn(CN)g], * 15 H,O with a thickness
of around 200 um. The peaks located at 9200 cm ™'

The dinuclear cluster calculation for the case: Mn™ —Mn®" with energy expressed in [eV].?

Configuration a—f Mn" linked to N & Mn" linked to C Mn" linked to C & Mn" linked to N
HS-LS® AF° 6-3 —483.63 —479.94
F 8-1 —483.33 Not converged
LS-LS AF 4-5 —481.58 Not converged
F 6-3 —482.052 Not converged
LS-HS AF 3-6 —478.40 —473.28
F7-2 —479.58 —470.77
HS-HS AF 5-4 %) —476.29
F 9-0 —478.91 —476.58

2 For some calculations, we were unable to reach the convergences criteria (probably because in these cases, we tried to fix
occupation too far from what is reasonable). For one case (empty sign one), the MO’s are too mixed and we were not able to affirm
that the calculation performed corresponds to the desired occupation.

b HS-LS means the first manganese (referring to the first row), of which Mn'" is HS (high spin), and the second manganese, of which
Mn"'is LS (low spin). The C or N coordination change from column three to column four.

¢ Abbreviations: AF, antiferromagnetic interaction; F, ferromagnetic interaction.



TABLE VI

The dinuclear cluster calculation for the case: Mn™-Mn™.9

Configuration a-P Mn" linked to N & Mn" linked to C Mn" linked to C & Mn" linked to N
HSP AF 5-3 —444.37 —432.42

F8-0 —444.54 “
LS AF 3-5 Not converged —433.90

F 6-2 —444.12 Not converged

2 The same convention is used for this table as in Table VI.

b For this case, we have to specify only the configuration of d® (Mn") because, for d®, we cannot distinguish between HS and LS

configuration.

could be assigned to the *T; (t3) — 'T, (£3) transition
of the Mn®* ions. The assignment was done on the
basis of the absorption spectrum of the correspond-
ing K;[Mn"(CN)] sample as reference compound,
also shown in Figure 5. The intensity of the absorp-
tions of the Mn,[Mn"™(CN),], - 15 H,O is about 100
times larger than that of the reference sample
K5[Mn"™(CN),], which could be due to the exchange
interaction as a result of the bridging mode of the
cyanide ligands. We decided to model this transi-
tion by ligand field (LF)-DFT theory [18, 19]. For
this purpose, we studied the LF of [Mn(CN)y]
(Mn with an oxidation state of III: d*). The proce-
dure has three steps: (i) perform an average of
configuration (AOC) calculation (put 0.4 electrons
in each spin orbits of d-atomic orbitals) in order to
optimize the Kohn-Sham orbitals, (ii) calculate the
energy of all the Slater determinants (SDs) (210 for
four electrons on 10 spin-orbits), and (iii) apply the
procedure explained by Atanasov and al. [18, 19].
The complex was already studied in a previous
work [19], although it had slightly different bond
lengths (the difference is about 0.02 A, and we
consider the influence as negligible), and the Ra-
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FIGURE 5. Near-IR spectra of a single crystal of the
Mn-PB analogue with a thickness of 200 pum.

cah’s parameters and ligand-field strength found
were: B =630 cm™"; C = 2598 cm™'; and A = 36900
cm .

The full LF multiplet structure using classical LF
theory can thus be determined. The predicted and
observed values for the excitations considered are:
ECT, = 'T2)ups 9200 cm % and ECT, —
"To)prea = 7948 cm ™.

From the results of these investigations, that is,
spectroscopical and theoretical, we can conclude
that the °T; — T, transition corresponds to the
band observed in the near-IR spectra.

Perspective: Magnetics Properties

In addition, the compound studied has inter-
esting magnetic properties. The energy values of
ferromagnetic and antiferromagnetic interactions
for Mn™ HS-Mn™" LS given in Table VI allow
us to evaluate the coupling constant J. Investiga-
tions are in progress. The first results are in qual-
itative agreement with experimental data and
predict an antiferromagnetic ground state (esti-
mated value of ] is negative). If we refer to the
magnetic susceptibilities measured experimen-
tally and apply the Van Vleck formula, we ob-
serve that ] has a value of about —6 cm ™. In the
future, a challenging investigation will quantita-
tively determine this value by DFT. We plan to
carry on studies in this direction.

Conclusion

The DFT calculations revealed results that are in
line with chemical intuition. When faced by this
kind of challenge, two approaches are feasible: (i)
band structure calculation, and (ii) model cluster. In



this study, we took the second approach. The re-
sults obtained, namely, Mn linked to N is HS, Mn
linked to C is LS, no influence of point charge
positions, Mn™ HS linked to N — Mn™ LS linked
to C pattern in the crystal and antiferromagnetic
ground state are quite convincing. However, it
would be interesting if in the future band structure
or lattice dynamic could be carried out in order to
complete our knowledge of PB analogues.

We regret that we were not able to perform a
frequency calculation of the dinuclear cluster due to
technical problems, which will be solved in the
future. These could then be directly compared with
available experimental data.
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