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The optical response of a charge stripe in the presence of pinning impurities is investigated. We address the issue of a

discrete description of the stripe, and discuss its quantitative relevance with respect to a continuum one in the light of

recent optical-conductivity measurements in cuprate compounds.
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The role of charge inhomogeneities in doped two-

dimensional antiferromagnets has been recently the

subject of intense experimental and theoretical investi-

gations [1]. In particular, the physics of high-Tc cuprates
stimulated the interest on theoretical models for charge

segregation in one-dimensional stripes acting as domain

walls for the surrounding antiferromagnetism. In the

present paper we study the optical response of a string of

holes (stripe) in the presence of pinning impurities.

Let us consider a single vertical line of holes enu-

merated by n on a square lattice with lattice constant a.
The holes can move only in the transversal (x) direction.
The phenomenological Hamiltonian describing the sys-

tem is

H ¼
X
n

�
� t cosðpnaÞ þ J

2a2
ðunþ1 � unÞ2

�
; ð1Þ

where t is the hopping parameter, a is the lattice con-

stant, un is the displacement of the n-th hole from the

equilibrium position, pn is its conjugate transversal

momentum, and J is the stripe stiffness, determined by

the surrounding antiferromagnetism. We put �h ¼
kB ¼ 1. As it has been shown in Ref. [2], at t=J > 4=p2

the stripe depins from the lattice. In this regime we can

expand the cos-term as cosðpnaÞ � const:þ ðpnaÞ2=2, so

that the corresponding action for the dimensionless field

wn ¼ un=a reads

S0 ¼ 1

2at

X
n

Z
ds

ow
os

� �2
"

þ ðJtÞðwnþ1 � wnÞ2
#
: ð2Þ

The (bare) Green function for the w field reads:

D0ðq;xmÞ ¼ ðatÞ½x2
m þ x2

J sin
2ðqa=2Þ��1

; ð3Þ
with xJ ¼ 2

ffiffiffiffi
Jt

p
. Thus, in the long-wavelength limit

(q ! 0) the w field displays a sound-like behavior x ¼ vq
with the velocity v ¼ axJ=2. When the electric field is

applied perpendicular to the stripe, a current arises

J ¼ e
P

nðown=otÞ, and the transversal wandering of the

holes shows perfect Fr€ohlich’s conductivity:

RrðxÞ ¼ �e2xID0ðq ¼ 0; ixm ! x� ieÞ; ð4Þ
where the analytical continuation of the Green function

in the lower half-plane has been performed. In Ref. [3],

by assuming from the beginning a continuum (a ! 0)

description for the field wn ! wðyÞ and wnþ1 � wn !
ow=oy, it was shown that the interaction with the

impurities destroys the perfect conductivity RrðxÞ ¼
e2patdðxÞ of the clean case, and rðxÞ displays a peak at

finite frequency. The value of this frequency was evalu-

ated by means of a diagrammatic approach for the

disorder, both in the weak- and strong-pinning regimes.

Here we investigate how these results are modified

within a discrete description for the stripe.
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We represent the pinning by the impurities as a

parabolic confining potential, provided by the scattering

centers located at coordinates i along the stripes, with

strength V0, i.e. S ¼ S0 þ ðV0=2Þ
R
ds

P
iðwi � biÞ2. We

describe the full, time-dependent solution wnðtÞ ¼
/nðtÞ þ w0

n as a fluctuation around the equilibrium con-

figuration w0
n which the hole would assume in the ab-

sence of dynamical fluctuations. As a consequence, Eq.

(3) will refer now to the dressed Green function D of the

fluctuating field /n, evaluated according to the Dyson

equation as D�1ðq;xmÞ ¼ D�1
0 ðq;xmÞ�R¼ ðx2

m þ v2q2�
CtÞ=ðatÞ, where we have performed a rescaling R ¼ C=a
such that C has dimensions of energy. In Ref. [3] it has

been suggested that the weak-pinning regime is the rel-

evant one to describe stripe pinning in cuprates. In this

regime, C can be evaluated in the Born approximation

as CðxmÞ ¼ �ðV0=2Þnia þ ðV0=2Þ2niaL�1
P

q D0ðq; xmÞ;
where D0 was used for calculating the second-order

correction and the density of impurities ni arises after

averaging over the impurity positions. On defining the

frequency x0 ¼ niv ¼ nia
ffiffiffiffi
Jt

p
, the dimensionless quanti-

ties ~x ¼ x=x0 and G ¼ Ct=x2
0, the parameter a ¼ V0=

ð2niaJÞ, and performing the analytical continuation, the

equation for C takes the form

GðxÞ ¼ �a� i
a2

2~x
xJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
J � x2

p ; x < xJ ð5Þ

GðxÞ ¼ �a� a2

2~x
xJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x2
J

p ; x > xJ : ð6Þ

The interaction with impurities generates both a real

and an imaginary part in the self-energy G ¼ G0 þ iG00.
The real part G0 determines the energy at which the zero-

energy delta-like peak of the optical conductivity shifts,

and G0 controls the spreading of the peak around this

value. Indeed, according to Eq. (4), the real part of the

optical conductivity is RrðxÞ ¼ �r0 ~xG00=½ð~x2 þ G0Þ2 þ
G002�, where r0 ¼ e2at=x0. From Eqs. (5) and (6) one sees

that at x > xJG00 vanishes and consequently also rðxÞ.
This result is a consequence of assuming a finite lower cut-

off a for the lengths: this reflects in turn in an upper bound
for the momenta and consequently for the frequencies.

On the other hand, the relevant physical processes occur

at an energy scale lower thanxJ , as we will discuss below.

In particular, when x � xJ Eq. (5) reduces to

G ¼ �a� ia2

2~x
: ð7Þ

which is exactly the result obtained in Ref. [3]. In such a

case, the resulting conductivity reads

RrðxÞ ¼ r0

2ðx=mÞ2
4ðx=mÞ2½ðx=mÞ2 � 1�2 þ a4

; ð8Þ

with m ¼ ffiffiffi
a

p
x0. We note that RrðxÞ ! 0 both as x ! 0

and as x ! 1, and has a peak at x ’ m. The optical

conductivity rðxÞ evaluated with the self-energy (5) and

(6) shows remarkable differences from Eq. (8) only when

m � xJ , but as we shall discuss below this case is not

physically relevant because in any case m < xJ . Dimen-

sional estimates of Eq. (2) indicate that the effect of

pinning can be understood in terms of trapping the

sound mode on a finite length scale k, so that m ¼ v=k. In
the weak-pinning case (a � 1) considered here k is the

Larkin–Ovchinnikov length. Because k cannot be smal-

ler than the lattice spacing a, m < xJ always.

Let us discuss now the physical values of the param-

eters in comparison with recent measurements of the in-

fra-red response of La-based cuprates [4]. The optical

conductivity of these compounds displays a huge peak in

the far infra-red region at a frequency around 5–25 meV

(depending on doping), which we attributed to the pin-

ning of transversal stripe wandering [3]. For cuprates,

physical values of the parameters are t � J � 0:1 eV. By

considering the dopants themselves as scattering centers,

we can also estimate on average nia ¼ 0:5 [3]. This means

that x0 � 50 meV, and because nia � 1 corresponds to

weak pinning, we expect that the peak frequency

m ¼ ffiffiffi
a

p
x0 is further reduced with respect to this value, in

agreement with experimental data. Note that for these

physical values of t; J : (i) t=J � 1 so that the stripe is de-

pinned from the lattice; (ii)xJ ¼ 200meV, thus m is always
found in the range where m � xJ and as a consequence

Eq. (7) is a good approximation for the self-energy (5).

In summary, we evaluated the optical response of a

discrete hole stripe in the presence of impurities. The

impurity centers pin the sound-like mode associated to

the transversal motion of the holes. By retaining the

lattice parameter a as a lower cut-off for the length we

find an upper limit for the optical response of the sys-

tem. However, for parameter values relevant for cup-

rates the pinning process always takes place at energies

m � xJ , where the details of the discrete lattice

description can be neglected and a continuum (a ! 0)

description for the elastic stripe can be adopted.
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