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Abstract

This thesis presents a Bayesian analysis of a non-linear time series model. In

particular, we deal with a mixture of normal distributions whose means are

linear functions of the past values of the observed variable. Since the compo-

nent densities of the mixture can be viewed as the conditional distributions of

different Gaussian autoregressive models, the model is referred as mixture of

autoregressive components.

Bayesian perspective implies some advantages, especially in terms of model

determination. First of all, it has been recognized that usual criterions like AIC

and BIC are not satisfactory for the mixture of autoregressive components. In

addition, these standard approaches do not take into account model uncer-

tainty because they select a single model and then make inference based on

this model. On the contrary, our Bayesian approach maintains consideration

of several models, with the input of each into the analysis weighted by the

model posterior probability.

Both parameter estimation and model selection do not lend themselves to

analytic solutions and we use Markov Chain Monte Carlo (or MCMC) approxi-

mation methods, which have had a real explosion over the last years, especially

in Bayesian statistics.

Our work takes into account the stationarity conditions of the autoregres-

sive coefficients of the mixture components through a reparametrization in

terms of partial autocorrelations.

Finally, this thesis addresses the important task of modelling and forecast-

ing return volatility. Several stylized facts about volatility have been recog-

nized and they are captured by the mixture of autoregressive components.

i



ii



Acknowledgments

I would like to express my thanks to the people who contributed to this thesis:

Prof. Giuseppe Arbia (G. d’Annunzio University, Pescara), Prof. Giovanni

Barone-Adesi (University of Lugano), Prof. Guido Consonni (University of

Pavia), Prof. Petros Dellaportas (Athens University of Economics and Busi-

ness), Prof. Antonietta Mira (Insubria University, Varese), Prof. Fabio Trojani

(University of Lugano).

Moreover I would like to thank postgraduates students at the University of

Lugano and all the academic people I have held useful discussions with.

I also thank my family for creating an environment which allowed me to

follow this path and Roberta for her essential support and encouragement.

iii



iv



Ringraziamenti

Desidero esprimere i miei ringraziamenti alle persone che hanno contribuito al

presente lavoro: Prof. Giuseppe Arbia (Università G. d’Annunzio, Pescara),
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Models do not represent truth. Rather they are ways of viewing a system, its

problems and their contexts.

(West and Harrison, 1989)

There are two things you are better off not watching in the making: sausages

and econometric estimates.

(Leamer, 1983)

The people who don’t know they are Bayesian are called non-Bayesian.

(Good, 1983)
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Chapter 1

Introduction

The class of finite mixture models provides a mean for the formalization of

heterogeneity, when the phenomena are too intricate to be described by sim-

ple probabilistic modelling through classical distributions. The assumption of

conditional independent observable variables is usually made in this context,

making a direct application to time series data inappropriate.

The mixture of autoregressive components we analyse relaxes this hypoth-

esis. The resulting model is a non-linear time series tool (for instance, it takes

into account changes in conditional distributions, which are not necessarily

symmetric or unimodal) that is particularly suitable for financial data.

More precisely, we consider an application to financial market volatility.

Several empirical facts about volatility have been recognized (persistence, clus-

tering and threshold effects, non-symmetrical dependencies, etc.) and we be-

lieve that the mixture of autoregressive components captures these stylized

features.

Parameter estimation and model selection are based on a Bayesian per-

spective. The advantages of this choice are particularly evident for the model

selection problem. In general, Bayesian model selection does not ignore model

uncertainty: while standard criterions, like AIC and BIC, select a single model

and then make inference based on it only, a Bayesian approach maintains con-

sideration of several models, with the input of each into the analysis weighted

by their posterior probability. Influence of model uncertainty on financial mod-

els is an important factor and it has been recently investigated in financial

literature.

In addition, a contingent reason to adopt the Bayesian approach is that it

1



Chapter 1 Introduction 2

has been recognized that AIC and BIC criterions are not satisfactory in this

mixture context.

Bayesian estimation and model selection for the mixtures of autoregressive

components do not lead to analytical solution, thus we use Markov Chain

Monte Carlo (or MCMC) approximation procedures. These methods have had

a real explosion over the last years and they are often adopted in Bayesian

statistics.

The thesis is organized as follows. In chapter 2 we shall present a brief

introduction about Bayesian inference and a review of some univariate and

multivariate distributions which will be used in the rest of the thesis.

Chapter 3 will start with some traditional methods based on stochastic

simulation. After a presentation of some properties of a Markov chain, the

class of MCMC methods will be illustrated. Eventually, the implementation

of an algorithm and the use of its output to make statistical inference will be

addressed.

Bayesian model selection will be treated in chapter 4. We shall present

model selection techniques which are related to MCMC methods. As a matter

of fact, some of them can be viewed as generalizations of such methods, while

other techniques estimate model posterior probabilities by using a standard

MCMC output.

In chapter 5 we shall illustrate some basics concepts about finite mix-

ture models, with particular attention on the mixture of normal distributions.

Bayesian estimation and model selection will be also treated.

The mixture of autoregressive components will be presented in chapter

6. We shall give the definition of the model and the prior structure. Also,

we shall explain how to take into account the stationarity conditions on the

autoregressive coefficients. Parameter estimation and model selection will be

illustrated in details. Finally, the chapter will present the calculation of the

predictive distributions.

The last chapter will show the application of the model to the return volatil-

ity. It will be a self-contained chapter, which will report definition and proper-

ties of the model and will summarize parameter estimation and model selection

procedures.



Chapter 2

Bayesian inference

2.1 Introduction

Statistical theory is mainly devoted to derive an inference about the proba-

bility distribution underlying a random phenomenon from observations of this

phenomenon.

Statistical inference can be viewed as a formalization step based on a prob-

abilistic modelling with the purpose of interpreting the natural phenomena.

Different statistical approaches to inference are possible. For instance, we

can distinguish between a parametric and a nonparametric approach. The for-

mer represents the distribution of an observed random variable y through a

density or probability function f(y|θ), where only the parameter θ is unknown.

On the contrary, the purpose of the second approach is to estimate the distri-

bution under minimal assumptions, typically using functional estimation. In

this work, we shall only consider parametric modelings.

The parameter θ can be considered as an index of a family of possible

distributions for the observations. Thus θ is a quantity of interest whose

estimation is necessary in order to obtain a description of the process.

The mathematical nature of θ leads to another distinction between compet-

ing statistical approaches. In the classical or frequentist statistical theory, the

parameters are fixed (but unknown) quantities. Conversely, Bayesian approach

consider θ as a random variable. Hence, θ is allowed to have a probability dis-

tribution called prior distribution or simply prior.

This feature implies an important consequence. It is likely that a researcher

has some knowledge about the phenomenon under study, i. e. he can have

3
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some information a priori with respect to the experiment. It is scientifically

recommended that this body of knowledge should be formally incorporated in

the analysis. The Bayesian approach includes this kind of information through

the prior distribution.

This chapter will present a brief overview of some concepts of Bayesian

inference. For a more thorough discussion, many books are available: see for

instance Bernardo and Smith (1994), Gelman et al. (1995) or Robert (2001).

In the sequel, the terminology will not distinguish between discrete and

continuous quantities; thus, f or p can represent a density function or a prob-

ability function as well. The notation for the parameters will be the same for

the univariate and multivariate case.

Whenever required, a distinction will be made in the text.

2.2 Bayes’ theorem

The first two elements of a Bayesian statistical model are the observational (or

sampling) distribution f(y|θ) and the prior distribution p(θ). If regarded as

a function of θ, the observational distribution gives the likelihood function of

θ, L(θ) = f(y|θ). The parameters of the prior are called hyperparameters and

they are initially assumed to be known.

Inference is based on the so called posterior distribution: it can be viewed

as a compromise between likelihood and prior, i. e. between empirical and

subjective information. The posterior distribution is formally obtained by

means of Bayes’ theorem:

p(θ|y) =
f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ

(2.1)

Note that the posterior is a density for θ and then the denominator of

(2.1) is simply a constant (normalizing constant). Bayes’ theorem can then be

written in a more compact form:

p(θ|y) ∝ L(θ)p(θ) (2.2)

where ∝ means “proportional to”.



Chapter 2 Bayesian inference 5

It is worth anticipating that analytical calculation of the normalizing con-

stant is not always possible. In the next chapter, we shall discuss this problem.

When θ is a multivariate parameter θ = (θ1, . . . , θk)
′, we can obtain marginal

and conditional posterior distributions from the joint posterior density. The

marginal posterior density of θj is:

p(θj|y) =

∫
p(θ1, . . . , θk|y)dθ−j

where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θk).

Within the possible conditional distributions, an important role is played

by the so called full conditional: roughly speaking, a full conditional is the

distribution of a component conditional on the all remaining components. The

full conditionals for the posterior distribution are:

p(θj|θ−j, y) =
p(θ1, . . . , θk|y)

p(θ−j|y)
∝ p(θ1, . . . , θk|y) (2.3)

for j = 1, . . . , k. Of course, the above representation could be generalized for

the case in which θ is partitioned into vector components.

Another important ingredient for Bayesian inference is the predictive dis-

tribution. Suppose y denotes an observed sample and let ỹ be an unknown

observable variable. The distribution of ỹ conditional on y is called predictive

distribution (or posterior predictive distribution) and it is equal to:

f(ỹ|y) =

∫
f(ỹ, θ|y)dθ

=

∫
f(ỹ|θ, y)p(θ|y)dθ

The predictive distribution provides the expected distribution of ỹ:

f(ỹ|y) = E[f(ỹ|θ, y)]

where the expectation is taken with respect to the posterior.

2.3 Conjugate distributions

Some of the elements we introduced informally in the previous sections form

a Bayesian statistical model F :

F = {y ; L(θ) ; p(θ) ; θ ∈ Θ}
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In this work, a statistical model will also be denoted with the following nota-

tion:

y|θ ∼ f(y|θ)
θ ∼ p(θ)

where the symbol ∼ means “distributed as”.

The case in which, given a statistical model, prior and posterior distribu-

tions belong to the same class of distributions shows a property called conju-

gacy. More precisely, a family of distribution P is conjugate to a statistical

model F if for every prior p ∈ P and for any observational distribution f ∈ F ,

the posterior belongs to P . Dealing with conjugate distributions assures an-

alytic tractability: derivation of the posterior only requires a change in the

hyperparameters with no additional calculation.

For example, consider the following normal model for a vector of observa-

tions y = (y1, . . . , yn):

yi|µ iid∼ N(y|µ, σ2)

µ ∼ N(µ|λ, τ 2)

where N(.) stands for the normal distribution. The hyperparameters σ2, λ

and τ 2 are assumed known. The posterior distribution for µ is shown to be a

normal distribution:

p(µ|y) = N

(
µ

∣∣∣∣
nσ−2ȳ + τ−2λ

nσ−2 + τ−2
,

1

nσ−2 + τ−2

)

where ȳ is the sample mean of y.

2.4 Hierarchical models

The prior distribution is the formal representation of the prior information.

Unfortunately, prior information could not be rich enough to define a prior

distribution exactly. In such situations, it is desirable to incorporate this

uncertainty in the Bayesian model. To be precise, the model should be enriched

with “additional”uncertainty because the concept of prior is itself a way to

include uncertainty (about the parameters) in the analysis.
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A hierarchical model decomposes the prior distribution into several condi-

tional levels of distributions. In other words, the hyperparameters are no longer

fixed and they become random variables. The simplest hierarchial model has

only one additional level:

F = {y ; L(θ) ; p(θ|θ1) ; p1(θ1) ; θ ∈ Θ, θ1 ∈ Θ1}

The additional prior p1(θ1) is called hyperprior. The alternative notation

shows the hierarchical structure of the model better:

y|θ ∼ f(y|θ)
θ|θ1 ∼ p(θ|θ1)

θ1 ∼ p(θ1)

Through the specification of additional priors, a hierarchical analysis allows

to reduce the arbitrariness of the hyperparameters choice.

The posterior distribution is obtained by successive application of Bayes’

theorem:

p(θ|y) =

∫
p(θ|θ1, y)p(θ1|y)dθ1

where

p(θ|θ1, y) =
f(y|θ)p(θ|θ1)

f(y|θ1)

f(y|θ1) =

∫
f(y|θ)p(θ|θ1)dθ

p(θ1|y) =
f(y|θ1)p1(θ1)

f(y)

f(y) =

∫
f(y|θ1)p1(θ1)dθ1

As an example of hierarchical model, suppose any observation has a double

index yij, for i = 1, . . . , n and j = 1, . . . , ni. For instance, i could denote a

group and j an individual. A normal hierarchical model can be specified as

follows:

yij|µi
ind∼ N(yij|µi, σ

2)

µi|λ iid∼ N(µi|λ, τ 2)

λ ∼ N(λ|m, r2)



Chapter 2 Bayesian inference 8

for i = 1, . . . , n and j = 1, . . . , ni and where hyperparameters σ2, τ 2, m and

r2 are assumed known. The parameters µi can be viewed as group specific

means, while λ is the overall mean.

An early illustration of the hierarchical Bayes analysis for the normal linear

model is given in Lindley and Smith (1972).

More complex structures are possible. For instance, in partition hierarchical

models, first level parameters are clustered into partitions: µi’s are independent

and identically distributed only if they belong to the same partition. See

Malec and Sedransk (1992), Consonni and Veronese (1995) and Sampietro

and Veronese (1998).

2.5 Some particular distributions

In this section, we shall present a review of some univariate and multivariate

distributions which will be used in the next chapters.

2.5.1 The beta and the generalized beta distributions

A continuous random variable θ has a beta distribution with positive parame-

ters α and β if its density function Be(θ|α, β) is

Be(θ|α, β) = c θα−1(1− θ)β−1

for 0 < θ < 1, where

c =
1

B(α, β)
=

Γ(α + β)

Γ(α)Γ(β)

where B stands for the Beta function:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

and where Γ is the Gamma function:

Γ(α) =

∫ ∞

0

e−ttα−1dt

It is possible to show that, if θ has a beta distribution, then:

E(θ) =
α

α + β

V AR(θ) =
αβ

(α + β)2(α + β + 1)
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By considering the transformation λ = a+(b−a)θ, where θ has a Be(θ|α, β)

density, the beta distribution can be generalized to any finite interval (a, b) and

the resulting density function Be(a,b)(λ|α, β) is:

Be(a,b)(λ|α, β) =
1

B(α, β)

(θ − a)α−1(b− θ)β−1

(b− a)α+β−1

for a < θ < b. We shall refer to this distribution as generalized beta.

2.5.2 The gamma distribution

A continuous random variable θ has a gamma distribution with positive pa-

rameters α and β if its density function Ga(θ|α, β) is

Ga(θ|α, β) = c θα−1e−βθ

for θ > 0 and where c is a constant equal to:

c =
βα

Γ(α)

If θ has a gamma distribution, then:

E(θ) =
α

β

V AR(θ) =
α

β2
.

2.5.3 The inverted-gamma distribution

A continuous random variable θ has an inverted-gamma distribution with pos-

itive parameters α and β if its density function Ig(θ|α, β)is

Ig(θ|α, β) = c θ−(α+1)e−β/θ

for θ > 0 and where c is a constant equal to:

c =
βα

Γ(α)

If θ has an inverted-gamma distribution, then

E(θ) =
β

α− 1
, α > 1,

V AR(θ) =
β2

(α− 1)2(α− 2)
, α > 2.

The name of this distribution derives from the fact that if θ has a Ga(θ|α, β)

density, then λ = θ−1 has an Ig(λ|α, β) density.
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2.5.4 The Dirichlet distribution

A continuous random vector w = (w1, . . . , wk) has a Dirichlet distribution

of dimension k, with positive parameters δ1, . . . , δk, if its density function

Di(w|δ1, . . . , δk) is

Di(w|δ1, . . . , δk) = cwδ1−1
1 · · ·wδk−1

k

for 0 < wj < 1, j = 1, . . . , k, and w1 + · · ·+ wk = 1. c is a constant equal to:

c =

∏k
j=1 Γ(δj)

Γ(
∑k

j=1 δj)

Let δ0 =
∑k

j=1 δj. If w has a Dirichlet distribution, then

E(wj) =
δj

δ0

,

V AR(wj) =
δj(δ0 − δj)

δ2
0(δ0 + 1)

2.5.5 The truncated normal distribution

In general, we can define a truncated distribution simply as the part of a distri-

bution that is above or below some specified values. Suppose θ is a continuous

random variable with probability density function p(θ); the density of θ trun-

cated between two constants a and b is:

p(θ|a < x < b) =
p(θ)

Prob(a < θ < b)

The density of the truncated normal distribution with mean µ and variance σ2

will be denoted by N(a,b)(θ|µ, σ2) and it is:

N(a,b)(θ|µ, σ2) =
N(θ|µ, σ2)

FN(b|µ, σ2)− FN(a|µ, σ2)

where FN is the normal cumulative distribution function.



Chapter 3

MCMC methods

3.1 Introduction

The class of approximate methods of inference consists in techniques useful

when calculations cannot be performed analytically. It is possible to distin-

guish them in methods based on deterministic concepts and methods based on

stochastic simulation. For instance, Normal approximation, Laplace approxi-

mations and Gaussian quadrature belong to the first category. For a review,

see Evans and Swartz (1995).

This chapter is devoted to present the second class which, in turn, can

be divided into traditional methods based on non-iterative simulation (section

3.2) and methods based on iterative simulation, essentially formed by Markov

chain Monte Carlo or MCMC or again MC2 algorithms (section 3.4).

Because of the subject of this thesis, the emphasis will be on Bayesian

inference problems. Nevertheless, the methods we shall present are suitable

for more general applications.

3.2 Traditional methods based on stochastic

simulation

3.2.1 Monte Carlo calculations

In general, the idea of the methods based on stochastic simulation is to summa-

rize information concerning a distribution using samples from the distribution

11
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itself.

Let X denote a random variable whose distribution π is the distribution

of interest. Suppose we are able to generate N independent and identically

distributed (i.i.d) random draws x(1), x(2), . . . , x(N) from π. The Monte Carlo

recipe is to estimate the expected value of X with respect to π simply with

the empirical average:

1

N

N∑
i=1

x(i)

More generally, let Eπ[g(X)] the expected value of a function g of X; its

estimate is:

ḡ =
1

N

N∑
i=1

g(x(i)) (3.1)

Note that ḡ is an unbiased estimate of Eπ[g(X)] and has a sampling distribution

that is approximately Gaussian.

3.2.2 Importance sampling

Suppose direct generation from π is not possible: in such a case, Monte Carlo

technique seems to be useless. Luckily, importance sampling can often help

us because it enables us to approximate Eπ[g(X)] if π is close to another

distribution, say π∗, from which we have a random sample.

Assume that π and π∗ are proportional to the functions h and h∗ respec-

tively:

π∗(x) = c∗ h∗(x) > 0, x ∈ S∗

π(x) = c h(x) > 0, x ∈ S

where only h and h∗ are necessarily known and S ⊂ S∗.

Suppose we need Eπ[g(X)], for a given g, but we have a random sample

x(1), x(2), . . . , x(N) from π∗. First of all, note that:

Eπ∗

[
g(X)h(X)

h∗(X)

]
=

∫

S∗

g(x)h(x)

h∗(x)
c∗h∗(x)dx

=
c∗

c

∫

S

g(x) c h(x)dx (3.2)

=
c∗

c
Eπ[g(X)]
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The constants c and c∗ can be unknown but, as a special case of (3.2):

Eπ∗

[
h(X)

h(X)∗

]
=

c∗

c

Thus, the estimate for Eπ[g(X)] is

1

N

N∑
i=1

h(x(i))g(x(i))

h∗(x(i))

[
1

N

N∑
i=1

h(x(i))

h∗(x(i))

]−1

(3.3)

or
N∑

i=1

w(x(i))g(x(i))

where

w(x(i)) =
h(x(i))/h∗(x(i))∑N
i=1 h(x(i))/h∗(x(i))

In practice, the efficiency of this methods depends on how π∗ is close to

π: in fact, the estimate is satisfactory if there are no large weights among the

w(x(i))’s.

As a final comment, note that we required distributions π and π∗ known up

to a constant. Keeping in mind Bayes’ theorem (equation 2.1), it is immediate

to apply the method in a Bayesian context (e.g. h(θ) = L(θ)p(θ)), when we

cannot calculate analytically the normalization constant.

3.3 Markov chains

As it will be clear later on, MCMC methods overcome the limit of Monte Carlo

calculations (i.e. the need of an i.i.d sample from the target distribution π)

without requiring another distribution close to π (as in importance sampling),

but constructing a Markov chain with limit distribution π.

Thus, a brief presentation of Markov chains is now proposed. For a com-

prehensive treatment of this kind of stochastic processes, the reader is referred

to the books by Cox and Miller (1965) or Ross (1996).

Markov dependence is a well known concept attributed to the Russian

mathematician Andrei Andreivich Markov. For some set T , let {X(t) : t ∈ T}
be a collection of random quantities defining a stochastic process. The set of
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the values that X(t) can assume is called the state space: it will be denoted by

S and it will be initially assumed finite. T is the index set.

Roughly speaking, a process has the Markovian property if, given the

present state, past and future states are independent. A stochastic process

with a countable index set T is called a discrete time stochastic process. A

Markov chain is a discrete time stochastic process which satisfies the Marko-

vian property.

More formally, the process {X(t) : t ∈ T} is a Markov chain if T is countable

and if:

Prob(X(t+1) ∈ C|X(t) = x,X(t−1) ∈ Ct−1, . . . , X
(0) ∈ C0)

= Prob(X(t+1) ∈ C|X(t) = x)

for all sets C0, . . . , Ct−1, C ⊂ S and x ∈ S.

3.3.1 Transition probabilities

The probability that X(t+1) = z given X(t) = x is called transition probability.

If it does not depend on t, it will be denoted by p(x, z): in this case, the chain

is said to be homogeneous.

Suppose to collect all the transition probabilities in a matrix P , with the

(i, j)th element given by p(xi, xj): P is called transition probability matrix.

Clearly, P has non-negative elements and each row sums to one.

If the chain is homogeneous, it is possible to show that transition prob-

abilities over m steps can be obtained by the matrix product of P m times.

In other words, the resulting matrix Pm contains the probabilities of a chain

moving from a state to another in exactly m steps.

3.3.2 Stationary distribution and ergodicity

Let X(1), X(2), . . . be a Markov chain with transition probability matrix P

and state space S. In addition, let p(0) be the row vector representing the

distribution of the initial state X(0). The marginal distribution of X(t) is given

by:

p(t) = p(0)P t, t = 0, 1, . . .
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If π is a probability vector satisfying the general balance:

πP = π (3.4)

then π is a stationary distribution for P . Since P maintains π, if p(0) = π, then

p(t) = π for all t = 1, 2, . . . .

Suppose X(t) = x for a given t. Avoiding formal details, we can say that

another state z is accessible from x if, after m transitions, there is a positive

probability that X(t+1) = z. A Markov chain is called irreducible if all the states

of the chain are accessible from each other. In irreducible chains there may

still exist a periodic structure such that for each state x ∈ S, the set of possible

return times to x when starting in x is a subset of the set {d, 2d, 3d, . . . }, with

d ∈ N . The smallest number d with this property is the so-called period of the

chain. An irreducible chain is called aperiodic if the period d equals 1.

An irreducible and aperiodic Markov chain is called ergodic. If the chain

is ergodic, π is shown to be unique and, more important, p(t) → π as t →∞,

irrespective of p(0). Thus, if the chain is ergodic, π is also referred to as the

limit distribution.

3.3.3 Detailed balance

We have already mentioned that an MCMC algorithm intends to produce a

Markov chain with limit distribution π. To do that, the first step is to construct

P ’s that satisfy general balance (3.4) with respect to π, i.e. we require that:

∑
x∈S

π(z)p(x, z) = π(z) (3.5)

for all z ∈ S. Formula (3.5) involves a generally intractable summation over

the state space S. Luckily, we can use a sufficient condition for general balance,

namely detailed balance:

π(x)p(x, z) = π(z)p(z, x) (3.6)

for all x, z ∈ S. Clearly, it is convenient to check the detailed balance rather

than the general one.

Detailed balance is also known as reversibility condition. In fact, if a sta-

tionary Markov chain satisfies the (3.6), then it is “time reversible”: for all
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states x and z, the rate at which the process goes from x to z is equal to the

rate at which it goes from z and x.

3.4 MCMC methods

Over the last years, the considerable spreading of fast and powerful computers

has entailed a real explosion of MCMC methods, especially in Bayesian statis-

tics. Within a quite rich literature, we can suggest the books by Gilks et al.

(1996), Gamerman (1997) and Robert and Casella (1999), or the papers by

Casella and George (1992), Chib and Greenberg (1995) and Besag (2000).

In short, an MCMC algorithm constructs a Markov chain whose stationary

distribution is our distribution of interest π. Once the ergodicity of the chain

is proved, π can be considered as the limit distribution. Hence, the realized

values of the chain are used to make inference about π. For example, the

sequence of random variables corresponding to ḡ (equation 3.1), still converges

almost surely to Eπ[g(X)] as m → ∞, by the so called ergodic theorem for

Markov chains. The underlying theory is quite complicate and it does not

concern this thesis: what is important is that we can use empirical averages

to produce approximations to expectations under π for sufficiently large m.

3.4.1 Metropolis-Hastings algorithms

The name of this algorithm stems from the papers by Metropolis et al. (1953)

and Hastings (1970). Originally, the first version of this algorithm was imple-

mented to calculate properties of chemical substances.

Let Q be a transition probability matrix of a Markov chain with state space

S such that:

q(x, z) > 0 ⇔ q(z, x) > 0

for all x, z ∈ S. Now define:

p(x, z) = q(x, z)α(x, z), x 6= z ∈ S (3.7)

where α(x, z) = 0 if q(x, z) = 0 and otherwise

α(x, z) = min

(
1,

π(z)q(z, x)

π(x)q(x, z)

)
(3.8)
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It is immediate to prove that (3.7) satisfies the detailed balance (3.6) for x 6=
z. If π(z)q(z, x) > π(x)q(x, z), α(x, z) = (π(z)q(z, x))/(π(x)q(x, z)) while

α(z, x) = 1. Substituting in (3.7) and then in (3.6), the detailed balance

is achieved. Otherwise, if π(z)q(z, x) < π(x)q(x, z), then α(x, z) = 1 and

α(z, x) = (π(x)q(x, z))/(π(z)q(z, x)) and the (3.6) is still verified.

It is important to note that π is a stationary distribution, despite the

arbitrariness of q.

In practice, the algorithm works as follows. Suppose that the current value

of the chain is X(i) = x. The next value for the chain can be X(i+1) = X(i) or

X(i+1) = z, where z is called candidate state and it is generated from q(x, z).

The probability that X(i+1) = z, i. e. the candidate state is accepted, is α(x, z)

defined in (3.8).

Up to now, we have dealt with finite state space Markov chain. Luckily,

MCMC methods also work with continuous components. Although the theory

must then be rewritten for general state space (e.g. Meyn and Tweedie, 1993),

the modifications in practical terms are straightforward. Anyway, the termi-

nology should reflect this change: Q’s and P ’s become transition kernels rather

than matrices, with elements that are densities rather than probabilities. For

simplicity, the notation will be the same.

There are some particular case of Metropolis-Hastings algorithm. First of

all, if we choose a proposal density q such that q(x, z) = q(z, x) for all x and

z, the acceptance probability (3.8) becomes:

α(x, z) = min

(
1,

π(z)

π(x)

)

This simpler version of the method is known as Metropolis algorithm, because

it is the original algorithm in Metropolis et al. (1953).

Another particular case is the independence Metropolis algorithm, in which

the proposal states are generated independently of the current ones. In other

words, q(x, z) = q(z) for all x and z, and

α(x, z) = min

(
1,

π(z)q(x)

π(x)q(z)

)

The success of Metropolis-Hastings algorithm in Bayesian statistic is due

to the fact that, if the distribution of interest π(·) is a posterior distribution, in
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the ratio of (3.8) the normalizing constant is cancelled out and its calculation

is then avoided. Keeping in mind equation (2.2), a meaningful representation

of the ratio in the (3.8), which will be useful in the next chapters, is:

(likelihood ratio)× (prior ratio)× (proposal ratio)

3.4.2 Componentwise algorithms

Consider now explicitly the multivariate case: X(i) = (X
(i)
1 , . . . , X

(i)
k )′, with

x = (x1, . . . , xk)
′ and z = (z1, . . . , zk)

′ denoting possible values for X(i) . In the

form we presented Metropolis-Hastings algorithm, X(i) is updated in a single

block i. e. at each iteration all the k components are changed simultaneously

using the same q. In this section, we shall illustrate the possibility of assigning

different transition mechanisms to each component X
(i)
j , for j = 1, . . . , k.

Instead of a unique p (equation 3.7), consider k different transition prob-

abilities pj, j = 1, . . . , k, each of them constructed as in simple Metropolis-

Hastings and formed by qj and αj. The transition probability pj only updates

the jth component.

The acceptance probability αj is shown to be:

αj(xj, zj) = min

(
1,

π(z1, . . . , zk)q(zj, xj)

π(x1, . . . , xk)q(xj, zj)

)
(3.9)

The move determined by qj only updates X
(i)
j , so the other components remain

unchanged (z−j = x−j). Since π(z1, . . . , zk) = π(zj|z−j)π(z−j),

π(z1, . . . , zk)

π(x1, . . . , xk)
=

π(zj|z−j)

π(xj|x−j)

Hence, αj can be simplified to:

αj(xj, zj) = min

(
1,

π(zj|z−j)q(zj, xj)

π(xj|x−j)q(xj, zj)

)
(3.10)

Note that the (3.10) uses the full conditionals (section 2.2). If the distribution

of interest is a posterior distribution, the normalizing constant of the (2.3)

cancels out. Moreover, if the prior is designed with some independence struc-

tures, it is formed by products and the factors that do not involve X
(i)
j annul

each other.
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In order to choose the component to update, different mechanisms have

been suggested: for example, the choice can be made at random or in a fixed

pre-specified order.

3.4.3 Gibbs sampler

The idea underlying the Gibbs sampler is quite old. The name of the algo-

rithm comes from Geman and Geman (1984), where it was discussed in image

analysis. Nevertheless, the Gibbs sampler can be viewed as a componentwise

algorithm in which proposals are made from the full conditional themselves:

qj(zj, xj) = π(xj|x−j). Substituting in (3.10), the ratio becomes one and the

candidate state is always accepted.

Operationally, the algorithm can be described in the following way:

1. Initialize the iteration counter i = 1 and set arbitrary initial values

X(1) = (X
(1)
1 , . . . , X

(1)
k ).

2. Generate a new value X(i+1) = (X
(i+1)
1 , . . . , X

(i+1)
k ) from X(i) through

successive generation of values

X
(i+1)
1 ∼ π1(X

(i+1)
1 |X(i)

2 , X
(i)
3 , . . . , X

(i)
k )

X
(i+1)
2 ∼ π2(X

(i+1)
2 |X(i+1)

1 , X
(i)
3 , . . . , X

(i)
k )

. . .

X
(i+1)
k ∼ πk(X

(i+1)
k |X(i+1)

1 , X
(i+1)
2 , . . . , X

(i+1)
k−1 )

3. Increase the counter i = i + 1 and return to step 2.

3.4.4 Implementation of MCMC algorithms

The choice of the algorithm is the first issue when dealing with MCMC meth-

ods. Unfortunately, there is not a general rule and it depends on the nature

of the problem under study. For instance, when it is easy to write down the

full conditionals, the Gibbs sampler is the most natural choice. Otherwise, the

possibility to “tune”the proposals is often a desirable feature of the Metropolis-

Hastings algorithm. Sometimes the best solution can be a hybrid algorithm,
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i. e. a componentwise algorithm in which some components are updated with

Gibbs type moves.

Once the algorithm is chosen, one of the most important problems is the

convergence rate. Despite the theoretical results ensuring the convergence of

an MCMC method, its practical implementation deals with topics like the

sample size (how many iterations should the algorithm run?) and the burn-in

(since the initial states of the chain are necessarily arbitrary, after how many

iterations does the algorithm reach the convergence?). In literature, many

convergence diagnostics have been proposed: a group of them are based on the

study of the properties of the observed output from the chain. For instance,

see Cowles and Carlin (1996) or Robert (1995).

3.4.5 Inference using MCMC output

After a simulation, whatever the MCMC algorithm chosen, a sample from the

distribution of interest π is available. Suppose π is a posterior distribution

for θ = (θ1, . . . , θk) and suppose now to denote the sample by θ
(i)
1 , . . . , θ

(i)
k , for

i = 1, . . . , N . As we have already mentioned, we are able to estimate expected

values of the form:

Eπ[g(θ)] =

∫

Θ

g(θ)π(θ)dθ (3.11)

by the corresponding estimators based on the sample:

1

N

N∑
i=1

g(θ(i))

Some particular cases of the (3.11) allows us to obtain characteristics of π

from the sample. First of all, if g(θ) = θ, then the (3.11) is the vector of the

posterior means µ and it is estimated simply by:

1

N

N∑
i=1

θ(i)

If g(θ) = (θ − µ)(θ − µ)′, then we have the posterior variance and covariance

matrix. If g(θ) = IC(θ), where IC(θ) stands for the indicator function (i.e.

it is 1 if θ ∈ C and 0 otherwise), then we obtain the posterior probability of
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a set C. Furthermore, letting g(θ) = p(y|θ), where y can denote a ’future’

observation, we have the predictive distribution (section 2.2) for y.

Credibility intervals are similarly obtained by estimating the interval limits

by the respective sample quantiles.

If we are interested in the marginal posterior density of a component θj,

we can estimate it by (a smoothed version of) the histogram of sampled values

of θj. Where additional information about π are available, better estimators

can be obtained by using conditional distributions (see, Gelfand and Smith,

1990).



Chapter 3 MCMC methods 22



Chapter 4

MCMC and Bayesian model

determination

4.1 Introduction

Up to now, we presented analysis and inference procedures that deal with

evaluation of a given model. In this chapter, the problem of choosing between

models is treated in a Bayesian perspective: the key idea is to index all the

models under consideration and to view this index as another parameter.

More formally, consider a collection M of candidate models indexed by

m = 1, . . . , M . Let θm be the parameters related to the model m with θm ∈ Θm.

The sampling distribution is now defined by f(y|θm,m): note that each model

specifies this distribution apart from the unknown parameter vector θm.

Conditionally to a given model m, Bayes’ theorem (equation 2.1) gives the

posterior for θm:

p(θm|m, y) =
L(θm,m)p(θm|m)∫

L(θm,m)p(θm|m)dθm

(4.1)

where L(θm,m) is the likelihood (i.e. the sampling distribution f(y|θm,m)

regarded as a function of θ and m) and where p(θm|m) is the prior distribution

conditional on model m.

To compare between models, it is natural to use the marginal posterior

distribution of m which is derived by Bayes’ theorem:

p(m|y) =
f(y|m)p(m)∑M

m=1 f(y|m)p(m)
(4.2)

23
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where p(m) is a discrete prior for the models and where f(y|m) is the marginal

likelihood:

f(y|m) =

∫
L(θm,m)p(θm|m)dθm (4.3)

Unfortunately, the calculation of the normalizing constant of the (4.2) poses

the usual problems in terms of analytical tractability, especially with a high

number of possible models.

In the following, we present some methods based on simulations that are

able to deal with model selection. We divide them into two main categories:

across- and within- model simulation methods.

The across-model simulation approach is based on an MCMC simulation

with states of the form (m, θm). The distribution of interest is the joint pos-

terior of the parameters and the model index. The marginal posterior distri-

bution of m is simply estimated by the proportions of m’s, for m = 1, . . . ,M ,

in the sample obtained by the MCMC algorithm. By the conditional posterior

distribution p(θm|m, y), we can make inference within each model. A sample of

p(θm|m, y) is obtained considering only the sampled values for which the model

is m. The acronym MCMCMC or MC3 is often used to indicate this class of

techniques and it stands for Markov chain Monte Carlo model composition.

For a study about the connection between some of them, see Dellaportas et

al. (2002).

In the within-model simulations, the aim of finding p(m|y) for all m is

reached by estimating all the marginal likelihoods f(y|m). Once the f(y|m)

for all m are estimated, it is sufficient to normalize the products f(y|m)p(m)

to achieve the marginal posterior probabilities (4.2). As it will be clear later

on, the idea of the within-model simulation methods is then to estimate the

marginal likelihoods separately for each m, using samples for the within-model

posteriors p(θm|y, m) from traditional MCMC algorithms.

In the analysis of the mixture of autoregressive models (chapter 6), model

selection will be performed using a combination of an across- and a within-

model simulation method.

It is important to note that Bayesian model determination entails some

advantages with respect to other approaches. First of all, the most obvious

one is the simplicity of the interpretation of the results: conclusions like “the
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(posterior) probabilities that m and m′ are true are 0.87 and 0.13 respectively”

are easy to interpret even with a limited statistical background.

In addition, Bayesian model determination acts as an automatic “Occam’s

razor”, selecting a simpler model over a more complex model if both are com-

patible with the data.

Another fundamental feature is that one can account for model uncertainty.

Standard approach selects a single model from a class of candidate models and

then makes inference based on this model. This procedure ignores model un-

certainty and it could provide small predictive precisions (see Draper, 1995, for

a discussion). Conversely, Bayesian model determination can take into account

model uncertainty because one can maintain consideration of several models,

with the input of each into the analysis weighted by the model posterior prob-

ability.

4.2 Across-model simulation

The state space for an across-model simulation is Θ = {Θm × M}. It could

seem a harmless generalization of the state space for the traditional MCMC

algorithms of chapter 3: actually, this new space is non-standard because the

dimension of parameters θm can depend on the model.

4.2.1 Independence sampler and pilot MCMC

The most natural approach to model determination using MCMC consists,

anyway, in applying directly the Metropolis-Hastings algorithm (section 3.4.1)

over the joint space of θm and m in order to simulate the posterior p(m, θm|y).

Suppose the current state of the chain is (θm,m). A proposal state (θ′m′ , m′)

is generated from the density q((θm,m), (θ′m′ ,m′)) with respect to the natural

measure on Θ and it is accepted with probability:

α((θm,m), (θ′m′ ,m′)) = min

(
1,

p(θ′m′ ,m′|y)q((θ′m′ ,m′), (θm,m))

p(θm,m|y)q((θm,m), (θ′m′ ,m′))

)

= min

(
1,

L(θ′m′ , m′)p(θ′m′|m′)p(m′)q((θ′m′ ,m′), (θm,m))

L(θm,m)p(θm|m)p(m)q((θm,m), (θ′m′ ,m′))

)
(4.4)
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The first line of the (4.4) is a simple generalization of the (3.8); since the target

distribution is a posterior, it is rewritten in the product of likelihood and prior,

where the (joint) prior p(θm,m) is decomposed further in p(θm|m)p(m).

As in Gruet and Robert (1997), the proposal is usually constructed as

a proposal for the model followed by a conditional proposal for the model

parameters:

q((θm,m), (θ′m′ ,m′)) = q(m′|m, θm)q(θ′m′|m′,m, θm)

Because of the general difficulty to find a proposal distribution of this kind,

Tierney (1994) suggested a special case of this approach called independence

sampler. The proposed values are independent with respect to the current

ones and then:

q((θm,m), (θ′m′ ,m′)) = q(θ′m′ ,m′)

The independence sampler is straightforward to implement but, apart from the

rare case in which q is a reasonable approximation of the target distribution,

it may be not efficient.

In order to choose q, pilot MCMC runs can be used. The idea is to simulate

the conditional posteriors p(θm|m, y) for each model m ∈ M by a standard

MCMC algorithm on the parameter space θm. These pilot runs construct ap-

proximations of p(θm|m, y) that are used in forming proposal q(θ′m′ |m′). For

instance, q can be a normal density with moments calculated on the MCMC

output. This method should work well if the conditional posteriors are rea-

sonable unimodal. Clearly, if the number of possible models is not small, this

approach is not feasible.

4.2.2 Reversible jump algorithm

Green (1995) developed an MCMC strategy, called reversible jump algorithm,

which allows the proposal to depend on the current values of the chain. This

method creates a Markov chain which can “jump” between models with pa-

rameter spaces of different dimension.
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Suppose to denote the dimension of a parameter vector θm with d(θm). In

practice, the reversible jump works as follows. Let (θm,m) be the current value

of the chain and let gm,m′ be an invertible function:

• A proposal model m′ is generated with probability q(m′|m).

• Generate a random vector u of dimension d(u) from a proposal density

q(u|θm, m,m′).

• Set (θ′m′ , u′) = gm,m′(θm, u), with d(u′) = d(θm) + d(u)− d(θ′m′)

• Accept the proposal values (θ′m′ , m′) with probability:

α((θm,m), (θ′m′ ,m′)) = min(1, R)

with:

R =
L(θ′m′ ,m′)
L(θm,m)

× p(θ′m′|m′)p(m′)
p(θm|m)p(m)

× q(m|m′)q(u′|θ′m′ ,m′,m)

q(m′|m)q(u|θm, m,m′)

×
∣∣∣∣
∂gm,m′(θm, u)

∂(θm, u)

∣∣∣∣ (4.5)

A useful representation of the ratio in the (4.5) is:

(likelihood ratio)× (prior ratio)× (proposal ratio)× (jacobian)

In some cases, the jacobian in the (4.5) is one. For instance, if all the

parameters of the proposed model are generated directly from a proposal dis-

tribution, then (θ′m′ , u′) = (θm, u), with d(θm) = d(u′) and d(θ′m′) = d(u).

Since the (4.5) becomes equivalent to the (4.4), the independence sampler can

be viewed as a special case of reversible jump.

Note also that if m = m′, the move is a standard Metropolis-Hastings step.

Another simplified version of the algorithm occurs when d(u′) = 0: in this

case, θ′m′ = gm,m′(θm, u) and the “dimension matching” is achieved since

d(u) = d(θ′m′)− d(θm). The ratio (4.5) of the acceptance probability becomes:

R =
L(θ′m′ ,m′)p(θ′m′|m′)p(m′)q(m|m′)

L(θm,m)p(θm|m)p(m)q(m′|m)q(u|θm, m,m′)

∣∣∣∣
∂gm,m′(θm, u)

∂(θm, u)

∣∣∣∣
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Furthermore, the proposal density q is often independent, i. e.:

q(u|θm,m, m′) = q(u)

The reversible jump algorithm constructs a Markov chain retaining detailed

balance (equation 3.6) and then ensuring the correct limiting distribution. For

the formal proof see Green(1995).

As a simple example, consider only two models m1 and m2 with parameters

θ1 and θ2. Suppose that d(θ2) > d(θ1) and d(u) = d(θ2)− d(θ1). Suppose also

that the random quantity u is generated independently from the state of the

chain. The usual strategy to implement the reversible jump move is to design

it in tandem, forming a reversible pair. Thus, the acceptance probability of

the move from m1 to m2 is given by:

min

(
1,

L(θ2,m2)p(θ2|m2)p(m2)q(m1|m2)

L(θ1,m1)p(θ1|m1)p(m1)q(m2|m1)q(u)

∣∣∣∣
∂g(θ1, u)

∂(θ1, u)

∣∣∣∣
)

Likewise, the reverse move from m2 to m1 has an acceptance probability given

by:

min

(
1,

L(θ1,m1)p(θ1|m1)p(m1)q(m2|m1)q(u)

L(θ2,m2)p(θ2|m2)p(m2)q(m1|m2)

∣∣∣∣
∂(θ1, u)

∂θ2

∣∣∣∣
)

The choice of the function g is crucial in terms of efficiency of the algorithm

because of its role in forming the proposal values. g is usually chosen according

to informal considerations suggesting a reasonable probability of acceptance

(see for example the ”“moment matching” expedient of section 5.4.3).

For an illustration of some strategies for the construction of reversible jump

proposals, see Brooks et al. (2003).

4.2.3 Carlin and Chib method

The following approach to model choice is based on the Gibbs sampler idea

and it was introduced by Carlin and Chib (1995).
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Let ψ be the collection of all the parameters for every model, ψ = (θ1, . . . , θM).

Note that the joint distribution of all random quantities is:

p(y, ψ,m) = f(y|ψ, m)p(ψ|m)p(m)

Now assume that:

p(ψ|m) =
M∏
i=1

p(θi|m)

i. e. θm are conditionally independent given m.

The prior p(θi|m), for i 6= m, is called pseudo prior and it specifies the

distribution of the parameters of model i given another model m.

As we mentioned in the introduction, f(y|ψ, m) = f(y|θm,m). Thus, the

joint distribution becomes:

p(y, ψ, m) = f(y|θm,m)
M∏
i=1

p(θi|m)p(m)

and since p(y, ψ, m) ∝ p(ψ, m|y) we can propose the following strategy for a

Gibbs sampler:

• Full conditional for θ:

p(θm|θ−m, i, y) ∝




f(y|θm,m)p(θm|m), i = m

p(θm|i), i 6= m

for m = 1, . . . ,M .

• Full conditional for m:

p(m|ψ, y) ∝ f(y, ψ, m) = c−1f(y|θm,m)
M∏
i=1

p(θi|m)p(m)

for m = 1, . . . ,M and where:

c =
M∑

l=1

f(y|θl, l)
M∏
i=1

p(θi|l)p(l)

Clearly, it may not be possible to sample directly for some of the θm: in such

situations, a Metropolis-Hastings move may be used.
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This method is not free from difficulties. First of all, the choice of the

pseudo priors affects the rate of convergence of the chain and it must be done

with care. In addition, the algorithm shows sensitivity with respect to the

model prior specifications and for certain priors the chain does not seem to

move between models. Finally, the method is not applicable to the case of a

countable number of models.

4.2.4 Other across-model approaches

In the literature, several across-model simulation methods were presented.

Anyway, they are often closely related to reversible jump.

Grenander and Miller (1994) propose an algorithm with two kinds of move

(between-model jumps and within-model diffusion) using a Langevian stochas-

tic differential equation.

Another approach is based on jump diffusions (Phillips and Smith, 1996).

The key idea is to take into account model uncertainty by introducing a joint

prior probability distribution over both the set of possible models and the

parameters of those models. The resulting posterior distribution is achieved by

an iterative jump-diffusion sampling algorithm. A jump is a discrete transition

between models of different dimensionality.

Geyer and Moller (1994) propose a Metropolis-Hastings sampler which con-

structs a continuous-time Markov chain in order to simulate certain spatial

point processes (Ripley, 1977, originally investigated this idea using “birth

and death” process).

The theory of point processes is also used by Stephens (2000): in particu-

lar, the idea is to view the parameters of the model as point process, in order

to create a Markov birth-death process with an appropriate stationary distri-

bution. For the connection between this method and the reversible jump see

Cappé et al. (2001).

4.3 Within-model simulation

As we mentioned in the introduction of this chapter, within-model simulation

techniques calculate the posterior distribution of the model p(m|y) through
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the estimation of the marginal likelihood f(y|m) for all m using a sample from

the posterior p(θm|y, m). Then we suppose to have such a sample generated,

for instance, by a traditional MCMC of chapter 3.

For notational convenience, the model index m will be suppressed in the

rest of the chapter.

4.3.1 Importance sampling estimators of the marginal

likelihood

From equation (4.3), the marginal likelihood can be viewed as the following

expected value:

f(y) =

∫
L(θ)p(θ)dθ = Eprior[L(θ)] (4.6)

A chance to estimate f(y) consists in using the importance sampling method

(section 3.2.2). Thus, if we have samples θ(1), θ(2), . . . , θ(N) from the auxiliary

distribution π∗ = c∗ h∗, Eprior[L(θ)] is estimated by (see equation 3.3):

1

N

N∑
i=1

p(θ(i))L(θ(i))

h∗(θ(i))

[
1

N

N∑
i=1

p(θ(i))

h∗(θ(i))

]−1

or in a more compact form:
‖pL/h∗‖π∗

‖p/h∗‖π∗

where ‖g‖f = N−1
∑N

i=1 g(θ(i)), where g is a function and θ(i) is a sample of

size N from f(θ).

Different choices for h∗ lead to different estimators for the marginal likeli-

hood. The simplest one is the prior, that is h∗ = p; the estimator is then:

‖L‖prior

Note that it is a simple average of the likelihoods of a sample from the prior and,

in other words, it is the Monte Carlo estimator of the (4.6). This estimator

was investigated in particular cases by McCulloch and Rossi (1991). The

problem with it is that most of θ
(i)
m have small likelihood values if the posterior

is much more concentrated than the prior: as a consequence, the process is

quite inefficient.
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If we choose the posterior as the auxiliary distribution (that is, h∗ = Lp),

the estimator is:

‖1/L‖−1
posterior

This harmonic mean of the likelihood values (Newton and Raftery, 1994) can

be computationally unstable because of the occasional occurrence of θ
(i)
m with

small likelihood.

Another possibility consists in using a mixture of the prior and posterior

densities (h∗(θ) = wp(θm)+(1−w)p(θm|y, m)), in order to implement a sort of

compromise between the two previous estimators. Clearly, one must simulate

from the prior as well as the posterior. Newton and Raftery (1994) show how

to avoid that using an iterative scheme.

Gelfand and Dey (1994) mention a modification of the previous harmonic

mean, i.e.:

‖f/Lp‖−1
posterior

where f is a function of θm and it is any probability density. The efficiency of

this estimator depends on how f is close to the posterior.

The bridge sampling technique, originally proposed by Meng and Wong

(1996), is another specification of the importance sampling estimator of the

marginal likelihood: if g is a positive function, their estimator is:

‖pLg‖prior

‖p g‖posterior

The optimal choice of g can be computed from an initial guess. The disadvan-

tage is the need of simulating from the prior as well as the posterior.

4.3.2 Marginal likelihood from the Gibbs output

Chib (1995) proposed a method to estimate the marginal likelihood using the

output generated by a Gibbs sampler (section 3.4.3).

The starting idea is that the marginal likelihood is the normalizing constant

of the posterior density (see equations 4.3 and 4.1). Thus, we can write:

f(y) =
L(θ)p(θ)

p(θ|y)
(4.7)
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The (4.7) is called basic marginal likelihood identity. Note that this identity

is true for every θ: this means that we can estimate the marginal likelihood

by finding an estimate of the posterior ordinate p(θ∗|y) in a single point θ∗.

Thus, using the computationally convenient logarithm scale and indicating the

estimate of p(θ∗|y) by p̄(θ∗|y):

lnf̄(y) = l(θ∗) + lnp(θ∗)− lnp̄(θ∗|y) (4.8)

where f̄(y) is the estimate of the marginal likelihood and l(θ∗) is the loglike-

lihood. For estimation efficiency, the point θ∗ is taken to be a high-density

point in the support of the posterior.

What it is necessary to do now is to produce the estimate p̄(θ∗|y). Af-

ter that, all (4.8) requires is the evaluation of the loglikelihood function and

the prior. The estimate does not suffer from any instability problem. The

estimation error is derived in Chib (1995).

Suppose θ is split into B blocks θ = (θ1, θ2, . . . , θB) and suppose we are

able to write the full conditionals for each of them. We can also consider a

latent variable, say z, which will be useful in the analysis of mixture models

(chapters 5 and 6).

The complete set of full conditional is then:

p(θr|θ−r, z, y), r = 1, . . . , B

p(z|θ, y) (4.9)

where θ−r = (θ1, . . . , θr−1, θr+1, . . . , θB).

Let ηr−1 = (θ1, . . . , θr−1) and ηr+1 = (θr+1, . . . , θB). The posterior density

p(θ∗|y) can be decomposed as:

p(θ∗|y) =
B∏

r=1

p(θ∗r |η∗r−1, y) (4.10)

Note that each term of the (4.10) is:

p(θ∗r |η∗r−1, y) =

∫
p(θ∗r , η

r+1, z|η∗r−1, y) dηr+1dz

=

∫
p(θ∗r |η∗r−1, η

r+1, z, y)p(ηr+1, z|η∗r−1, y) dηr+1dz
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and its Monte Carlo estimator is:

p̄(θ∗r |η∗r−1, y) = N−1

N∑
i=1

p(θ∗r |η∗r−1, η
r+1,(i), z(i), y) (4.11)

if {ηr+1,(i), z(i)}, for i = 1, . . . , N , are samples from p(ηr+1, z|η∗r−1, y).

The method estimates each term of the (4.10) by successive “reduced”

Gibbs samplers, i.e. with a decreasing number of full conditionals. Starting

with r = 1, it can be represented by the following steps:

1. Sample {ηr,(i), z(i)}, for i = 1, . . . , N , from the Gibbs sampler conditional

to η∗r−1, i.e. with distribution of interest p(ηr, z|η∗r−1, y).

2. Set:

p̄(θ∗r |η∗r−1, y) = N−1

N∑
i=1

p(θ∗r |η∗r−1, η
r+1,(i), z(i), y)

3. r = r + 1 and go to step 1 until r = B.

In the end, the estimate of the loglikelihood is:

lnf̄(y) = l(θ∗) + lnp(θ∗)−
B∑

r=1

lnp̄(θ∗r |η∗r−1, y) (4.12)

Since the samples {ηr+1,(i), z(i)} are drawn from the Gibbs of step 1, they

are marginally from p(ηr+1, z|η∗r−1, y) and the (4.11) is indeed the Monte Carlo

estimator of p(θ∗r |η∗r−1, y).

4.3.3 Marginal likelihood from the Metropolis-Hastings

output

To perform the previous method, it is necessary to have all the full conditionals

in closed form. Chib and Jeliazkov (2001) provide a generalization which

overcomes this problem and estimates the marginal likelihood using the output

from a Metropolis-Hastings algorithm (section 3.4.1).

To illustrate and prove the method, we begin with the simple case in which

the posterior density is sampled in one block by the Metropolis-Hastings algo-

rithm. The produced sample is θ(1), θ(2), . . . , θ(N), where θ(i) = (θ
(i)
1 , . . . , θ

(i)
k ),
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for i = 1, . . . , N . From equation (3.8), the acceptance probability of the algo-

rithm is:

α(θ, θ′) = min

(
1,

L(θ′)p(θ′)
L(θ)p(θ)

q(θ′, θ)
q(θ, θ′)

)

where θ′ is the candidate state and q is the usual proposal density. As we know,

Metropolis-Hastings method satisfies the detailed balance (equation 3.6), thus

we can write:

α(θ, θ∗)q(θ, θ∗)p(θ|y) = α(θ∗, θ)q(θ∗, θ)p(θ∗|y)

for any point θ∗. Integrating both sides of this expression with respect to θ,

we obtain:

p(θ∗|y) =

∫
α(θ, θ∗)q(θ, θ∗)p(θ|y)dθ∫

α(θ∗, θ)q(θ∗, θ)dθ

=
E1[α(θ, θ∗)q(θ, θ∗)]

E2[α(θ∗, θ)]

where the expectation E1 is with respect to the posterior p(θ|y) while the

expectation E2 is with respect to q(θ∗, θ). The posterior ordinate is then

estimated by the Monte Carlo estimator:

p̄(θ∗|y) =
N−1

∑N
i=1 α(θ(i), θ∗)q(θ(i), θ∗)

J−1
∑R

j=1 α(θ∗, θ(j))

where θ(i), for j = 1, . . . , N , are the samples from the posterior and θ(j), for

j = 1, . . . , J , are draws from q(θ∗, θ), given the fixed value θ∗.

The marginal likelihood is then estimated by

lnf̄(y) = l(θ∗) + lnp(θ∗)− lnp̄(θ∗|y)

Consider now the general case in which θ is split into B blocks θ =

(θ1, θ2, . . . , θB) as in the previous section. Consider also the latent variable

z. Suppose a componentwise Metropolis-Hastings algorithm (section 3.4.2) is

available: each block is updated with a probability of the form (equation 3.10):

α(θr, θ
′) = min

(
1,

p(θ′|θ−r, z, y)q(θ′, θr)

p(θr|θ−r, z, y)q(θr, θ′)

)

= min

(
1,

L(θ′, θ−r, z)p(θ′, θ−r)q(θ
′, θr)

L(θr, θ−r, z)p(θr, θ−r)q(θr, θ′)

)
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Let ηr−1 = (θ1, . . . , θr−1) and ηr+1 = (θr+1, . . . , θB). The posterior ordinate at

a given point θ∗ is decomposed as in (4.10) and, using an analogous argument

to the previous single-block case, each term of it is equal to

p(θ∗r |η∗r−1, y) =
E1[α(θr, θ

∗
r)q(θr, θ

∗
r)]

E2[α(θ∗r , θr)]
(4.13)

where the expectation E1 is with respect to p(θr, η
r+1, z|η∗r−1, y) and the ex-

pectation E2 is with respect to the product p(ηr+1, z|η∗r , y)q(θ∗r , θr).

Suppose now to have samples {η1,(i), z(i)}, for i = 1, . . . , N1, from the avail-

able componentwise Metropolis-Hastings algorithm. To estimate the two inte-

grals in (4.13), the following steps must be performed (start with r = 1):

1. Set η∗r = (η∗r−1, θ
∗
r) and sample {η̃r+1,(i), z̃(i)}, for i = 1, . . . , Nr+1, from

the reduced Metropolis-Hastings algorithm with distribution of interest

p(ηr+1, z|η∗r , y). At each step of the sampling also draw θ̃
(i)
r from q(θ∗r , θr).

2. Set:

p̄(θ∗r |η∗r−1, y) =
N−1

r

∑Nr

i=1 α(θ
(i)
r , θ∗r)q(θ

(i)
r , θ∗r)

N−1
r+1

∑Nr+1

i=1 α(θ∗r , θ̃
(i)
r )

(4.14)

3. Set ηr+1,(i) = η̃r+1,(i) and z(i) = z̃(i), for i = 1, . . . , Nr+1.

4. Set r = r + 1 and go to step 1 until r = B.

Note that in equation (4.14), samples θr,(i) are from p(θr, η
r+1|η∗r−1, y) while

θ̃r,(i) are from p(ηr+1, z|η∗r , y)q(θ∗r , θr), thus the (4.14) is the Monte Carlo esti-

mator of the (4.13).

When all the terms in (4.10) are estimated by these reduced simulations,

the marginal likelihood on the log scale is estimated as in (4.12).

In the analysis of the mixture of autoregressive models of chapter 6, the set

of parameters will be split into several blocks: some of them will be updated

by Metropolis-Hastings moves and others by Gibbs moves. As a consequence,

a combination of the last two methods will be used, depending on the type of

the move.



Chapter 5

Mixture models

5.1 Introduction

Historically, the concept of finite mixture distributions dates back to the 19th

century. Since the two pioneer works of Newcomb (1886) and Pearson (1894),

the interest in this framework has been lively and sustained. Mixture modelling

knew a wide range of applications: medical diagnostics, geography, agriculture,

astronomy, economics, etc. It provides a natural mean for the formalization of

heterogeneity, when the observed phenomena are too intricate to be described

by simple probabilistic modelling through classical distributions. The aspects

of mixture models establishes links with cluster analysis, latent structures,

detection of outliers, robustness analysis, density estimation in semiparametric

approaches and so on.

Nevertheless, statistical analysis of mixtures is not straightforward. In

general, there is no explicit formulae for estimators of the various parameters.

In addition, the geometry of the parameter space often poses non-standard

problems.

The literature is quite rich. Possible references are Everitt and Hand (1981),

Titterington et al. (1985) and Lindsay (1995).

37
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5.2 Basic concepts

The basic mixture model for independent observations yi is defined as:

yi|w, θ
iid∼

k∑
j=1

wjf(yi|θj), i = 1, . . . , n (5.1)

where w = (w1, . . . , wk), with:

wj > 0, j = 1, . . . , k; w1 + · · ·+ wk = 1

and θ = (θ1, . . . , θk). The densities f(yi|θj) are called component densities

and the parameters w1, . . . , wk are the mixing weights, or simply weights, of

the mixture model. k is the number of components of the mixture and it is

initially assumed fixed (for this reason we shall omit it from the conditioning

set of variables).

The so-called direct application of finite mixture models refers to situations

in which we believe in the existence of k underlying categories and each of the

observed variables yi belongs to only one of these categories. From this point of

view, f(yi|θj) represents the probability density of yi given that the observation

comes from category j; the probability that each observation comes from the

j-th component is wj.

Typically, we do not usually observe the component of yi directly. Con-

sider now a latent variable z = (z1, . . . , zn) which is a “component label”:

specifically, for i = 1, . . . , n, zi = j if the ith observation comes from the jth

component. Probabilistically, we assume that zi are discrete random variables

independently drawn from the discrete distribution:

p(zi|w) =
k∑

j=1

wjI(zi=j), zi = 1, 2, . . . , k (5.2)

where I(A) denotes the indicator function of the event A. Alternatively, Prob(zi =

j|w) = wj. Note that, given zi and θ, the observations are drawn from their

respective individual subpopolations:

yi|zi, θ ∼
k∑

j=1

f(yi|θj)I(zi=j) (5.3)

for i = 1, . . . , n.
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5.3 Bayesian estimation

Several statistical approaches were implemented in order to make inference for

mixture models but unfortunately all of them have to deal with a number of

potential problems.

For instance, the method of moments may not allow explicit or unique

solutions. Furthermore, it is possible to show that moment estimators may

not be asymptotically efficient.

The maximum likelihood estimation often leads to non analytic treatment,

posing computational problems that are not always straightforward. Typi-

cally, the analysis is based on numerical procedures like the EM algorithm, the

Newton-Raphson algorithm and the method of scoring.

For a review of these and other non Bayesian approaches, see Titterington

et al. (1985).

In the following, we shall focus on a Bayesian analysis of mixtures. If the

prior distributions are proper (a distribution is called improper if it does not

integrate to unity), Bayes estimators are well-defined. Nevertheless, it is only

after the advent of MCMC methods that the implementation of the Bayesian

approach has became practically feasible.

5.3.1 Analysis for the exponential family

Assume that all the component densities of the mixture belong to the expo-

nential family:

f(yi|θj) = a(yi) exp{yi θj − b(θj)} (5.4)

for j = 1, . . . , k. This allows us to carry out a conjugate analysis (section

2.3). Specifically assume that the parameters θj are independent with prior

distribution equal to:

p(θj) ∝ exp{r′j θj − λj b(θj)} (5.5)

where, for j = 1, . . . , k, rj is a known vector of the same length as θj and λj is

a known scalar hyperparameter.

For the mixing weights, assume a Dirichlet distribution (section 2.5.4):

w ∼ Di(w|δ1, . . . , δk) (5.6)
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with known hyperparameters δj, j = 1, . . . , k.

Note that the parameter set of the model is (w, θ) and the likelihood is

given by:

L(w, θ) =
n∏

i=1

k∑
j=1

wjf(yi|θj) (5.7)

By considering the allocation variable z, posterior expectations of (w, θ)

can be written in closed form (Diebolt and Robert, 1990), but it leads to

intractable calculations, since the posterior distribution takes into account all

the kn partitions of the sample (for instance, with only 50 observations, a

simple model with two component requires the calculation of about 11 · 1014

terms).

Luckily, Bayesian analysis can be implemented straightforwardly using

MCMC, in particular with Gibbs sampler.

5.3.2 Gibbs sampler implementation

The full conditionals required by the Gibbs sampler (section 3.4.3) are easily

calculated if we consider the allocation variable z. First of all, the likelihood

becomes:

L(θ, z) =
n∏

i=1

k∑
j=1

f(yi|θj)I(zi=j)

=
k∏

j=1

∏
i:zi=j

f(yi|θj) (5.8)

i.e., conditional on the information about the source of yi, only the correspond-

ing component is relevant.

The parameter set is augmented (w, θ, z), but the implementation of the

Gibbs sampler is straightforward. Letting nj =
∑k

j=1 I(zi=j) and nj ȳj =∑
i:zi=j yi, for j = 1, . . . , k, the complete set of full conditionals is:

• Full conditional for w:

p(w|θ, z, y) = pw(w|δ1 + n1, . . . , δk + nk) = Di(w|δ1 + n1, . . . , δk + nk)

• Full conditional for θ: independently for j = 1, . . . , k,

p(θj |w, z, y) ∝ exp {(rj + nj ȳj)θj − (λj + nj)b(θj)} ,
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• Full conditional for z: independently for j = 1, . . . , k,

p(zi|w, θ, y) = c−1

k∑
j=1

wjf(yi|θj) I(zi=j), (5.9)

where c =
∑k

s=1 wsf(yi|θs).

For derivation of these results, see Appendix 5.A.

5.4 Mixture of normal distributions

5.4.1 Known number of components

As a special case of the previous analysis, Bayesian estimation of the mixture of

normal distributions with a fixed number of components is easily established.

The following analysis largely follows Diebolt and Robert (1994). The number

of components k is initially assumed fixed. The next sections will generalize

the model to an unknown k.

First of all, the distribution of the observable variable is now:

yi|w, µ, σ2 iid∼
k∑

j=1

wj N(yi|µj, σ
2
j ), i = 1, . . . , n. (5.10)

with µ = (µ1, . . . , µk) and σ2 = (σ2
1, . . . , σ

2
k).

It is easy to derive the moments for a mixture of normal distributions:

E(yi) =
k∑

j=1

wj µj

E(y2
i ) =

k∑
j=1

wj(µ
2
j + σ2

j )

The likelihood of this model is:

L(µ, σ2, z) =
k∏

j=1

∏
i:zi=j

N(yi|µj, σ
2
j ) (5.11)

While the prior distribution for the weights still remains (5.6), priors for µ

and σ2 are:

µj
iid∼ N(µj|µ0, τ

2) (5.12)

σ2
j

iid∼ Ig(σ2
j |α, β) (5.13)
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for j = 1, . . . , k, with hyperparameters µ0, τ 2, α and β assumed known. This

particular prior specification can be viewed as a particular case of the conjugate

analysis for the exponential family: see Bernardo and Smith (1994) for details.

The set of full conditionals (appendix 5.B) is:

• Full conditional for w:

p(w|µ, σ, z, y) = Di(w|δ1 + n1, . . . , δk + nk) (5.14)

• Full conditional for µ: independently for j = 1, . . . , k,

p(µj|w, σ, z, y) = N

(
µj

∣∣∣∣
nj ȳjτ

2 + σ2
j µ0

njτ 2 + σ2
j

,
σ2

j τ
2

njτ 2 + σ2
j

)
(5.15)

• Full conditional for σ2: independently for j = 1, . . . , k,

p(σ2
j |w, µ, z, y) = Ig

(
σ2

j

∣∣∣∣α +
1

2
nj, β +

1

2

∑
i:zi=j

(yi − µj)
2

)
(5.16)

• Full conditional for z: independently for i = 1, . . . , n,

p(zi|w, µ, σ, y) = c−1

k∑
j=1

wj

σj

exp

{
(yi − µj)

2

2σ2
j

}
I(zi=j) (5.17)

where c =
∑k

s=1
ws

σs
exp

{
(yi−µs)2

2σ2
s

}
.

5.4.2 Unknown number of components

Up to now, we dealt with a fixed number of mixture components k. Nev-

ertheless, mixture models should be suitable for situations where individual

components are meaningless. Clearly, this issue can be viewed as a model

selection problem. In the next sections, this problem will be treated using the

reversible jump algorithm (section 4.2.2) and the method based on the estima-

tion of the marginal likelihood (section 4.3.2). Here, we mention some former

techniques.

Mengersen and Robert (1995) proposed a test based on the Kullback-Leibler

divergence (or entropy distance). Suppose there are two competing sampling
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distributions, let’s say g(y) and h(y), for a given sample y; the Kullback-Leibler

divergence is a metric distance defined by:

ED[g, h] =

∫
ln[g(y)/h(y)]g(y)dy

Suppose now we are interested in testing the presence of mixture model: we

can compare a two-component mixture model to a single-component model (i.

e. a normal distribution N(µ, σ2)), which is the closest in terms of Kullback-

Leibler divergence. Hence, for given µ1, µ2, σ2
1 and σ2

2, we choose µ and σ that

minimizes:

ED[wN(·|µ1, σ
2
1) + (1− w)N(·|µ2, σ

2
2) , N(·|µ, σ2)] (5.18)

It is possible to show that equation (5.18) is minimized when:

µ = wµ1 + (1− w)µ2

σ2 = wσ2
1 + (1− w)σ2

2 + w(1− w)(µ1 − µ2)
2

If the distance (5.18) is less than a given bound, the parsimony principle indi-

cates to discard a mixture (of normal distributions) model.

The stochastic search variable selection is a procedure proposed by George

and McCulloch (1996) and developed for regression models: essentially, it puts

a probability distribution on the set of all possible models such that “promis-

ing”models are given highest probability. A sample from this distribution is

then obtained by Gibbs sampler.

Other approaches related to model choice can be founded in Gilks et al.

(1996).

5.4.3 Reversible jump for mixture models

Previously, the choice of the number of components k and the parameter esti-

mation (with k fixed) were treated separately. The following Bayesian analysis

of mixtures of normal distributions with an unknown number of components,

based on a Reversible Jump MCMC algorithm (section 4.2.2), allows us to

deal simultaneously with estimation and model selection. The reference paper

is Richardson and Green (1997).
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First of all, since k is now a random variable, we need to specify a prior

distribution. A reasonable choice is the discrete uniform distribution between

1 and kmax:

k|kmax ∼ Un(k|1, kmax)

with hyperparameter kmax fixed.

The MCMC algorithm of section 5.4.1 is now enriched with a reversible

jump type move. In practice, the parameters w, µ, σ and the allocation variable

z are updated by Gibbs moves in the exact way of section 5.4.1 but, in addition,

a move that updates k is introduced. The complete list of moves is summarized

as:

i. Updating w

ii. Updating µ

iii. Updating σ

iv. Updating z

v. Updating k (reversible jump move)

For the moves from (i) to (iv), see the full conditionals (5.14),(5.15),(5.16) and

(5.17).

Move (v) consists in splitting one mixture component into two, or combin-

ing two into one. Hence, a random choice between “split” and “combine” is

made, with probabilities sk and ck respectively. These probabilities depend on

k and they are such that ck = 1− sk, with c1 = 0 and skmax = 0.

The combine proposal begins by choosing two components (j1, j2) at ran-

dom which are adjacent in terms of the current values of their means (i. e.,

µj1 < µj2, with no other µj in the interval [µj1, µj2]). The reason of this con-

straint will be explained in section (5.5). If these two components are merged,

then k is reduced by 1, forming a new component, say j∗. In order to propose

values for wj∗ , µj∗ and σj∗ , consider the following transformation:

wj∗ = wj1 + wj2

wj∗µj∗ = wj1µj1 + wj2µj2 (5.19)

wj∗(µ
2
j∗ + σ2

j∗) = wj1(µ
2
j1

+ σ2
j1

) + wj2(µ
2
j2

+ σ2
j2

)
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This proposal mechanism is based on a moment matching expedient: the ze-

roth, first and second moments of the new component (left side of the three

lines of 5.19) are equal to the corresponding moments of the combination of the

two merging components (right side). Equation (5.19) gives in a deterministic

way the proposed values for the parameters.

Finally, observations yi with zi = j1 or zi = j2 have to be reallocated by

setting zi = j∗.

For the split proposal, a component j∗ is chosen at random and split into

j1 and j2. The values for wj1 , µj1 , σj1 , wj2 , µj2 and σj2 are given by:

wj1 = wj∗u1

wj1 = wj∗(1− u1)

µj1 = µj∗ − u2σj∗

√
wj2/wj1 (5.20)

µj2 = µj∗ + u2σj∗

√
wj1/wj2

σ2
j1 = u3(1− u2

2)σ
2
j∗wj∗/wj1

σ2
j2 = (1− u3)(1− u2

2)σ
2
j∗wj∗/wj2

where u1, u2 and u3 are random quantities between 0 and 1 (we will use

beta distributions). The set of equations (5.20) satisfies the set (5.19): in

other words, (5.19) and (5.20) define a one-to-one transformation. Once these

values are proposed, it is necessary to check if the adjacency condition in terms

of means is satisfied: if not, the move is rejected. The observations yi such

that zi = j∗ are reallocated between j1 and j2 using the Gibbs move for the

allocation variable (5.17).
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For the split move the acceptance probability is min(1,R), where:

R = exp

{
(nj1 + nj2)logσj∗ − nj1 logσj1 − nj2 logσj2 +

1

2σ2
j∗

∑
i:zi=j∗

(yi − µj∗)
2

− 1

2σ2
j2

∑
i:zi=j2

(yi − µj2)
2 − 1

2σ2
j1

∑
i:zi=j1

(yi − µj1)
2

}

× (k + 1)wδ−1+l1
j1 wδ−1+l2

j2 w1−δ−l1−l2
j∗ B(δ, kδ)−1

×
√

k

2π
exp

{
−1

2
k[(µj1 − µ0)

2 + (µj2 − µ0)
2 − (µj∗ − µ0)

2]

}

× βα

Γ(α)

(
σ−2

j1 σ−2
j2 σ2

j∗
)(α+1)

exp{−β(σ−2
j1 + σ−2

j2 − σ−2
j∗ )}

× dk+1

bkPalloc

[Be(u1|2, 2)Be(u2|2, 2)Be(u3|1, 1)]−1

× wj∗ |µj1 − µj2|σ2
j1σ

2
j2

u2(1− u2
2)u3(1− u3)σ2

j∗
(5.21)

where nj1 and nj2 are the numbers of observations proposed to be assigned to

j1 and j2, B and Γ are the Beta and the Gamma functions respectively (section

2.5.1) and Palloc is the probability that this particular allocation is made.

The first two lines of expression (5.21) form the likelihood ratio. The third,

fourth and fifth line correspond to the prior ratio. The sixth line is the proposal

ratio and the final line is the jacobian. The derivation of these results is given

in Appendix 5.C.

For the combine move, the acceptance probability move is min(1,R−1),

using the same expression for R but with some differences in the substitutions.

Actually, Richardson and Green (1997) add another reversible jump move

for k (birth and death move) to increase the efficiency of the algorithm.

5.4.4 Marginal likelihood for mixture models

Chib (1995) uses his method to estimate the marginal likelihood from the

Gibbs output to mixture of normal distributions (5.10). Consider the Gibbs

sampler described in section 5.4.1 and write the posterior ordinate as:

p(µ∗, σ2∗, w∗|y) = p(µ∗|y)× p(σ2∗|µ∗, y)× p(w∗|µ∗, σ2∗, y)

A straightforward application of the method (section 4.3.2) leads to the fol-

lowing steps:
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1. Sample {µ(i), σ2(i), w(i), z(i)} from the full Gibbs run and set

p̄(µ∗|y) = N−1

N∑
i=1

k∏
j=1

p(µ∗j |σ2(i), z(i), y)

where p(µ∗j |σ2(i), z(i), y) is given by equation(5.15).

2. Sample {σ2(i), w(i), z(i)} from the reduced Gibbs conditional to µ∗ and

set:

p̄(σ2∗|µ∗, y) = N−1

N∑
i=1

k∏
j=1

p(σ2∗
j |µ∗, z(i), y)

where p(σ2∗
j |µ∗, z(i), y) is given by equation (5.16).

3. Sample {w(i), z(i)} from the reduced Gibbs conditional to (µ∗, σ2∗) and

set:

p̄(w∗|µ∗, σ2∗, y) = N−1

N∑
i=1

p(w∗|z(i), y)

where p(w∗|z(i), y) is given by equation (5.14).

Finally, equation (4.12) gives the estimate of the marginal loglikelihood:

lnf̄(y) = l(w∗, µ∗, σ2∗) + lnp(µ∗) + lnp(σ2∗) + lnp(w∗)−
−lnp̄(µ∗|y)− lnp̄(σ2∗|µ∗, y)− lnp̄(w∗|µ∗, σ2∗, y)

The three priors in the first line are given by equations (5.6), (5.12) and (5.13).

Note that the loglikelihood l(w, µ∗, σ2∗) does not depend on the allocation

variable z and, from equation (5.7), it is equal to:

l(w, µ, σ2) =
n∑

i=1

log

[
k∑

j=1

wjN(yi|µj, σ
2
j )

]

5.5 Label switching problem

Now we shall illustrate an important issue related to a mixture model. Con-

sider equation (5.1):

yi|w, θ
iid∼

k∑
j=1

wjf(yi|θj)
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and suppose to indicate all the parameters by ψ = (w, θ). We know from

expression (5.7) that the likelihood is:

L(ψ) =
n∏

i=1

k∑
j=1

wjf(yi|θj)

=
n∏

i=1

[w1f(yi|θ1) + · · ·+ wkf(yi|θk)] (5.22)

For any permutation ν of 1, . . . , k, define the corresponding permutation of

the parameter vector ψ by:

ν(ψ) = ((wν(1), . . . , wν(k)), (θν(1), . . . , θν(k))) (5.23)

The so-called label switching problem derives from the fact that the likelihood

(5.22) is the same for all permutations of ψ.

In a Bayesian analysis, if we have no prior information that distinguishes

between the components of the mixture (that is, the joint prior distribution

is the same for all permutations of ψ), then the posterior distribution will be

similarly symmetric (see Fruhwirth-Schnatter, 2001, for a proof). As a result,

posterior shows artificial multimodality, which poses obvious problems in terms

of parameter estimations.

The usual solution of the label switching problem consists in imposing an

identifiability constraint on the parameter space, such as w1 < w2 < · · · < wk

or θ1 < θ2 < . . . , < θk. Actually, in the analysis of the mixture model with

an unknown number of components of section 5.4.3, Richardson and Green

(1997) restricted the component means µj in their increasing numerical order.

This kind of constraints can be satisfied by only one permutation of ψ and

this breaks the symmetry of the prior. In practice, the full conditional of µj

(expression 5.15) is used to generate a proposal which is accepted only if the

ordering is satisfied.

Fruhwirth-Schnatter (2001) proposes an MCMC estimation of models af-

fected by the label switching problem based on a permutation sampler. Each

iteration of the MCMC algorithm is concluded by a permutation of the cur-

rent labelling of the states: the permutation is selected in such a way that the

identifiability constraint is fulfilled. As a consequence, the algorithm doesn’t
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reject forthwith parameter values when they do not satisfy the constrain, but

it jumps between the various labelling subspaces in a balanced fashion. The

permutation sampler is more efficient with respect to the simple rejection and

we adopted it in our analysis.
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Appendix 5.A

Full conditional for w

Using equations (5.2) and (5.6):

p(w|θ, z, y) ∝ p(w, θ, z, y)

∝ p(z|w)p(w)

∝
n∏

i=1

k∑
j=1

wjI(zi=j)

k∏
j=1

w
δj−1
j

∝
k∏

j=1

w
nj

j

k∏
j=1

w
δj−1
j

= Di(w|δ1 + n1, . . . , δk + nk)

where nj =
∑k

j=1 I(zi=j), for j = 1, . . . , k.

Full conditional for θ

Using equation (5.8):

p(θ|w, z, y) ∝ L(θ, z)p(θ)

∝
k∏

j=1

∏
i:zi=j

f(yi|θj)
k∏

j=1

p(θj)

Hence, using (5.4) and (5.5):

p(θj|w, z, y) ∝
[ ∏

i:zi=j

a(yi)exp{yi θj − b(θj)}
]

exp{rj θj − λj b(θj)}

∝ exp{(rj + nj ȳj)θj − (λj + nj)b(θj)}
where ȳj = 1

nj

∑
i:zi=j yi, for j = 1, . . . , k.

Full conditional for z

Using equations (5.8) and (5.2):

p(z|w, θ, y) ∝ L(θ, z)p(z|w)

∝
n∏

i=1

k∑
j=1

wjf(yi|θj)I(zi=j)



Chapter 5 Mixture models 51

Hence:

p(zi|w, θ, y) ∝
k∑

j=1

wjf(yi|θj)I(zi=j)

Calculating the normalization constant we obtain the (5.9).

Appendix 5.B

Full conditional for w

The derivation of the full conditional for w is the same of the previous ap-

pendix.

Full conditional for µ

Using equations (5.11) and (5.12):

p(µ|w, σ2, z, y) ∝ L(µ, σ2, z)p(µ|µ0, τ)

=
k∏

j=1

∏
t:zt=j

N(yi|µj, σ
2
j )

k∏
j=1

N(µj|µ0, τ
2)

Hence:

p(µj|w, σ2, z, y) ∝
[ ∏

t:zt=j

N(yt|µj, σ
2
j )

]
N(µj|µ0, τ

2)

for j = 1, . . . , k. Substituting the normal density function:

p(µj|w, σ2, z, y) ∝ exp

{
− 1

2σ2
j

∑
i:zi=j

(yi − µj)
2 − 1

2τ 2
(µj − µ0)

2

}

∝ exp

{
− 1

2σ2
j

∑
i:zi=j

(yi − ȳj + ȳj − µj)
2 − 1

2τ 2
(µj − µ0)

2

}

= exp

{
− 1

2σ2
j

∑
i:zi=j

[(yi − ȳj)
2 + nj(ȳj − µj)

2]− 1

2τ 2
(µj − µ0)

2

}

∝ exp

{
− 1

2σ2
j

nj(ȳj − µj)
2 − 1

2τ 2
(µj − µ0)

2

}

∝ exp

{
−

[(
nj

2σ2
j

+
1

2τ 2

)
µ2

j −
(

nj ȳj

σ2
j

+
µ0

τ 2

)
µj

]}
,
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where ȳj = 1
nj

∑
i:zi=j yi. Now, if we let:

A =
nj

2σ2
j

+
1

2τ 2
=

1

2

njτ
2 + σ2

j

σ2
j τ

2
(5.24)

D =
1

2

(
njx̄j

σ2
j

+
µ0

τ 2

)
=

1

2

njx̄jτ
2 + µ0σ

2
j

σ2
j τ

2
(5.25)

then:

p(µj|w, σ2, z, y) ∝ exp{− [
Aµ2

j − 2Dµj

]}

∝ exp

{
−A

[
µ2

j − 2
D

A
µj

]}

∝ exp

{
−A

[(
µj − D

A

)2

− D2

A2

]}

∝ exp

{
−A

(
µj − D

A

)2
}

Finally, substituting the (5.24) and (5.25), we obtain:

p(µj|w, σ2, z, y) ∝ exp

{
1

2

njτ
2 + σ2

j

σ2
j τ

2

(
µj −

nj x̄j τ 2 + σ2
j µ0

nj τ 2 + σ2
j

)2
}

= N

(
µj

∣∣∣∣
nj ȳj B τ 2 + σ2

j µ0

nj B2τ 2 + σ2
j

,
σ2

j τ
2

nj B2τ 2 + σ2
j

)
.

for j = 1, . . . , k.

Full conditional for σ2

Using equations (5.11) and (5.13):

p(σ2|w, µ, z, y) ∝ L(µ, σ2, z)p(σ2)

=
k∏

j=1

∏
i:zi=j

N(yi|µj, σ
2
j )

k∏
j=1

Ig(σ2
j |α, β)
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Hence, for j = 1, . . . , k, the full conditional for σ2
j is:

p(σ2
j |w, µ, z, y) ∝

[ ∏
i:zi=j

N(yi|µj, σ
2
j )

]
Ig(σ2

j |α, β)

∝ σ
−nj

j exp

{
−1

2

∑
i:zi=j

(yi − µj)
2

σ2
j

}
σ
−2(α+1)
j exp{−β/σ2

j}

= σ
−2(nj/2+α+1)
j exp

{
− 1

2σ2
j

∑
i:zi=j

(yi − µj)
2 − β

σ2
j

}

= Ig

(
σ2

j

∣∣∣∣α +
1

2
nj, β +

1

2

∑
i:zi=j

(yi − µj)
2

)

Full conditional for z

Using equations (5.11) and (5.2):

p(z|w, µ, σ2, y) ∝ L(µ, σ2, z)p(z|w)

=
n∏

i=1

k∑
j=1

wjN(yi|µj, σ
2
j )I(zi=j)

Hence:

p(zi|w, µ, σ2, y) ∝
k∑

j=1

wjN(yi|µj, σ
2
j )I(zi=j)

∝
k∑

j=1

[
wj

σj

exp

{
(yi − µj)

2

2σ2
j

}
I(zi=j)

]

calculating the normalization constant we obtain the (5.17).

Appendix 5.C

Expression (5.21) can be represented as:

R = (likelihood ratio)× (prior ratio)× (proposal ratio)× (jacobian)

The component j∗ is split into j1 and j2. We shall denote the k-dimension

vectors of the current values of the parameters by µ, σ2 and w. The proposal

values, constructed in section 5.4.3, are µ′, σ2′ and w′: remember they are
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of dimension k + 1 and they differ from the current values only through the

elements of positions j1 and j2. z and z′ indicate the current and the proposal

allocation variables.

• The likelihood ratio is:

L(µ′, σ2′ , z′, k + 1)

L(µ, σ2, z, k)
=

∏k+1
j=1

∏
i:z′i=j N(yi|µ′j, σ2′

j )
∏k

j=1

∏
i:zi=j N(yi|µj, σ2

j )

=

∏
i:z′i=j1

N(yi|µj1 , σ
2
j1

)
∏

i:z′i=j2
N(yi|µj2 , σ

2
j2

)∏
i:zi=j∗ N(yi|µj∗ , σ2

j∗)

= exp

{
(nj1 + nj2)lnσj∗ − nj1 lnσj1 − nj2 lnσj2

+
1

2σ2
j∗

∑
i:zi=j∗

(yi − µj∗)
2 − 1

2σ2
j2

∑
i:zi=j2

(yi − µj2)
2

− 1

2σ2
j1

∑
i:zi=j1

(yi − µj1)
2

}

where nj1 and nj2 are the numbers of observations proposed to be as-

signed to j1 and j2.

• The prior ratio is:

p(µ′, σ2′ , w′, z′, k + 1)

p(µ, σ2, w, z, k)
=

p(µ′|+ 1′)
p(µ|k)

× p(σ2′|k + 1)

p(σ2|k)

× p(w′|k + 1)

p(w|k)
× p(z′|w′, k + 1)

p(z|w, k)
× p(k + 1)

p(k)
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where:

p(µ′|k + 1)

p(µ|k)
=

∏k+1
j=1 N(µ′j|µ0, τ

2)
∏k

j=1 N(µj|µ0, τ 2)
=

N(µj1|µ0, τ
2)N(µj2|µ0, τ

2)

N(µj∗|µ0, τ 2)

=

√
k

2π
exp

{
−1

2
k[(µj1 − µ0)

2 + (µj2 − µ0)
2 − (µj∗ − µ0)

2]

}

p(σ2′|k + 1)

p(σ2|k)
=

∏k+1
j=1 Ig(σ2′

j |α, β)
∏k

j=1 Ig(σ2
j |α, β)

=
Ig(σ2

j1|α, β)Ig(σ2
j2|α, β)

Ig(σ2
j∗ |α, β)

=

=
βα

Γ(α)

(
σ−2

j1 σ−2
j2 σ2

j∗
)(α+1)

exp{−β(σ−2
j1 + σ−2

j2 − σ−2
j∗ )}

p(w′|k + 1)

p(w|k)
=

Di(w′|δ1, . . . , δk+1)

Di(w|δ1, . . . , δk)
=

wδ−1
j1 wδ−1

j1
Γ(δ)k+1

Γ(kδ+δ)

wδ−1
j∗

Γ(δ)k

Γ(kδ

=
wδ−1

j1 wδ−1
j1

wδ−1
j∗ B(δ, kδ)

p(z′|w′, k + 1)

p(z|w, k)
=

∏n
i=1

∑k+1
j=1 w′

jI(z′i=j)∏n
i=1

∑k
j=1 wjI(zi=j)

=
w

nj1
j1

w
nj2
j2

w
nj1

+nj2
j∗

Since we chose a uniform prior for k, the last factor p(k + 1)/p(k) is 1.

Moreover, the (k + 1)-factor in the third line of expression (5.21) comes

from the order statistics densities for the means.

• The proposal ratio is formed by the probabilities of birth and death of

a component, the probability of the allocation Palloc and the densities of

the variables u1,u2 and u3:

dk+1

bkPalloc

[Be(u1|2, 2)Be(u2|2, 2)Be(u3|1, 1)]−1

• The transformation defined in (5.20) from (wj∗ , µj∗ , σ
2
j∗ , u1, u2, u3) to
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(wj1 , µj1 , σ
2
j1

, wj2 , µj2 , σ
2
j2

) leads to the following (6× 6) Jacobian matrix:

J =




u1 0 0 wj∗ 0 0

0 1 1
2
u2

√
wj2

wj1
σ−1

j∗ 0 −
√

wj2

wj1
σ2

j∗ 0

u3(1−u2
2)σ2

j∗
wj1

0 u3(1− u2
2)

wj∗
wj1

0 −2u2u3σ
2
j∗

wj∗
wj1

(1− u2
2)σ

2
j∗

wj∗
wj1

(1− u1) 0 0 −wj∗ 0 0

0 1 11
2
u2

√
wj1

wj2
σ−1

j∗ 0
√

wj2

wj1
σ2

j∗ 0

(1−u3)(1−u2
2)σ2

j∗
wj2

0 (1− u3)(1− u2
2)

wj∗
wj2

0 −2u2(1− u3)σ
2
j∗

wj∗
wj2

−(1− u2
2)σ

2
j∗

wj∗
wj2




The final line of expression (5.21) is the absolute value of the determinant

of this matrix:

|det(J)| = wj∗|µj1 − µj2|σ2
j1σ

2
j2

u2(1− u2
2)u3(1− u3)σ2

j∗



Chapter 6

Mixture of autoregressive

components

6.1 Introduction

In the mixture of normal distributions of section 5.4, the observable variables

are supposed to be conditionally independent. In this chapter, we shall present

a generalization of that model, in which the variables depends on their past

values through an autoregressive structure. More precisely, we shall deal with

a mixture of autoregressive components.

In a linear time series context, marginal and conditional distributions are

usually unimodal and symmetric because of the assumption of Gaussian inno-

vation terms. Conversely, the mixture of autoregressive components represents

a non-linear time series tool: for instance, it is possible to take into account

changes in conditional distributions, which can be bimodal or multimodal.

Wong and Li (2000) propose an analysis of this class of models based on

the maximization of the likelihood function. The model selection problem is

solved by the AIC (Akaike, 1973) and BIC (Schwarz, 1978) criterions. Never-

theless they conclude that these methods are not satisfactory. Moreover, their

classical approach does not take into account model uncertainty. Influence of

model uncertainty on financial models has been investigated by some recent

papers (Barberis, 2000, MacKinley and Pastor, 2000, Pastor, 2000, Pastor and

Stambaugh, 2000, Cremers, 2002).

We propose a Bayesian analysis, which allows to deal with both parameter

estimation and model selection.

57
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Our analysis also takes into account the stationarity conditions for each

autoregressive component through a suitable prior specification.

In the next chapter, we shall apply the model to real financial data.

6.2 Definition of mixture of autoregressive com-

ponents

An autoregressive (AR) process {yt} of finite order ρ and mean µ is usually

defined as:

yt − µ = φ1(yt−1 − µ) + φ2(yt−2 − µ) + · · ·+ φρ(yt−ρ − µ) + εt (6.1)

where εt are independent and identically normally distributed random variables

with mean 0 and variance σ2.

It is well-known that a necessary and sufficient condition for the stationarity

of the solution of (6.1) is that φ = (φ1, . . . , φρ) belongs to:

Φ = {φ ∈ Rρ|φ(v) 6= 0, v ∈ C, |v| ≤ 1} (6.2)

where φ(v) is the usual characteristic polynomial:

φ(v) = 1− φ1v − · · · − φρv
ρ

(see e.g., Anderson, 1970).

If we denote:

νt = µ + φ1(yt−1 − µ) + φ2(yt−2 − µ) + · · ·+ φρ(yt−ρ − µ)

the conditional distribution of yt can be written as:

yt|µ, φ, σ2, ρ, xt−1 ∼ N(yt|νt, σ
2)

where xt−1 = (y1, . . . , yt−1).

Consider now k different AR processes: each of them is characterized

by a specific order ρj, a mean µj, a set of autoregressive parameters φj =

(φ1,j, . . . , φρj ,j) and a variance of the error term σ2
j , for j = 1, . . . , k. Sup-

pose to adopt the concise notation ρ = (ρ1, . . . , ρk), µ = (µ1, . . . , µk), σ2 =

(σ2
1, . . . , σ

2
k), φ = (φ1, . . . , φk).
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The mixture of autoregressive components can be defined by:

yt|ψ, ρ, k, xt−1 ∼
k∑

j=1

wj N(yt|νj,t, σ
2
j ) (6.3)

where ψ = (w, µ, σ2, φ), w = (w1, . . . , wk) and:

νj,t = µj + φ1,j(yt−1 − µj) + φ2,j(yt−2 − µj) + · · ·+ φρj ,j(yt−ρj
− µj) (6.4)

for j = 1, . . . , k.

The mixing weights wj satisfy the usual constraints, i. e.

wj > 0, j = 1, . . . , k; w1 + · · ·+ wk = 1

The mixture of autoregressive components (6.3) can be viewed as a gen-

eralization of two different model. First of all, as we have already noticed, it

generalizes the mixture of normal distributions (5.1) because the observable

variable depends on the past through the quantities νj,t. Second, if the num-

ber k of the mixture components is equal to 1, the model reduces to a simple

autoregressive model with Gaussian error term.

It is easy to calculate the conditional moments; the conditional expectation

of yt is:

E(yt|ψ, ρ, k, xt−1) =
k∑

j=1

wjνj,t (6.5)

while the conditional variance is given by:

V AR(yt|ψ, ρ, k, xt−1) =
k∑

j=1

wjσ
2
j +

k∑
j=1

wjν
2
j,t −

(
k∑

j=1

wjνj,t

)2

6.3 Model structure and priors

We set the following prior distributions for the parameters w, µ and σ2:

w|k ∼ Di(w|δ, δ, . . . , δ)
µj

iid∼ N(µj|µ0, τ
2), j = 1, . . . , k (6.6)

σ2
j

iid∼ Ig(σ2|α, β), j = 1, . . . , k
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with δ, µ0, τ 2, α and β assumed known.

δ is set equal to 1, as in Richardson and Green (1997).

It seems natural to take the prior for µj to be rather flat over an interval

of variation of the observed data. Let R = max(xT ) − min(xT ); following

Richardson and Green (1997), we choose µ0 = min(xT )+R/2 and τ = cR (the

assignment of c will be discussed later on).

The knowledge of the range of the data could be useful in setting the

hyperparameters of σ2. In particular, β will be a small multiple of 1/R2. It is

also possible to consider an additional hierarchical level for the variances (for

instance, β could have a gamma distribution, as suggested by Richardson and

Green, 1997).

About the coefficients φρj
, we are able to consider a prior distribution whose

domain is the stationarity region. For this point, we refer to the section 6.4.

Finally, k (the number of the AR components) and ρ = (ρ1, . . . , ρk) (the

orders of the AR components) will be considered as stochastic quantities with

the following discrete uniform priors:

ρj|ρmax
iid∼ Un(ρj|0, ρmax), j = 1, . . . , k (6.7)

k|kmax ∼ Un(k|1, kmax) (6.8)

for fixed hyperparameters ρmax and kmax.

With the exception of the prior on the autoregressive coefficients, which

we choose to take into account the stationarity regions, the choice of the

prior setting is motivated by two kind of considerations. First of all, they

give advantages of conjugacy (specifically, in terms of construction of the full

conditionals), even though it is not actually needed when using MCMC. In

addition, we wanted to consider a set-up without strong prior information on

the mixture parameters. Unfortunately, fully non-informative priors don’t lead

to proper posterior distributions in a mixture context (independent improper

priors cannot be used; see for instance Diebolt and Robert, 1994). Of course,

there are situations in which subjective priors are preferable, and our prior

structure could be modified accordingly.

Suppose now the observable sample consists of T variables xT = (y1, . . . , yT ).

We shall consider the allocation variable (section 5.2) z = (z1, . . . , zT ), where
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Figure 6.1: DAG of the mixture of autoregressive models.

zt = j if the tth observation comes from the jth component, for t = 1, . . . , T

and j = 1, . . . , k.

Assuming that there are ρmax fixed observations before xT , the (condi-

tional) likelihood (Box et al., 1994) is given by:

L(θ, z) =
k∏

j=1

∏
t:zt=j

N(yt|νj,t, σ
2
j ) (6.9)

for t = 1, . . . , T , where θ = (µ, σ2, φ).

The hierarchical structure of the model is displayed in figure 6.1, where we

use a so called directed acyclic graph (DAG): observed quantities are in squares

and circles include the unknowns; the directed arrows explain the dependence

between variables.

6.4 Stationarity

The stationarity conditions on a model constrain the parameters to lie in re-

gions. Apart from the cases of small orders, it is well-known that the form of

these regions for an autoregressive model is very complex. Thus, a Bayesian

approach is quite difficult because of the need of choosing a prior structure

compatible with the stationarity regions.
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Let Φj be the stationarity region for the jth autoregressive model. In gen-

eral Φj is very complicated. Luckily, Barndorff-Nielsen and Schou (1973) pro-

posed a reparametrization in terms of partial autocorrelations that simplifies

the analysis.

First of all, we can define the partial autocorrelation between yt and yt−h

as the correlation between yt−h and yt minus that part explained linearly by

the intervening lags. A possible formalization of the partial autocorrelations is

based on the coefficients in the linear projection of yt on (yt−1, yt−2, . . . , yt−h)

(see e.g., Greene, 2000).

Let πh,j be the partial autocorrelation coefficient at lag h for the jth model.

It is possible to show that −1 < πh,j < 1, for h = 1, . . . , ρj, and πh,j = 0, for

h > ρj. In addition, π1,j equals the first autocorrelation coefficient.

For a given component j, suppose now to construct an instrumental variable

ϕ in the following recursive way:

ϕ1,1 = π1,j

ϕh,m = ϕh−1,m − ϕh,hϕh−1,h−m, m = 1, . . . , h− 1

ϕh,h = πh,j, h = 2, . . . , ρj

Finally, Barndorff-Nielsen and Schou (1973) proved that:

φhj = ϕρj ,h, h = 1, . . . , ρj

Hence, we established a very useful one-to-one transformation between φj =

(φ1,j, . . . , φρj ,j) and πj = (π1,j, . . . , πρj ,j).

For example, for ρj = 1, 2, 3 the mapping is given by:

• ρj = 1 :

φ1,j = π1,j

• ρj = 2:

φ1,j = π1,j(1− π2,j)

φ2,j = π2,j
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• ρj = 3:

φ1,j = π1,j − π1,jπ2,j − π2,jπ3,j

φ2,j = π2,j − π1,jπ3,j − π1,jπ2,jπ3,j

φ3,j = π3,j

What is important to note here is that:

φj ∈ Φj ⇐⇒ |πh,j| < 1, h = 1, . . . , ρj.

That is, the stationarity region for the jth component in terms of πj is simply

the hypercube (−1, 1)ρj .

Furthermore, the prior specification is made in a straightforward way be-

cause of the following result (Jones, 1987):

φj ∼ Uniform on Φj ⇐⇒ πi,j
ind∼ Be(−1,+1)

(
πi,j

∣∣∣∣
[
i + 1

2

]
,

[
i

2

]
+ 1

)
(6.10)

for i = 1, . . . , ρj and j = 1, . . . , k, where Be(−1,+1)(.) denotes a generalized beta

distribution (section 2.5.1) defined on (−1, +1) and where [x] means “integer

part of x”. In other words, we can put an uniform prior distribution for the

original parameters on the complicate stationarity region Φj, simply choosing

a generalized beta prior for the πi,j’s on (−1, +1).

6.5 Parameter estimation

Suppose for the moment that k and ρ are known. We implemented an MCMC

strategy based on a componentwise algorithm (section 3.4.2). The set of moves

can be summarized by the following list:

i. Updating the weights w

ii. Updating the means µ

iii. Updating the partial autocorrelations π

iv. Updating the variances σ2

v. Updating the allocation variable z

Each of these moves will be explained below; for details see Appendix 6.A.
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• Move (i) is a Gibbs sampler move. The full conditional for w is the same

as equation (5.14):

p(w|µ, σ2, φ, z, xT ) = Di(w|δ1 + n1, . . . , δk + nk) (6.11)

where nj =
∑k

j=1 I(zi=j)

• Move (ii) is also a Gibbs type move, with full conditional for µj given

by:

p(µj|w, σ2, φ, z, xT ) = N

(
µj

∣∣∣∣
nj v̄j B τ 2 + σ2

j µ0

nj B2τ 2 + σ2
j

,
σ2

j τ
2

nj B2τ 2 + σ2
j

)
(6.12)

for j = 1, . . . , k, where v̄j = 1
nj

∑
t:zt=j vtj, with vtj = yt−φj,1yt−1−· · ·−

φj,ρj
yt−ρj

, and where B = 1− φj,1 − · · · − φj,ρj
.

• Move (iii) updates πj, for j = 1, . . . , k, by a Metropolis-Hastings mech-

anism. A candidate π∗j,i is generated by a normal density truncated in

(−1, +1) (section 2.5.5) and centered in the current state of the chain

πj,i:

q(πj,i, π
∗
j,i) = N(−1,+1)(π

∗
i,j|πj,i, σ

2
q ) (6.13)

for i = 1, . . . , ρj and for j = 1, . . . , k. The variance σ2
q is chosen in order

to obtain a satisfactory acceptance rate.

Let π∗j be the proposal vector for the partial autocorrelations: using π∗j ,

the corresponding parameters φ∗j = (φ∗j,1, . . . , φ
∗
j,ρj

) are derived trough

the transformation of section (6.4).

The acceptance probability is min(1, R), where R is given by:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − ν∗j,t)

2 − (yt − νj,t)
2
]
}

×
ρj∏

i=2

(π∗j,i + 1)[(i−1)/2](1− π∗j,i)
[i/2]

(πj,i + 1)[(i−1)/2](1− πj,i)[i/2]
(6.14)

×
ρj∏

i=1

FN(1|πj,i, σ
2
q )− FN(−1|πj,i, σ

2
q )

FN(1|π∗j,i, σ2
q )− FN(−1|π∗j,i, σ2

q )

where ν∗j,t = µj + φ∗1,j(yt−1 − µj) + · · · + φ∗ρj ,j(yt−ρj
− µj) and where FN

is the cumulative distribution function of the normal distribution. Note
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that the first line of the (6.14) corresponds to the likelihood ratio, the

second one to the prior ratio and the third one to the proposal ratio.

• The Gibbs move (iv) is similar to the (5.16). The full conditional is:

p(σ2
j |β,w, µ, φ, z, xT ) = Ig

(
σ2

j

∣∣∣∣ α +
1

2
nj, β +

1

2

∑
t:zt=j

(yt − νj,t)
2

)

(6.15)

for j = 1, . . . , k.

• Move (v) also is a Gibbs move with full conditional:

p(zt = j|w, µ, σ2, φ, xT ) ∝ wj

σj

exp

{
−1

2

(yt − νj,t)
2

σ2
j

}

for t = 1, . . . , T .

6.6 Model determination

We suppose that a single possible model is jointly specified by the number of

the AR components k and the orders of the AR components ρ. As a con-

sequence, Bayesian model determination is based on the evaluation of the

posterior distributions p(ρ|k, xT ) and p(k|xT ). The procedure we implemented

consists of two parts:

i. p(ρ|k, xT ) is obtained by adding a reversible jump type move to the pre-

viously illustrated MCMC strategy which updates the orders ρ (section

6.6.1).

ii. The output from the step i is used to derive the marginal likelihood

f(xT |k) and consequently the marginal posterior p(k|xT ) by the methods

described in sections 4.3.3 and 4.3.2 (section 6.6.2).

Once estimates of p(ρ|k, xT ) and p(k|xT ) are available, predictions of the

observable variables, obtained by computing the predictive densities (section

6.7.1), can take into account contributions of every possible model (Bayesian

model averaging). Nevertheless, one could be interested in selecting a single

model, say (ρ∗, k∗). To do this, a possible strategy consists in choosing k∗ as
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the value of k with the highest p(k|xt), and then selecting ρ∗ as the value of ρ

with the highest p(ρ|k∗, xt).

An alternative criterion could be proposed; specifically we could choose the

values (ρ∗, k∗) with the highest joint posterior probability:

p(ρ, k|xT ) = p(ρ|k, xT )p(k|xT )

The two strategies are different and in principle they could not lead to the

same results. Nevertheless, it is important to note that the second criterion

penalizes models with an high number of components: as a matter of fact, the

joint prior distribution is (see expressions 6.7 and 6.8):

p(ρ, k) = p(ρ|k)p(k) ∝
(

1

ρmax + 1

)k

6.6.1 Order of the autoregressive components

The set of moves described in section 6.5 is augmented by a sixth move:

vi. Updating ρ

This reversible jump move starts by selecting a component, say j∗, randomly

chosen in {1, . . . , k}. The order of this component ρj∗ increases by one with

probability b(ρj∗) and decreases by one with probability d(ρj∗), where b(ρj) =

1 − d(ρj), for j = 1, . . . , k, d(1) = 0 and b(ρmax) = 0. Formally, the proposal

order ρ∗j∗ is constructed as follow:

ρ∗j∗ =





ρj∗ − 1 , with prob. d(ρj)

ρj∗ + 1 , with prob. b(ρj)

It is now necessary to change the partial autocorrelation coefficients. Fol-

lowing Barbieri and O’Hagan (1997), if the order is decreased, the last partial

autocorrelation is simply discarded. Otherwise, we need a new parameter

π∗ρ∗
j∗ ,j∗ , which is generated from the beta prior (6.10).

That is, letting π∗j∗ be the proposal vector of the partial autocorrelations:

• If ρ∗j∗ = ρj∗ − 1, π∗j∗ = (π1,j∗ , . . . , πρ∗
j∗ ,j∗)

• If ρ∗j∗ = ρj∗ + 1, π∗j∗ = (π1,j∗ , . . . , πρj∗ ,j∗ , π
∗
ρ∗

j∗ ,j∗)
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with π∗ρ∗
j∗ ,j∗ ∼ Be(−1,+1)

(
πi,j|

[
i+1
2

]
,
[

i
2

]
+ 1

)
.

Note that in both cases all the autoregressive parameters are updated be-

cause of the reparametrization of section 6.4.

If ρ∗j∗ = ρj∗ − 1, the acceptance probability ratio is min(1, R), where R is

given by:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − νj,t)

2 − (yt − ν∗j,t)
2
]
}

b(ρ∗j∗)

d(ρj∗)
(6.16)

where ν∗j∗,t = µj∗ + φ∗1,j∗(yt−1 − µj∗) + · · ·+ φ∗ρj∗ ,j∗(yt−ρj∗ − µj∗).

On the other hand, if ρ∗j∗ = ρj∗ + 1:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − νj,t)

2 − (yt − ν∗j,t)
2
]
}

d(ρ∗j∗)

b(ρj∗)
(6.17)

Equations (6.16) and (6.17) are quite simple because of some cancellations

between prior and proposal ratios. Furthermore, the jacobian is one because

the matrix of derivatives of the transformation g (section 4.2.2) is the identity

matrix (see appendix 6.B for details).

p(ρ|k, xT ) is simply estimated by the proportions of every possible value for

ρ in the sample obtained by the previous complete MCMC algorithm. In the

following, the set of these seven moves will be referred as “complete MCMC ”.

6.6.2 Number of the autoregressive components

Through Bayes’ theorem, the marginal posterior distribution of k is:

p(k|xT ) ∝ p(k)f(xT |k)

where p(k) is the prior on k and f(xT |k) is the marginal likelihood:

f(xT |k) =
∑

ρ

∫
L(ψ, ρ, k)p(ψ, ρ|k) dψ (6.18)

with ψ = (w, µ, σ2, φ). Suppressing for notational convenience the model index

k, we write the marginal likelihood (6.18) as:

f(xT ) =
L(ψ∗, ρ∗)p(ψ∗, ρ∗)

p(ψ∗, ρ∗|xT )

=
L(ψ∗, ρ∗)p(ψ∗|ρ∗)p(ρ∗)
p(ψ∗|ρ∗, xT )p(ρ∗|xT )

(6.19)
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for a fixed point (ψ∗, ρ∗). Note that what we only need of the (6.19) is

p(ψ∗|ρ∗, xT ): we shall calculate the corresponding estimate p̄(ψ∗|ρ∗, xT ) by

the methods of sections 4.3.3 and 4.3.2.

First of all, p̄(ψ∗|ρ∗, xT ) is factorized as:

p̄(ψ∗|ρ∗,xT ) = p̄(π∗|ρ∗, xT )× p̄(µ∗|π∗, ρ∗, xT )×
× p̄(σ2∗|µ∗, π∗, ρ∗, xT )× p̄(w∗|σ2∗, µ∗, π∗, ρ∗, xT ) (6.20)

Suppose to have a sample {ψ(i), z(i)}, for i = 1, . . . , N1, from the MCMC of sec-

tion 6.5 for a given ρ∗ (i.e. a sample from p(ψ|ρ∗)). Let ηj−1 = (ρ, π1, . . . , πj−1)

and ηj+1 = (πj+1, . . . , πk, µ, σ2, w). The terms of the (6.20) are estimated by

the following steps:

1. Sample {η̃j+1,(i), z̃(i)}, for i = 1, . . . , Nj+1, from a reduced MCMC algo-

rithm with distribution of interest p(ηj+1, z|η∗j , xT ). Also draw π̃
(i)
j from

qp(π
∗
j , πj) =

∏ρj

s=1 q(π∗s,j, πs,j), where q(., .) is the proposal (6.13).

Set:

p̄(π∗j |ρ∗, π∗1, . . . , π∗j−1) =
N−1

j

∑Nj

i=1 α(π
(i)
j , π∗j )qp(π

(i)
j , π∗j )

N−1
j+1

∑Nj+1

i=1 α(π∗j , π̃
(i)
j )

where α(., .) = min(1, R) with R defined in equation (6.14).

Set ηj+1,(i) = η̃j+1,(i) and z(i) = z̃(i), for i = 1, . . . , Nj+1.

Repeat this step for j = 1, . . . , k and finally set:

p̄(π∗|ρ∗, xT ) =
k∏

j=1

p̄(π∗j |ρ∗, π∗1, . . . , π∗j−1)

2. The second term is:

p̄(µ∗|π∗, ρ∗, xT ) = N−1
k+1

Nk+1∑
i=1

k∏
j=1

p(µ∗j |π∗, σ2(i), z(i), ρ∗, xT )

where (σ2(i), z(i)) are draws from the last iteration of the previous step

(thus they are marginally from p(σ2, w, z|π∗, ρ∗, xT )) and p(µ∗j |π∗, σ2(i), z(i), ρ∗, xT )

is given by equation(6.12).
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3. Sample {σ2(s), w(s), z(s)}, for s = 1, . . . , S, from a reduced MCMC algo-

rithm with distribution of interest p(σ2, w, z|π∗, µ∗, ρ∗, xT ) and set:

p̄(σ2∗|π∗, µ∗, ρ∗, xT ) = S−1

S∑
s=1

k∏
j=1

p(σ2∗
j |π∗, µ∗, z(s), ρ∗, xT )

where p(σ2∗
j |π∗, µ∗, z(i), ρ∗, xT ) is given by equation (6.15).

4. Sample {w(v), z(v)}, for v = 1, . . . , V , from a reduced MCMC algorithm

with distribution of interest p(w, z|π∗, µ∗, σ2∗, ρ∗, xT ) and set:

p̄(w∗|π∗, µ∗, σ2∗, ρ∗, xT ) = V −1

V∑
v=1

p(w∗|z(v), ρ∗, xT )

where p(w∗|z(v), ρ∗, xT ) is given by equation (6.11)

6.7 Predictive distributions

6.7.1 One-step ahead predictions

The predictive distribution was defined in section 2.2. Consider an unknown

observable future variable yT+1 and let (ρ∗, k∗) be a selected model. We can

consider three different predictive distributions: conditional on (ρ∗, k∗), condi-

tional on k∗ and unconditional.

The predictive distribution conditional to (ρ∗, k∗) is:

f(yT+1|ρ∗, k∗, xT ) =

∫
f(yT+1, ψ|ρ∗, k∗, xT )dψ

=

∫
f(yT+1|ψ, ρ∗, k∗, xT )p(ψ|ρ∗, k∗, xT )dψ (6.21)

where as usual ψ = (w, µ, σ2, φ) and where

f(yT+1|ψ, ρ∗, k∗, xT ) =
k∗∑

j=1

wj N(yT+1|νj,T+1, σ
2
j ) (6.22)

with νj,T+1 defined in equation (6.4).

We estimate the (6.21) by the corresponding Monte Carlo estimator:

f̄(yT+1|ρ∗, k∗, xT ) = N−1

N∑
i=1

f(yT+1|ψ(i), ρ∗, k∗, xT )



Chapter 6 Mixture of autoregressive components 70

where ψ(i), for i = 1, . . . , N , are samples from the posterior p(ψ|ρ∗, k∗, xT ) and

they are available from the MCMC output.

The predictive distribution unconditional to a model is more interesting

because it takes into account the model uncertainty. As a matter of fact, dif-

ferent possible models are considered and they are weighted by their posterior

probability.

The predictive distribution unconditional on the orders ρ is:

f(yT+1|k∗, xT ) =
∑

ρ

∫
f(yT+1|ψ, ρ, k, xT )p(ψ, ρ|k, xT )dψ (6.23)

which is estimated by:

f̄(yT+1|k∗, xT ) = N−1

N∑
i=1

f(yT+1|ψ(i), ρ(i), k, xT ) (6.24)

Eventually, the predictive distribution unconditional on both k and ρ is:

f(yT+1|xT ) =
kmax∑

k=1

f(yT+1|k, xT )p(k|xT ) (6.25)

where f(yT+1|k, xT ) is given in (6.23). Monte Carlo estimator is simply:

f̄(yT+1|xT ) =
kmax∑

k=1

f̄(yT+1|k∗, xT )p(k|xT ) (6.26)

where f̄(yT+1|k∗, xT ) is given in (6.24).

In order to achieve punctual predictions, we can calculate mean and vari-

ance of yT+1 with respect to the predictive densities. Conditionally on the

model (ρ∗, k∗), the expected value is:

E(yT+1|ρ∗, k∗, xT ) =

∫
yT+1f(yT+1|ρ∗, k∗, xT )dyT+1 =

=

∫
yT+1

[∫
f(yT+1|ψ, ρ∗, k∗, xT )p(ψ|ρ∗, k∗, xT )dψ

]
dyT+1 =

=

∫ [∫
yT+1f(yT+1|ψ, ρ∗, k∗, xT )dyT+1

]
p(ψ|ρ∗, k∗, xT )dψ =

=

∫
U(ψ, ρ∗, k∗)p(ψ|ρ∗, k∗, xT )dψ
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where U(ψ, ρ∗, k∗) = E(yT+1|ψ, ρ∗, k∗, xT ) is defined in expression (6.5). The

corresponding Monte Carlo estimator is then:

N−1

N∑
i=1

U(ψ(i), ρ∗, k∗) (6.27)

The variance is:

V AR(yT+1|ρ∗, k∗, xT ) = Eψ[V AR(yT+1|ψ, ρ∗, k∗, xT )]+

+ V ARψ[E(yT+1|ψ, ρ∗, k∗, xT )]

where the first term is estimated by:

N−1

N∑
i=1

V AR(yT+1|ψ(i), ρ∗, k∗, xT )

and the second one by:

(N − 1)−1

N∑
i=1

[U(ψ(i), ρ∗, k∗)− Ū ]2

where Ū = N−1
∑N

i=1 U(ψ(i), ρ∗, k∗).

The moments of yT+1 with respect to the unconditional predictive dis-

tributions are similarly estimated. Unconditional on ρ, the expected value

E(yT+1|k∗, xT ) is estimated by:

N−1

N∑
i=1

U(ψ(i), ρ(i), k∗)

where as usual (ψ(i), ρ(i)) are samples from the posterior p(ψ, ρ|k∗, xT ).

The variance is:

V AR(yT+1|xT ) = Eψ,ρ[V AR(yT+1|ψ, ρ, k∗, xT )]+

+ V ARψ,ρ[E(yT+1|ψ, ρ, k∗, xT )]

where the first term is estimated by:

N−1

N∑
i=1

V AR(yT+1|ψ(i), ρ(i), k∗, xT )
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and the second one by:

(N − 1)−1

N∑
i=1

[U(ψ(i), ρ(i), k∗)− Ū ]2

where Ū = N−1
∑N

i=1 U(ψ(i), ρ(i), k∗).

Unconditional on both ρ and k, the expected value E(yT+1|xT ) is estimated

by:
kmax∑

k=1

[
N−1

N∑
i=1

U(ψ(i), ρ(i), k)

]
p(k|xT )

The variance is:

V AR(yT+1|xT ) = Eψ,ρ,k[V AR(yT+1|ψ, ρ, k, xT )]+

+ V ARψ,ρ,k[E(yT+1|ψ, ρ, k, xT )]

where the first term is estimated by:

kmax∑

k=1

[
N−1

N∑
i=1

V AR(yT+1|ψ(i), ρ(i), k, xT )

]
p(k|xT )

and the second one by:

kmax∑

k=1

[
(N − 1)−1

N∑
i=1

[U(ψ(i), ρ(i), k)− Ū ]2

]
p(k|xT )

where Ū = N−1
∑N

i=1 U(ψ(i), ρ(i), k).

6.7.2 Multiple-step ahead predictions

The above formulaes are devoted to estimate the predictive distributions for a

single future observation. The computation of the m-step predictive distribu-

tions is less straightforward.

Suppose to consider the two-step predictive distributions. A first method

consists in using a punctual one-step forecast, for instance the estimates of the

expected values E(yT+1|ρ∗, k∗, xT ), E(yT+1|k∗, xT ) or E(yT+1|xT ) as if it is the

true value of yT+1.

Thus, the two-step predictive distribution conditional to a model is:

f(yT+2|ρ∗, k∗, xT ) = f(yT+2|ρ∗, k∗, xT , yT+1 = ȳT+1)
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where ȳT+1 is defined in (6.27). The unconditional predictive distribution is:

f(yT+2|xT ) = f(yT+2|xT , yT+1 = ŷT+1)

where ŷT+1 is previously defined.

This approach ignores any information from the shape of the one-step pre-

dictive distribution and it could be unsatisfactory, as pointed out by Wong and

Li (2000). Alternatively, a better approach is to estimate the exact two-step

predictive distribution trough Monte Carlo method, using samples from the

one-step predictive distribution.

For the conditional case, we have:

f(yT+2|ρ∗, k∗, xT ) =

∫
f(yT+2|ψ, ρ∗, k∗, xT )p(ψ|ρ∗, k∗, xT )dψ =

=

∫ [∫
f(yT+2|ψ, ρ∗, k∗, xT , yT+1)f(yT+1|ψ, ρ∗, k∗, xt)dyT+1

]

p(ψ|ρ∗, k∗, xT )dψ

The Monte Carlo estimators is:

f̄(yT+2|ρ∗, k∗, xT ) = M−1

M∑
j=1

[
N−1

N∑
i=1

f(yT+2|ψ(i), ρ∗, k∗, xT , y
(j)
T+1)

]

where ψ(i), for i = 1, . . . , N , are samples from the posterior p(ψ|ρ∗, k∗, xT )

(available from the MCMC output) and y
(j)
T+1 are samples from the one-step

predictive distribution (equation 6.22).

Similarly, the unconditional two-step predictive distribution is estimated

by:

f̄(yT+2|ρ∗, k∗, xT ) =
kmax∑

k=1

{
M−1

M∑
j=1

[
N−1

N∑
i=1

f(yT+2|ψ(i), ρ(i), k, xT , y
(j)
T+1)

]}
p(k|xT )
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Appendix 6.A

In the following, we shall use “| . . . ” to denote conditioning on all other vari-

ables.

Move (i)

The full conditional for w is derived in a similar way as in Appendix 5.A:

p(w| . . . ) ∝ p(w, µ, φ, σ2, β, z, ρ, xT )

∝ L(µ, φ, σ2, β, z, ρ)p(z|w)p(w)p(µ)p(φ|ρ)p(ρ)p(σ2|β)p(β)

∝ p(z|w)p(w)

∝
k∏

j=1

w
nj

j

k∏
j=1

w
δj−1
j

= Di(w|δ1 + n1, . . . , δk + nk)

where nj =
∑k

j=1 I(zt=j), for j = 1, . . . , k.

Move (ii)

Using equations (6.9) and (6.6):

p(µ| . . . ) ∝ L(µ, φ, σ2, β, z, ρ)p(µ)

=
k∏

j=1

∏
t:zt=j

N(yt|νj,t, σ
2
j )

k∏
j=1

N(µj|µ0, τ
2)

Hence:

p(µj| . . . ) ∝
[ ∏

t:zt=j

N(yt|νj,t, σ
2
j )

]
N(µj|µ0, τ

2)

for j = 1, . . . , k. Writing the normal density function and substituting the

(6.4), we obtain:

p(µj| . . . ) ∝ exp {− 1

2σ2
j

∑
t:zt=j

[yt − µj − φ1,j(yt−1 − µj)− . . .

· · · − φρj ,j(yt−ρj
− µj)]

2 − 1

2τ 2
(µj − µ0)

2}
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Letting vt,j = yt − φj,1yt−1 − · · · − φj,ρj
yt−ρj

and B = 1− φj,1 − · · · − φj,ρj
,

p(µj| . . . ) ∝ exp

{
− 1

2σ2
j

∑
t:zt=j

(vt,j − µjB)2 − 1

2τ 2
(µj − µ0)

2

}

= exp

{
− 1

2σ2
j

∑
t:zt=j

(vt,j − v̄j + v̄j − µjB)2 − 1

2τ 2
(µj − µ0)

2

}

= exp

{
− 1

2σ2
j

∑
t:zt=j

[(vt,j − v̄j)
2 + nj(v̄j − µjB)2]− 1

2τ 2
(µj − µ0)

2

}

∝ exp

{
− 1

2σ2
j

nj(v̄j − µjB)2 − 1

2τ 2
(µj − µ0)

2

}

∝ exp

{
−

[(
njB

2

2σ2
j

+
1

2τ 2

)
µ2

j −
(

nj v̄jB

σ2
j

+
µ0

τ 2

)
µj

]}
,

where v̄j = 1
nj

∑
t:zt=j vtj. Now, if we let:

A =
njB

2

2σ2
j

+
1

2τ 2
=

1

2

njB
2τ 2 + σ2

j

σ2
j τ

2
(6.28)

D =
1

2

(
nj v̄jB

σ2
j

+
µ0

τ 2

)
=

1

2

nj v̄jBτ 2 + µ0σ
2
j

σ2
j τ

2
(6.29)

then:

p(µj| . . . ) ∝ exp{− [
Aµ2

j − 2Dµj

]}

∝ exp

{
−A

[
µ2

j − 2
D

A
µj

]}

∝ exp

{
−A

[(
µj − D

A

)2

− D2

A2

]}

∝ exp

{
−A

(
µj − D

A

)2
}

Finally, substituting the (6.28) and (6.29), we obtain:

p(µj| . . . ) ∝ exp

{
1

2

njB
2τ 2 + σ2

j

σ2
j τ

2

(
µj −

nj v̄j B τ 2 + σ2
j µ0

nj B2τ 2 + σ2
j

)2
}

= N

(
µj

∣∣∣∣
nj v̄j B τ 2 + σ2

j µ0

nj B2τ 2 + σ2
j

,
σ2

j τ
2

nj B2τ 2 + σ2
j

)
.

for j = 1, . . . , k.
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Move (iii)

From section (3.4.1), we know that the ratio in the acceptance probability for

a Metropolis-Hastings algorithm can be represented as:

(likelihood ratio)× (prior ratio)× (proposal ratio)

In the case of move (iii), the likelihood ratio is simply given by (see equation

6.9):

likelihood ratio =

∏k
j=1

∏
t:zt=j N(yt|ν∗j,t, σ2

j )∏k
j=1

∏
t:zt=j N(yt|νj,t, σ2

j )
(6.30)

where

ν∗j,t = µj + φ∗1,j(yt−1 − µj) + · · ·+ φ∗ρj ,j(yt−ρj
− µj) (6.31)

Substituting the normal density function and the equations (6.30) and

(6.31), we obtain the first line of the (6.14).

All the parameters but the AR coefficients do not change and the prior

ratio in terms of the partial autocorrelations π reduces to the ratio of two

generalized beta (equation 6.10):

prior ratio =

∏ρj

i=1 Be(−1,+1)

(
π∗i,j|

[
i+1
2

]
,
[

i
2

]
+ 1

)
∏ρj

i=1 Be(−1,+1)

(
πi,j|

[
i+1
2

]
,
[

i
2

]
+ 1

)

Substituting the density from section 2.5.1, the second line of the (6.14) is

easily derived.

Eventually, from the equation (6.13) and from section 2.5.5, the proposal

ratio is (third line of the (6.14)):

proposal ratio =

∏ρj

i=1 N(−1,+1)(πi,j|π∗j,i, σ2
q )∏ρj

i=1 N(−1,+1)(π∗i,j|πj,i, σ2
q )

=

∏ρj

i=1

N(πj,i|π∗j,i,σ
2
q )

FN (1|π∗j,i,σ
2
q )−FN (−1|π∗j,i,σ

2
q )

∏ρj

i=1

N(π∗j,i|πj,i,σ2
q )

FN (1|πj,i,σ2
q )−FN (−1|πj,i,σ2

q )

=

ρj∏
i=1

FN(1|πj,i, σ
2
q )− FN(−1|πj,i, σ

2
q )

FN(1|π∗j,i, σ2
q )− FN(−1|π∗j,i, σ2

q )

where FN is the normal cumulative distribution function.
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Move (iv)

Using equations (6.9) and (6.6):

p(σ2| . . . ) ∝ L(µ, φ, σ2, β, z, ρ)p(σ2|β)

=
k∏

j=1

∏
t:zt=j

N(yt|νj,t, σ
2
j )

k∏
j=1

Ig(σ2
j |α, β)

Hence, for j = 1, . . . , k, the full conditional for σ2
j is:

p(σ2
j | . . . ) ∝

[ ∏
t:zt=j

N(yt|νj,t, σ
2
j )

]
Ig(σ2

j |α, β)

∝ σ
−nj

j exp

{
−1

2

∑
t:zt=j

(yt − νj,t)
2

σ2
j

}
σ
−2(α−1)
j exp{−β/σ2

j}

= σ
−2(nj/2+α−1)
j exp

{[
−1

2

∑
t:zt=j

(yt − νj,t)
2

]
/σ2

j

}

= Ig

(
σ2

j

∣∣∣∣ α +
1

2
nj, β +

1

2

∑
t:zt=j

(yt − νj,t)
2

)

Move (v)

The full conditional for the allocation variable z is derived as in Appendix 4.B,

with the only difference of νj,t instead of µj (equation 5.17).

Appendix 6.B

Move (vi)

For the reversible jump algorithm, we can represent the ratio in the acceptance

probability as (section 4.2.2):

(likelihood ratio)× (prior ratio)× (proposal ratio)× (jacobian)

The likelihood ratio is the same of equation (6.30):

likelihood ratio =

∏k
j=1

∏
t:zt=j N(yt|ν∗j,t, σ2

j )∏k
j=1

∏
t:zt=j N(yt|νj,t, σ2

j )
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but here the conditional mean ν∗j,t is:

ν∗j,t = µj + φ∗1,j(yt−1 − µj) + · · ·+ φ∗ρ∗j ,j(yt−ρ∗j − µj)

because the model order is updated by this move.

The parameters updated by this move are ρj and πρj
; hence, the prior ratio

is given by:

prior ratio =
p(ρ∗j)p(π∗ρj

)

p(ρj)p(πρj
)

=

∏ρ∗j
i=1 p(π∗i,j)∏ρj

i=1 p(πi,j)

because of the uniform prior on the model orders. Since only the jth compo-

nent is updated, if ρ∗j = ρj − 1:

prior ratio =
1

p(πρj ,j)

Otherwise, if ρ∗j = ρj + 1:

prior ratio = p(πρ∗j ,j)

To calculate the proposal ratio we have to take into account the probabili-

ties b(·) and d(·) and the proposal density, which is chosen equal to the prior

on π. If ρ∗j = ρj − 1:

proposal ratio =
b(ρ∗j)p(πρj ,j)

d(ρj)

Otherwise, if ρ∗j = ρj + 1:

proposal ratio =
d(ρ∗j)

b(ρj)p(πρ∗j ,j)

If ρ∗j = ρj − 1, then pi∗i,j = pii,j, for i = 1, . . . , ρ∗j . On the other hand, if

ρ∗j = ρj + 1, then π∗i,j = pii,j, for i = 1, . . . , ρj, and π∗ρ∗j ,j is generated by the

beta prior (6.10). As consequence, using the terminology of section 4.2.2, the

invertible function g(·) is the identity function and the jacobian is equal to

one.

Multiplying likelihood, prior and proposal ratios, equations (6.16) and

(6.17) are easily derived.



Chapter 7

Return volatility

7.1 Introduction

This chapter shows the application of the mixture of autoregressive components

to the return volatility, reporting definition and properties of the model and

summarizing parameter estimation and model selection procedures in order to

be a self-contained chapter.

Modelling and forecasting return volatility is one of the most important

tasks in financial markets. Within a rich literature (for a recent review see

Poon and Granger, 2003), several stylized facts have been recognized.

First of all, volatility is persistent (e.g. Poterba and Summers, 1986, Schw-

ert, 1987, French et al., 1987, and Hsieh, 1991) and it can have long memory

properties (e.g. Ding et al., 1993, and Bollerslev and Mikkelsen, 1996).

Second, observations of financial time series reveal volatility clustering.

Autoregressive conditional heteroskedasticity (ARCH) models and stochastic

volatility (SV) models (for a survey, see Bollerslev et al., 1992, and Ghysels at

al., 1996, respectively) are well-known instruments proposed in literature and

they are essentially built to mimic this volatility feature.

Moreover, volatility shows threshold effects, non-symmetrical dependencies

and mean reversion. In particular, it has been argued that volatility adjust-

ments follow a twin-speed process: low volatility state is more persistent with

respect to high state (Longing, 1987, Jones et al., 1998). In order to consider

changing volatility persistence, models in a regime switching framework have

been proposed (Hamilton, 1989, Cao and Tsay, 1992, Gray, 1996). Volatility

79



Chapter 7 Return volatility 80

asymmetry motivates several non-linear GARCH type models, like the expo-

nential GARCH (Nelson, 1991), the quadratic GARCH (Engle, 1990) and the

JGR-GARCH (Glosten et al., 1993).

In this work we follow the approach which uses an observable proxy for the

return volatility. This choice entails some empirical advantages, allowing to

use methods directly based on observable variables.

We model the log volatility through the mixture of autoregressive com-

ponents (chapter 6) which capture the previously mentioned stylized facts.

The autoregressive nature on the mixture components explicitly formalizes

the volatility intertemporal dependence. The clustering effect is also consid-

ered. In fact, the model assumes that, at each time t, the observable proxy

for the volatility is drawn from one of a set of different autoregressive models

(regimes) with probabilities equal to the mixture weight. In addition, a mix-

ture model is a flexible technique to obtain departures from normality and the

conditional distribution can be multimodal or non-symmetric.

As we shown in the previous chapter, Wong and Li (2000) introduced the

mixture of autoregressive models, performing a numerical maximum likelihood

estimation. A single model is jointly specified by the number of the autore-

gressive components of the mixture and by the orders of such autoregressive

components. In order to solve the model selection problem, they consider

the AIC and the BIC criterions and they conclude that these conventional

approaches are not satisfactory in this context.

We propose a fully Bayesian approach, in which model determination is

based on indexing all the models under consideration and considering this index

as a variable. Since standard approaches select a single model and then make

inference based on this model, model uncertainty is not taken into account.

Conversely, even with a very high number of possible models, we do not ignore

model uncertainty because we maintain consideration of several models, with

the input of each into the analysis weighted by the model posterior probability.

Influence of model uncertainty on financial models has been recognized as an

important factor and it has been investigated by some recent papers (Barberis,

2000, MacKinley and Pastor, 2000, Pastor, 2000, Pastor and Stambaugh, 2000,

Cremers, 2002).
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A Bayesian approach in time series analysis is usually difficult because of

the existence of stationary and invertible conditions on the model parameters.

These constraints have been often ignored (see e.g. Zellner, 1971, Broemel-

ing and Shaaraway, 1988). Instead, we consider a prior setting compatible

with the stationarity conditions on the autoregressive parameters through a

reparametrization in terms of partial autocorrelations (Barndorff-Nielsen and

Schou, 1973, Barbieri and O’Hagan, 1997).

Chapter 6 treated the estimation procedure and the model selection which

are based on Markov Chain Monte Carlo (or MCMC) methods. In particular,

model selection is performed combining a Reversible jump sampler (Green,

1995) and a marginal likelihood estimation (Chib and Jeliazkov, 2001).

7.2 Mixture of autoregressive components

Let yt be the observable variable, for t = 1, . . . , T . The mixture of autoregres-

sive components can be defined by:

yt| . . . ∼
k∑

j=1

wj N(yt|νj,t, σ
2
j ) (7.1)

where “| . . . ” is used to denote conditioning on the past observations and on

all other variables, N(·|a, b) stands for the Normal distribution with mean a

and variance b, and:

νj,t = µj + φ1,j(yt−1 − µj) + · · ·+ φρj ,j(yt−ρj
− µj) (7.2)

for j = 1, . . . , k.

Note that equation (7.2) is the conditional mean of a stationary autoregres-

sive model, with order ρj, stationary mean µj and autoregressive coefficients

φj = (φ1,j, . . . , φρj ,j).

The mixing weights wj satisfy the constraints:

wj > 0, j = 1, . . . , k

w1 + · · ·+ wk = 1
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Clearly, the model captures the volatility persistence since the observable

variable is formalized as a function of the past values. As we shown in chap-

ter 6, we consider the orders of the autoregressive components ρj as random

variables through a Bayesian perspective. As a consequence, inference is not

based on a unique fixed level of persistence, but it considers different levels

whose contributions are given by the model posterior probabilities.

In addition, the mixture of autoregressive components is a flexible non-

linear model which can capture other stylized facts of the volatility. In fact,

the model assumes that, at each time t, the volatility is drawn from one of

a set of different regimes with probabilities equal to the mixture weight. For

instance, the twin-speed process (low volatility states are more persistent than

high states, Longing, 1987, Jones et al., 1998) is strongly recognized by our

model (see section 7.7).

7.3 Bayesian analysis

Suppose to adopt the concise notation ρ = (ρ1, . . . , ρk), µ = (µ1, . . . , µk),

σ2 = (σ2
1, . . . , σ

2
k), φ = (φ1, . . . , φk). We set the following prior distributions

for the parameters w, µ and σ2:

w|k ∼ Di(w|δ, δ, . . . , δ) (7.3)

µj
iid∼ N(µj|µ0, τ

2), j = 1, . . . , k (7.4)

σ2
j

iid∼ Ig(σ2|α, β), j = 1, . . . , k. (7.5)

where Di(·|δ, δ, . . . , δ) and Ig(·|α, β) denote the Dirichlet and the Inverted-

Gamma distributions respectively. The parameters δ, µ0, τ 2, α and β are

assumed to be fixed (see section 7.7).

The prior distributions (7.3), (7.4) and (7.5) are conventional choices for

a mixture model (see e.g. Diebolt and Robert, 1994, Richardson and Green,

1997). Fully non-informative priors do not lead to proper posterior distribu-

tions in a mixture context and independent improper priors cannot be used

(Diebolt and Robert, 1994).

Our analysis deals with two important issues. The first one is the so-called

label switching problem, which derives from the symmetry in the likelihood of
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the parameters (chapters 5 and 6). In a Bayesian analysis, if we have no prior

information that distinguishes between the components of the mixture (that is,

the joint prior distribution is the same for all permutations of the parameters),

then the posterior distribution will be similarly symmetric (see Fruhwirth-

Schnatter, 2001, for a proof). As a result, the posterior distribution shows

artificial multimodality, which poses obvious problems in terms of parameter

estimations.

The usual solution of the label switching problem consists in imposing an

identifiability constraint on the parameter space, such as µ1 < µ2 < . . . , < µk.

This kind of constraints can be satisfied by only one permutation of ψ and this

breaks the symmetry of the prior (e.g. Albert and Chib, 1993, McCulloch and

Tsay, 1994, Engle and Kim, 1999).

The second issue we address is the existence of the stationarity regions for

the autoregressive coefficients φ. Apart from the cases of small orders, it is

well-known that the form of these regions for an autoregressive model is very

complex. As a consequence, Bayesian analysis can be difficult in terms of prior

specification and these constraints have been often ignored (see e.g. Zellner,

1971, Broemeling and Shaaraway, 1988).

Let Φj be the stationarity region for the jth autoregressive component and

let πh,j be the partial autocorrelation coefficient at lag h for the jth model.

Through the reparametrization introduced by Barndorff-Nielsen and Schou

(1973) (section 6.4), which establishes a one-to-one transformation between

φj = (φ1,j, . . . , φρj ,j) and πj = (π1,j, . . . , πρj ,j), and using the following result

(Jones, 1987):

φj ∼ Uniform on Φj ⇐⇒ πi,j
ind∼ Be(−1,+1)

(
πi,j

∣∣∣∣
[
i + 1

2

]
,

[
i

2

]
+ 1

)

for i = 1, . . . , ρj and j = 1, . . . , k, where Be(−1,+1)(.) denotes a generalized

beta distribution defined on (−1, +1) and where [x] means “integer part of

x”, we can put a uniform prior distribution for the original parameters on the

complicate stationarity region Φj, simply choosing a generalized beta prior for

the πi,j’s on (−1, +1).

Finally, k and ρ = (ρ1, . . . , ρk) will be considered as stochastic quantities
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with the following priors:

ρj|ρmax
iid∼ Un(ρj|0, ρmax), j = 1, . . . , k (7.6)

k|kmax ∼ Un(k|1, kmax) (7.7)

where Un(x|a, b) denotes the discrete uniform distribution for a ≤ x ≤ b and

where ρmax and kmax are fixed.

7.4 Parameter estimation

As we noticed in the introduction, k and ρ jointly specify a possible model.

Let θ = (w, µ, σ2, φ) be the complete parameters vector and let m = (ρ, k) be

the model index. The model determination problem will be discussed in the

next section. For the moment, suppose to consider m as a fixed quantity.

The posterior distribution of θ conditionally on m is given by Bayes’ theo-

rem:

p(θ|y, m) =
f(y|θ,m)p(θ|m)∫
f(y|θ,m)p(θ|m)dθ

(7.8)

where f(y|θ, m) is the likelihood function and p(θ|m) is the joint prior distri-

bution for θ.

Because of the analytically intractable denominator of equation (7.8), we

approximate the posterior distribution by a Markov Chain Monte Carlo (or

MCMC) method. In particular, we implemented an MCMC strategy based on

a componentwise algorithm (section 3.4.2). In short, suppose to split the pa-

rameter vector θ into L blocks (θ1, θ2, . . . , θL). Each iteration of the algorithm

is formed by L moves, each of them updates a single block θi. In practice, for

i = 1, . . . , L, a possible value for the chain, say θ′i, is generated from a specific

proposal density qi(θ
′
i|θi). θ′i is accepted with probability:

αi(θi, θ
′
i) = min

(
1,

π(θ′)qi(θi|θ′i)
π(θ)qi(θ′i|θi)

)
(7.9)

where θ′ = (θ1, . . . , θ
′
i, . . . , θL). If θ′i is rejected, the chain remains in θi.

The ith move related to equation (7.9) is referred as Metropolis-Hastings

type move (Metropolis et al., 1953, Hastings, 1970). If the proposal density

qi(θ
′
i|θi) is equal to the full conditional p(θ′i|θ−i), where θ−i = (θ1, θ2, . . . , θi−1,
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θi+1, . . . , θL), the probability (7.9) is shown to be 1 and the proposal value is

always accepted. In this case, the move is said Gibbs type move (Geman and

Geman, 1984).

In our analysis, θ is split into four blocks corresponding to the parameter

(w, µ, σ2, φ). In order to implement the MCMC strategy, it is necessary to con-

sider an additional move that updates the allocation variable z = (z1, . . . , zT )

(chapters 5 and 6). w, µ, σ2 and z are updated by Gibbs type moves, while

φ is updated by a Metropolis-Hastings move. For details see Appendix 7.A or

section 6.5.

7.5 Model determination

As pointed out by Wong and Li (2000), traditional criterions like the AIC

(Akaike, 1973) and the BIC (Schwarz, 1978) are not satisfactory for the mixture

of autoregressive components, especially in selecting the number of components

k. The difficulties arise from the non-standard application of these criterions,

as in testing problems with nuisance parameters that are present only under

the alternative hypothesis.

We propose a Bayesian model determination procedure. The key idea is to

index all the models under consideration and consider this index as a further

(stochastic) parameter. In general, this entails some advantages with respect

to other approaches. First of all, results are simple to interpret: conclusions

like “the (posterior) probabilities that m and m′ are true are 0.87 and 0.13

respectively” are easy to understand even with a limited statistical background.

In addition, Bayesian model determination acts as an “Occam’s razor”,

selecting a simpler model over a more complex one if both are compatible with

the data.

Another fundamental feature is that model uncertainty is taken into ac-

count. Standard approach selects a single model from a class of candidate

models and then makes inference based on this model. This procedure ignores

model uncertainty and it could provide small predictive precisions (see Draper,

1995, for a discussion). Conversely, Bayesian model determination can account
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for model uncertainty because one can maintain consideration of several mod-

els, with the input of each into the analysis weighted by the model posterior

probability.

To compare different models, it is natural to use the marginal posterior

distribution of the model index which is derived by Bayes’ theorem:

p(m|y) =
f(y|m)p(m)∑
m f(y|m)p(m)

(7.10)

where p(m) is the discrete prior for the models and where f(y|m) is the

marginal likelihood:

f(y|m) =

∫
f(y|θ, m)p(θ|m)dθ (7.11)

The calculation of the posterior (7.10) poses the usual problems in terms

of analytical tractability and several methods that are able to deal with model

selection were implemented in literature. It is possible to divide them into two

main categories: across- and within- model simulation methods.

The across-model simulation approach is based on an MCMC simulation

with states of the form (m, θ). The distribution of interest is the joint posterior

of the parameters and the model index. The marginal posterior distribution

of m is simply estimated by the proportions of m’s in the sample obtained by

the MCMC algorithm.

In the within-model simulations, the aim of finding p(m|y) for all m is

reached by estimating all the marginal likelihoods f(y|m). Once f(y|m) for

all m is estimated, it is sufficient to normalize the products f(y|m)p(m) to

achieve the marginal posterior probabilities (see equation 7.10).

As we explained in chapter 6, our analysis is performed using a combina-

tion of these classes of methods. Specifically, we evaluate the two posterior

distributions p(ρ|k, y) and p(k|y) by the following strategy:

i. p(ρ|k, y) is obtained by adding a reversible jump type move (Green, 1995)

to the previously illustrated MCMC strategy which updates the orders

ρ (across-model simulation).

ii. The output from the step i is used to derive the marginal posterior p(k|y)

using the method by Chib and Jeliazkov (2001) (within-model simula-

tion).
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Reversible jump sampler (section 4.2.2) can be viewed as a Metropolis-

Hastings method adapted for general state spaces. Suppose to denote the

dimension of a parameter vector θ with d(θ). Let (θ, m) be the current value

of the chain and let gm,m′ be an invertible function. At each iteration, a

candidate model m′ is generated from q(m′|m). Note that θ depends on m,

so d(θ) can change. In order to have a dimension matching, a random vector

u is generated from a proposal density q(u|θ,m, m′). Set (θ′, u′) = gm,m′(θ, u),

with d(u′) = d(θ) + d(u)− d(θ′). The proposed value (θ′, m′) is accepted with

probability:

α[(θ, m), (θ′,m′)] = min

(
1,

h(θ′,m′)
h(θ, m)

× q(m|m′)q(u′|θ′,m′,m)

q(m′|m)q(u|θ, m, m′)
×

∣∣∣∣
∂gm,m′(θ, u)

∂(θ, u)

∣∣∣∣
)

where h is the distribution of interest. Note the similarity with equation

(7.9). The final term in brackets is a Jacobian arising from the change of

variable from (θ, u) to (θ′, u′). If m = m′, the move is a standard Metropolis-

Hastings step. Appendix 7.B will summarize the implementation of this algo-

rithm in our context.

The starting idea of the second step is that the marginal likelihood is the

normalizing constant of the posterior density (equations 7.8 and 7.11). Thus,

we can write:

f(y|m) =
f(θ|y, m)p(θ|m)

p(θ|y, m)
(7.12)

which is referred to as the basic marginal likelihood identity. Note that this

identity is true for every θ: this means that we can estimate the marginal

likelihood by finding an estimate of the posterior ordinate p(θ∗|y, m) in a single

point θ∗. Anyway, for estimation efficiency, the point θ∗ is taken to be a high-

density point in the support of the posterior.

Chib and Jeliazkov (2001) propose an efficient method to produce the es-

timate p̄(θ∗|y, m) using the output from a MCMC simulation with fixed m.

After that, all (7.12) requires is the evaluation of likelihood and prior.

To illustrate the method, consider the simple case in which the posterior

density is sampled in one block by the Metropolis-Hastings algorithm. The

method is easily extended to our multiple parameter blocks case with a com-

ponentwise algorithm. Suppose the sample produced by the MCMC algorithm

with fixed m is {θ(1), θ(2), . . . , θ(N)}.
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For notational convenience, the model index m will be suppressed in the

rest of the section. Metropolis-Hastings method satisfies the detailed balance

of a Markov chain (see e.g. Chib and Greenberg, 1995), thus we can write:

α(θ, θ′)q(θ, θ′)p(θ|y) = α(θ′, θ)q(θ′, θ)p(θ′|y)

for any point θ′, where α() is the acceptance probability and q() is the proposal

density. Integrating both sides of this expression with respect to θ, we obtain:

p(θ′|y) =

∫
α(θ, θ′)q(θ, θ′)p(θ|y)dθ∫

α(θ′, θ)q(θ′, θ)dθ

=
E1[α(θ, θ′)q(θ, θ′)]

E2[α(θ′, θ)]

where the expectation E1 is with respect to the posterior p(θ|y) while the

expectation E2 is with respect to q(θ′, θ). The posterior ordinate is then esti-

mated by the Monte Carlo estimator:

p̄(θ′|y) =
N−1

∑N
i=1 α(θ(i), θ′)q(θ(i), θ′)

J−1
∑R

j=1 α(θ′, θ(j))

where {θ(i)} are the samples from the posterior and {θ(j)}, for j = 1, . . . , J ,

are draws from q(θ′, θ), given the fixed value θ′.

In Appendix 7.C, this method is applied on the mixture of autoregressive

components in order to calculate p(k|y) (see also section 6.6.2 in the previous

chapter).

7.6 Predictive distributions

Consider an unknown observable future variable yT+1. A first kind of predictive

distribution which can be computed is the one conditional on a given model

m:

f(yT+1|m, y) =

∫
f(yT+1|θ,m, y)p(θ|m, y)dθ (7.13)

where as usual θ = (w, µ, σ2, φ), f(yT+1|θ, m, y) is derived from (7.1) and

p(θ|m, y) is the posterior distribution conditional on the model.

We estimate the (7.13) by the Monte Carlo estimator:

N−1

N∑
i=1

f(yT+1|θ(i),m, y)
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where θ(i), for i = 1, . . . , N , are samples from the conditional posterior p(θ|m, y)

and they are available from the MCMC output.

The unconditional predictive distribution takes into account the model un-

certainty, since all the possible models are considered and they are weighted

by their posterior probability (Bayesian model averaging). The unconditional

predictive distribution is:

f(yT+1|y) =
kmax∑

k=1

[∑
ρ

∫
f(yT+1|θ, ρ, k, y)p(θ, ρ|k, y)dθ

]
p(k|y) (7.14)

The corresponding Monte Carlo estimator of the (7.14) is:

kmax∑

k=1

[
N−1

N∑
i=1

f(yT+1|θ(i), ρ(i), k, y)

]
p(k|y)

where (θ(i), ρ(i)), for i = 1, . . . , N , are samples from the conditional posterior

p(θ, ρ∗|k∗, y) and they are available from the MCMC output.

In order to achieve punctual predictions, it is possible to calculate mean

and variance of yT+1 with respect to the predictive densities by Monte Carlo

estimators.

The computation of the m-step predictive distributions is less straight-

forward. Suppose to consider the two-step predictive distributions. A first

method consists in using a punctual one-step forecast as if it is the true value

of yT+1. Alternatively, we can estimate the exact two-step predictive distribu-

tion trough Monte Carlo method, using samples from the one-step predictive

distribution.

7.7 Return volatility

As we noticed in the introduction, our approach is based on considering an

observable proxy variable for the return volatility. A standard choice is the

daily squared returns which will be referred as volatility in the rest of the

thesis.

We consider daily returns rt on Nasdaq index from May 15, 2002 to May 15,

2003 (253 observations) and we take the logarithm of volatility: yt = ln(r2
t ).

Time series plot (a) and histogram (b) of yt are displayed in figure 7.1.
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Figure 7.1: Plot (a) and histogram (b) of the logarithm of daily return volatility
(Nasdaq index from May 15, 2002 to May 15, 2003)

Note that the empirical distribution shows a minor mode corresponding to

low values of the volatility.

Some of the parameters involved are supposed to be fixed (section 7.3).

We set kmax = 5 and ρmax = 9. Higher values for these parameters will not

change our results. Following Richardson and Green (1997), the prior for µj

is chosen to be flat over an interval of variation of the observed data. Let

R = max(y) − min(y); we set µ0 = min(y) + R/2 and τ = R. We use the

knowledge of the range of the data in setting the hyperparameters of σ2. In

particular, β will be a small multiple of R−2 (β = 0.1 ·R−2) and α = 2. Finally

δ = 1.

The number of iterations of the MCMC algorithm conditional on k was

50000, with a burn-in period of 10000. The successive reduced MCMC algo-

rithms for the marginal likelihood were run with 15.000 iterations each one.
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We believe that these numbers are sufficient to ensure the convergence of the

algorithm.

Remember that prior distributions for the model indexes are uniform, as

reported in equations (7.6) and (7.7). The resulting joint prior follows a par-

simony principle, penalizing complex models with an high number of compo-

nents:

p(ρ, k) = p(ρ|k)p(k) ∝
(

1

ρmax + 1

)k

where ∝ denotes “proportional to”. Anyway it is easy to convert results to

those corresponding to alternative priors by the identity:

p̃(θ, m|y) ∝ p(θ,m|y)
p̃(m)

p(m)

where p̃(·|y) is the posterior for a different prior p̃.

Table 7.1 shows the posterior probabilities of the number of mixture compo-

nents k. The model with two components is largely preferred with a probability

of 0.81. On the grounds of many different simulations, we noted a sensitiv-

ity of these results with respect to some hyperparameters. An obvious result

is that smallest values of the prior variance τ increase the preference for the

one-component model. Anyway, in all the simulations we performed the one-

component model never had the highest posterior probability. p(k|y) is also

sensitive with respect to the prior on the variances σ2. The posterior proba-

bilities of the models with a number of components greater than 2 increases

if the prior mean of σ2 decreases. This is due to the fact that the smaller are

the variance components, the higher is the number of components needed to

fit the data.

k p(k|y)
1 0
2 0.81
3 0.18
4 0.01
5 0

Table 7.1: Posterior probabilities of the number of mixture components
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Posterior probabilities of the orders of the autoregressive components are

given in Table 7.2 for different values of k.

Information about the posterior distributions of some model parameters

conditional on k = 2 are showed in table 7.3 (posterior means and variances)

and in figure 7.2 (histograms of the posterior distributions).

k = 1 k = 2 k = 3
(ρ1) p(ρ1|k, y) (ρ1, ρ2) p(ρ1, ρ2|k, y) (ρ1, ρ2, ρ3) p(ρ1, ρ2, ρ3|k, y)
(0) 0.85 (0,0) 0.46 (0,0,0) 0.09
(1) 0.09 (0,1) 0.03 (0,1,0) 0.04
(2) 0.03 (1,0) 0.24 (1,0,0) 0.08
(3) 0.02 (2,0) 0.06 (2,0,0) 0.05

(3,0) 0.04 (3,0,0) 0.05
(4,0) 0.03 (4,0,0) 0.04
(5,0) 0.02 (5,0,0) 0.05

(6,0,0) 0.04
(7,0,0) 0.03
(8,0,0) 0.03
(9,0,0) 0.03

Table 7.2: Posterior probabilities (≥ 0.02) of autoregressive components’ or-
ders conditional on k.

E(·|k = 2, y) Var(·|k = 2, y)
w1 0.31 0.01
w2 0.69 0.01
µ1 -11.07 4.97
µ2 -7.69 0.04
σ2

1 5.11 1.44
σ2

2 1.65 0.13

Table 7.3: Posterior mean and variance of the model parameters conditional
on k = 2

Tables 7.2 and 7.3 suggest several considerations. First of all, conditional

on k = 1, order zero has a high posterior probability (0.85). In other words,

the one-component model, that is a simple autoregressive model, does not

seem able to capture volatility persistence. On the other hand, with k ≥ 2,
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Figure 7.2: Posterior distributions of the weights [(a) and (b)], the means [(c)
and (d)] and the variances [(e) and (f)] conditional on k = 2

the results show different levels of persistence according to a threshold effect.

Consider the model formed by two components: the first one corresponds to

low volatility values (µ1 = −11.07) and it shows higher persistence with respect

to the second component. In fact, models of the form (ρ1, ρ2) = (r, 0), with

r = 0, . . . , 9, have a total posterior probability of 0.883. Simulations with

k ≥ 3 lead to a similar structure, in which a first component formalizes low

and persistent volatility values, while the remaining components are associated

with zero autoregressive orders.

Table 7.4 shows posterior means and variances of the autoregressive coef-

ficients φ conditional on k = 2 and on different values of ρ. Figure 7.3 shows

the posterior distributions of φ conditional on k = 2 and on ρ = (1, 0) and

ρ = (2, 0).

The one-step predictive distributions conditional on k are showed in figure
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(ρ1, ρ2) E(φ1,·|ρ, k, y) E(φ2,·|ρ, k, y) Var(φ1,·|ρ, k, y) Var(φ2,·|ρ, k, y)
(0, 1) - 0.015 - 0.003
(1, 0) -0.25 - 0.042 -
(2, 0) -0.182 - 0.066 -

0.111 0.045
(3, 0) -0.161 - 0.068 -

0.156 0.046
0.211 0.047

(4, 0) -0.197 - 0.04 -
0.126 0.034
0.208 0.039
0.278 0.044

(5, 0) -0.205 - 0.042 -
0.094 0.038
0.124 0.056
0.295 0.032
0.177 0.033

Table 7.4: Posterior means and variances of the autoregressive coefficients φ
conditional on k = 2 and on different values of ρ

7.4 . With a number of components greater than one, the predictive distribu-

tion is asymmetric. The unconditional one-step predictive distribution is given

in figure 7.5.

An out of sample analysis is summarized in figure 7.6, where the one-step

predictive distributions conditional on k = 2 for some values of t are displayed.

Actual values of yt are also shown at the times t-1, t and t+1.
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Figure 7.3: Posterior distributions of the autoregressive parameters conditional
on k = 2 and ρ = (1, 0) [(a)] and conditional on ρ = (2, 0) [(b) and (c)]
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Figure 7.4: One-step predictive distributions conditional on the number of
autoregressive components k
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Figure 7.5: One-step unconditional predictive distribution
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Figure 7.6: One-step predictive distributions conditional on k = 2 for different
values of t. The actual values are shown (labels ’p’, ’a’ and ’f’ stand for
observations at times t-1, t and t+1 respectively)
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7.8 Conclusions

In this chapter, we modelled an observable proxy of the return volatility of

financial markets by the mixture of autoregressive components. Our results

confirm some of the stylized facts about volatility which have been recognized

in the literature, like the persistence and the non-symmetrical dependencies.

Moreover, our Bayesian perspective takes into account the important is-

sue of model uncertainty, whose influence on financial models has been often

ignored.

The mixture of autoregressive components can be extended in several ways.

For instance, a mixture of autoregressive moving average (ARMA) components

could be developed: the invertibility conditions of the moving average part of

the model can be handled by a generalization of the reparametrization we used

(Monaham, 1984).

The normality of the component densities can be also easily relaxed and

different conditional distributions can be used. Note that considering other

distributions implies opportune changes of the moves of the MCMC algorithm.

Another possible development is related to the stationarity conditions. In

this work we consider local conditions, that is within each autoregressive com-

ponents. This local stationarity seems to be a sufficient condition for the

global stationarity but, as showed by Wong and Li (2000), a mixture of non-

stationarity components can be stationary. A Bayesian analysis which takes

into account global stationarity conditions could be done, nevertheless it does

not appear straightforward.
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Appendix 7.A

The MCMC algorithm for parameter estimation (section 7.4) consists in the

following moves:

i. Updating the weights w

ii. Updating the means µ

iii. Updating the autoregressive coefficients φ

iv. Updating the variances σ2

v. Updating the allocation variable z

Move i is a Gibbs sampler move. The proposed values for the weights w are

drawn from the full conditional which is shown to be a Dirichlet density:

p(w|µ, σ2, φ, z, y) = Di(w|δ1 + n1, . . . , δk + nk) (7.15)

where nj =
∑k

j=1 I(zi=j)

Move ii is also a Gibbs type move, with full conditional for µj given by:

p(µj|w, σ2, φ, z, y) = N

(
µj

∣∣∣∣
nj v̄j B τ 2 + σ2

j µ0

nj B2τ 2 + σ2
j

,
σ2

j τ
2

nj B2τ 2 + σ2
j

)
(7.16)

for j = 1, . . . , k, where v̄j = 1
nj

∑
t:zt=j vtj, with vtj = yt − φj,1yt−1 − · · · −

φj,ρj
yt−ρj

, and where B = 1− φj,1 − · · · − φj,ρj
.

Move iii updates φ through the partial autocorrelations πj, for j = 1, . . . , k

(section 7.3). The move is a Metropolis-Hastings type move. A candidate π∗j,i
is generated by a normal density truncated in (−1, +1) and centered in the

current state of the chain πj,i:

q(πj,i, π
∗
j,i) = N(−1,+1)(π

∗
i,j|πj,i, σ

2
q ) (7.17)

for i = 1, . . . , ρj and for j = 1, . . . , k. The variance σ2
q is chosen in order to

obtain a satisfactory acceptance rate.

Let π∗j be the proposal vector for the partial autocorrelations: using π∗j ,

the corresponding parameters φ∗j = (φ∗j,1, . . . , φ
∗
j,ρj

) are derived through the

transformation of section 7.3.
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The acceptance probability is min(1, R) (equation 7.9), where R is given

by:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − ν∗j,t)

2 − (yt − νj,t)
2
]
}

×
ρj∏

i=2

(π∗j,i + 1)[(i−1)/2](1− π∗j,i)
[i/2]

(πj,i + 1)[(i−1)/2](1− πj,i)[i/2]
(7.18)

×
ρj∏

i=1

FN(1|πj,i, σ
2
q )− FN(−1|πj,i, σ

2
q )

FN(1|π∗j,i, σ2
q )− FN(−1|π∗j,i, σ2

q )

where ν∗j,t = µj + φ∗1,j(yt−1 − µj) + · · ·+ φ∗ρj ,j(yt−ρj
− µj) and where FN is the

cumulative distribution function of the normal distribution. The first two lines

of the (7.18) correspond to the posterior ratio, expressed as likelihood ratio

(first line) times prior ratio (second line). The third line is the proposal ratio.

The Gibbs move iv proposes a candidate value for σ2 by the full conditional:

p(σ2
j |β, w, µ, φ, z, y) = Ig

(
σ2

j

∣∣∣∣ α +
1

2
nj, β +

1

2

∑
t:zt=j

(yt − νj,t)
2

)
(7.19)

for j = 1, . . . , k.

Finally, move v is a Gibbs move with full conditional:

p(zt = j|w, µ, σ2, φ, y) ∝ wj

σj

exp

{
−1

2

(yt − νj,t)
2

σ2
j

}

for t = 1, . . . , T .

Appendix 7.B

Order of the autoregressive components

In order to obtain the marginal posterior of the order of the autoregressive

components p(ρ|k, y), the set of moves described in appendix A is augmented

by a sixth move based on a reversible jump mechanism (section 7.5).

The move starts by selecting a component, say j∗, randomly chosen in

{1, . . . , k}. The order of this component ρj∗ increases by one with probability

b(ρj∗) and decreases by one with probability d(ρj∗), where b(ρj) = 1 − d(ρj),
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for j = 1, . . . , k, d(1) = 0 and b(ρmax) = 0. Formally, the proposal order ρ∗j∗ is

constructed as follow:

ρ∗j∗ =





ρj∗ − 1 , with prob. d(ρj)

ρj∗ + 1 , with prob. b(ρj)

It is now necessary to change the partial autocorrelation coefficients. Fol-

lowing Barbieri and O’Hagan (1997), if the order is decreased, the last partial

autocorrelation is simply discarded. Otherwise, we need a new parameter

π∗ρ∗
j∗ ,j∗ , which is generated from the beta prior.

That is, letting π∗j∗ be the proposal vector of the partial autocorrelations:

• If ρ∗j∗ = ρj∗ − 1, π∗j∗ = (π1,j∗ , . . . , πρ∗
j∗ ,j∗)

• If ρ∗j∗ = ρj∗ + 1, π∗j∗ = (π1,j∗ , . . . , πρj∗ ,j∗ , π
∗
ρ∗

j∗ ,j∗)

with π∗ρ∗
j∗ ,j∗ ∼ Gb

(
πi,j|

[
i+1
2

]
,
[

i
2

]
+ 1

)
.

Note that in both cases all the autoregressive parameters are updated be-

cause of the reparametrization of section (7.3).

If ρ∗j∗ = ρj∗ − 1, the acceptance probability ratio is min(1, R), where R is

given by:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − νj,t)

2 − (yt − ν∗j,t)
2
]
}

b(ρ∗j∗)

d(ρj∗)
(7.20)

where ν∗j∗,t = µj∗ + φ∗1,j∗(yt−1 − µj∗) + · · ·+ φ∗ρj∗ ,j∗(yt−ρj∗ − µj∗).

On the other hand, if ρ∗j∗ = ρj∗ + 1:

R = exp

{
− 1

2σ2
j

∑
t:zt=j

[
(yt − νj,t)

2 − (yt − ν∗j,t)
2
]
}

d(ρ∗j∗)

b(ρj∗)
(7.21)

The equations (7.20) and (7.21) are quite simple because of some cancel-

lations between prior and proposal ratios. Furthermore, the jacobian is one

because the matrix of derivatives of the transformation g (section 7.5) is the

identity matrix.

p(ρ|k, y) is simply estimated by the proportions of every possible value for

ρ in the sample obtained by the previous complete MCMC algorithm.
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Appendix 7.C

Number of the autoregressive components.

Through Bayes’ theorem, the marginal posterior distribution of k is:

p(k|y) ∝ p(k)f(y|k)

where p(k) is the prior on k and f(y|k) is the marginal likelihood:

f(y|k) =
∑

ρ

∫
L(θ, ρ, k)p(θ, ρ|k) dθ (7.22)

with θ = (w, µ, σ2, φ). Suppressing for notational convenience the model index

k, we write the marginal likelihood (7.22) as:

f(y) =
L(θ∗, ρ∗)p(θ∗, ρ∗)

p(θ∗, ρ∗|y)

=
L(θ∗, ρ∗)p(θ∗|ρ∗)p(ρ∗)

p(θ∗|ρ∗, y)p(ρ∗|y)
(7.23)

for a fixed point (θ∗, ρ∗). Note that what we only need of the (7.23) is

p(θ∗|ρ∗, y): we calculate the corresponding estimate p̄(θ∗|ρ∗, y) by the method

of section 7.5.

First of all, p̄(θ∗|ρ∗, y) is factorized as:

p̄(θ∗|ρ∗,y) = p̄(π∗|ρ∗, y)× p̄(µ∗|π∗, ρ∗, y)×
× p̄(σ2∗|µ∗, π∗, ρ∗, y)× p̄(w∗|σ2∗, µ∗, π∗, ρ∗, y) (7.24)

Suppose to have a sample {θ(i), z(i)}, for i = 1, . . . , N1, from the MCMC algo-

rithm for a given ρ∗ (i.e. a sample from p(θ|ρ∗)). Let ηj−1 = (ρ, π1, . . . , πj−1)

and ηj+1 = (πj+1, . . . , πk, µ, σ2, w). The terms of the (7.24) are estimated by

the following steps:

1. Sample {η̃j+1,(i), z̃(i)}, for i = 1, . . . , Nj+1, from a reduced MCMC algo-

rithm with distribution of interest p(ηj+1, z|η∗j , y). Also draw π̃
(i)
j from

qp(π
∗
j , πj) =

∏ρj

s=1 q(π∗s,j, πs,j), where q(., .) is the proposal (7.17).

Set:

p̄(π∗j |ρ∗, π∗1, . . . , π∗j−1) =
N−1

j

∑Nj

i=1 α(π
(i)
j , π∗j )qp(π

(i)
j , π∗j )

N−1
j+1

∑Nj+1

i=1 α(π∗j , π̃
(i)
j )
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where α(., .) = min(1, R) with R defined in equation (7.18).

Set ηj+1,(i) = η̃j+1,(i) and z(i) = z̃(i), for i = 1, . . . , Nj+1.

Repeat this step for j = 1, . . . , k and finally set:

p̄(π∗|ρ∗, y) =
k∏

j=1

p̄(π∗j |ρ∗, π∗1, . . . , π∗j−1)

2. The second term is:

p̄(µ∗|π∗, ρ∗, y) = N−1
k+1

Nk+1∑
i=1

k∏
j=1

p(µ∗j |π∗, σ2(i), z(i), ρ∗, y)

where (σ2(i), z(i)) are draws from the last iteration of the previous step

(thus they are marginally from p(σ2, w, z|π∗, ρ∗, y)) and p(µ∗j |π∗, σ2(i), z(i), ρ∗, y)

is given by equation(7.16).

3. Sample {σ2(s), w(s), z(s)}, for s = 1, . . . , S, from a reduced MCMC algo-

rithm with distribution of interest p(σ2, w, z|π∗, µ∗, ρ∗, y) and set:

p̄(σ2∗|π∗, µ∗, ρ∗, y) = S−1

S∑
s=1

k∏
j=1

p(σ2∗
j |π∗, µ∗, z(s), ρ∗, y)

where p(σ2∗
j |π∗, µ∗, z(i), ρ∗, y) is given by equation (7.19).

4. Sample {w(v), z(v)}, for v = 1, . . . , V , from a reduced MCMC algorithm

with distribution of interest p(w, z|π∗, µ∗, σ2∗, ρ∗, y) and set:

p̄(w∗|π∗, µ∗, σ2∗, ρ∗, y) = V −1

V∑
v=1

p(w∗|z(v), ρ∗, y)

where p(w∗|z(v), ρ∗, y) is given by equation (7.15).
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