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Introduction

In this thesis, we study European option prices under a stochastic volatility model, where the asset

price follows a geometric Brownian motion with instantaneous variance driven by a GARCH diffusion

process.

Stochastic volatility models were introduced by Hull and White (1987), Scott (1987) and Wig-

gins (1987) to overcome some drawbacks of the Black and Scholes (1973) and Merton (1973) model.

Since Mandelbrot (1963) and Fama (1965) it was kwon that speculative log-returns are uncorrelated,

not independent with a leptokurtic distribution and conditional variance changing randomly over time.

Moreover, empirical studies on implied volatility (cf., for instance, Lantane and Rendleman, 1976,

Beckers, 1981, and Canina and Figlewski, 1993) show a significant discrepancy between market and

Black and Scholes prices. Implied volatilities vary with strike price and time to maturity of the options

contract whereas in the Black and Scholes model the volatility is assumed to be constant.

Stochastic volatility models allow to account for random behaviors of implied and historical vari-

ances and generate some log-returns features observed in empirical studies. Unfortunately, under

stochastic volatilities closed or analytically tractable option pricing formulae are difficult to derive

even for European options. The Hull and White (1987) and Heston (1993) models have an analyti-

cal approximation and a quasi analytical formula to price European options, respectively. For other

stochastic volatility models numerical methods are used.
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In this thesis, we derive an analytical closed-form approximation for European option prices under

the GARCH diffusion model, where the price is driven by a geometric process and the variance by an

uncorrelated mean reverting geometric process. Our formula is related to the Hull and White (1987)

option pricing series and involves the conditional moments of the integrated variance over the time to

maturity. We show, using Monte Carlo simulations, that our approximation formula is accurate across

several strike prices and times to maturity, it is easy to implement and allows to study the implied

volatility and the volatility risk premia associated to the GARCH diffusion model.

The GARCH diffusion model is the ‘mean reverting’ extension of the Hull and White (1987) model

where the variance follows a geometric Brownian motion and improves such a model under several

aspects. The mean reverting drift gives stationary variance and log-returns processes (cf. Genon-

Catalot et al. (2000)) and allows to include the volatility risk premium in the variance process. On the

contrary, for the Hull and White model the option pricing approximation is available only when the

variance drift is equal to zero1. Furthermore, the mean reversion of the variance allows to approximate

long maturity option prices, while the option pricing approximation for the Hull and White model

holds only for short maturity options; cf. Hull and White (1987) and Gesser and Poncet (1997). This

is a remarkable feature as in the last years long-term options are actively traded on option markets.

The Hull and White (1987) option pricing series holds only when the asset price and the variance

processes are uncorrelated. This assumption implies symmetric volatility ‘smiles’, i.e. symmetric

shapes of implied volatilities plotted versus strike prices; cf. Hull and White (1987) and Renault and

Touzi (1996). As foreign currency option markets are characterized by symmetric volatility smiles (cf.,

for instance, Chesney and Scott 1989, Melino and Turbull 1990, Taylor and Xu 1994 and Bollerslev

and Zhou 2002), the model considered in this thesis is appropriate to price currency options. Recent

1The volatility risk premium seems to be a significant component of the risk premia in many currency markets; cf.

Guo (1998) and references therein.
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studies show that for some index option markets the non zero correlation between asset prices and

variances can be neglected without increasing option pricing errors; cf. Chernov and Ghysels (2000) and

Jones (2003) for empirical studies on Standard & Poor’s 500 and Standard & Poor’s 100, respectively.

The GARCH diffusion process driving the underlying asset price has several desirable properties. It

is positive, mean reverting, with a stationary inverse Gamma distribution and satisfies the restriction

that both historical and implied variances be positive. Hence, it fits the observation that empirical

variances seem to be stationary and mean reverting; cf. Scott (1987), Taylor (1994), Jorion (1995)

and Guo (1996, 1998). Moreover, the GARCH diffusion model allows for rich pattern behaviors of

volatilities and asset prices. For instance, as observed in empirical studies, it produces large auto-

correlation in the squared log-returns, arbitrary large kurtosis and finite unconditional moments of

log-returns distributions up to some order. On the contrary, when the variance follows a square root

process, as in the Heston (1993) model, the corresponding stationary Gamma distribution implies log-

return distributions with finite unconditional moments of any order and a ‘not very large’ kurtosis2

cf. Genon-Catalot, Jeantheau and Laredo (2000).

Furthermore, Nelson (1990) showed that a sequence of discrete time GARCH(1,1) in mean model

(GARCH(1,1)-M; cf. Engle and Bollerslev 1986) converges in distribution to the GARCH diffusion

model. Hence, the involved problem of making inference on continuous time parameters may be

reduced to the inference on a GARCH(1,1)-M model; cf., for instance, Engle and Lee (1996) and

Lewis (2000). This is an important advantage compared to other stochastic volatility models which do

not share these properties. Using Monte Carlo simulations, we will investigate inference results based

2Empirical poor performances of the Heston model are reported by several authors, see for instance Andersen et

al. (2002), Jones (2003) and reference therein. Jones (2003, p. 181) found that “conclude that the square root stochastic

variance model of Heston [. . . ] is incapable of generating realistic [equity index] returns behavior, and data are better

represented by [other] stochastic variance model[s] in the CEV class”, such as the GARCH diffusion model;

3



on such estimation procedures.

The specific contributions of this thesis are the following. We derive analytically the first four

exact conditional moments of the integrated variance implied by the GARCH diffusion process. This

result has several important implications. First and foremost, these conditional moments allow us

to obtain an analytical closed-form approximation for European option prices under the GARCH

diffusion model. This approximation can be easily implemented in any standard software package.

As we will show using Monte Carlo simulations, this approximation is very accurate across different

strikes and maturities for a large set of reasonable parameters. Secondly, our analytical approximation

allows to easily study volatility surfaces induced by GARCH diffusion models. Thirdly, the conditional

moments of the integrated variance implied by the GARCH diffusion process generalize the conditional

moments derived by Hull and White (1987) for log-normal variance processes. Finally, the conditional

moments of the integrated variance can be used to estimate the continuous time parameters of the

GARCH diffusion model using high frequency data3.

Outline. The thesis is organized as follows. Chapter 1 introduces stochastic volatility option pricing

models and discusses in details the GARCH diffusion model and its properties. Chapter 2 presents

the analytical approximation formula to price European options under the GARCH diffusion model.

Using Monte Carlo simulations, we verify the accuracy of the approximation across different strike

prices and times to maturity for different parameter choices. We investigate differences between option

prices under the GARCH diffusion and the Black and Scholes model. Then, we qualitatively study

implied volatility surfaces induced by the GARCH diffusion. Chapter 3 studies the accuracy of the

3By matching the sample moments of the realized volatility with the conditional moments of the integrated variance

one has a standard and easy to compute GMM-type estimator for the underlying model parameters; cf. Bollerslev and

Zhou (2002).
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inference results on the GARCH diffusion model based on the Nelson’s theory. Using such a procedure,

we fit the GARCH diffusion model to daily log-returns of Deutsche Mark versus US dollar exchange

rates. Chapter 4 gives some concluding remarks.
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Chapter 1

Stochastic Volatility Models

1.1 Motivations of Stochastic Volatilities

Black and Scholes (1973) and Merton (1973) derived a fundamental option pricing formula to price

European options when the underlying asset price S is driven by a geometric Brownian motion

dSt = µSt dt + σSt dBt, S0 = So (1.1)

where µ ∈ R, σ ∈ R+ and B is a standard Brownian motion. Itô’s lemma implies that the dynamic

of ln St is given by

d ln St =
(
µ − σ2/2

)
dt + σ dBt. (1.2)

Hence, the sequence of discrete time log-returns Zi, sampled at time points i∆, i = 1, . . . , ∆ > 0,

Zi :=
∫ i∆

(i−1)∆

d ln Ss = ln Si∆ − ln S(i−1)∆ = (µ − σ2/2)∆ + σ2(Bi∆ −B(i−1)∆),

are independent and identically normally distributed with mean (µ − σ2/2)∆ and variance σ2∆.
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However, several empirical studies on asset prices show that speculative log-returns are uncorre-

lated, but not independent with leptokurtic distribution and conditional variance changing randomly

over time. Moreover, the implied volatilities i.e. the volatility which gives the Black and Scholes price

equals to the market price, are not constant across strike prices and time to maturities as assumed

by the Black and Scholes model. Typically, for foreign currency options implied volatilities are too

high for the at the money options and too low for out of the money and in the money options (“smile

effect”). For stock and index options, Black and Scholes prices are too high for the in or the at the

money options and too low for out of the money options (“smirk effect”).

To overcome the drawbacks of the Black and Scholes model, several models have been proposed

in the financial literature. Clearly, it is possible to generate the previous statistical properties for

asset and option prices by allowing more involved drift and diffusion functions for S. However, such

generalizations may occur at high costs, for instance intractable option pricing formulae or many

parameters to estimate. A ‘good model’ for option pricing should retain as much as possible the

simplicity of the Black and Scholes model and accounts for empirical the evidence on asset and option

prices. Motivated by such empirical evidence, Hull and White (1987), Scott (1987) and Wiggins (1987)

proposed stochastic volatility models as a parsimonious extension of the Black and Scholes model.

These models retain the linearity of the drift and the diffusion components of the underlying asset

introducing a second Itô process to drive the variance of S.

Stochastic volatility models, defined on some filtered probability space (Ω,F ,Ft,P), are given by

the two dimensional stochastic differential equations,

dSt = µStdt +
√

VtStdBt (1.3)

dVt = β(Vt, θ)dt + γ(Vt, θ)dWt, (1.4)

where St is the underlying process, Vt is the latent process for the variance of dSt/St depending on some

7



parameter vector θ, and Bt, Wt are possibly correlated standard Brownian motions and {Ft, t ≥ 0}

is the filtration generated by (Bt,Wt). Several authors, Wiggins (1987), Scott (1987), Chesney and

Scott (1989), Hull and White (1988), Stein and Stein (1991) and Heston (1993), proposed stochastic

volatility models where the variance of dSt/St follows a mean reverting process, while in the Hull

and White (1987) model the variance follows a geometric Brownian motion. Stochastically changing

volatilities over time allow to account for the random behaviors of implied and historical variances

and generate some of the log-returns features observed in empirical studies. For instance, when the

asset price and the variance processes are uncorrelated, discrete time log-returns Zi are uncorrelated,

but not independent and with a leptokurtic distribution. Moreover, stochastic volatility accounts for

smile and smirk effects observed on option markets. Under the assumption of no correlation between

asset price and variance, Renault and Touzi (1996) (cf. also Hull and White (1987)) show that

any stochastic volatility process induces symmetric volatility smiles usually observed in foreign option

markets. When the asset price is correlated with the variance, stochastic volatility induces asymmetric

smile, i.e. the smirk shape of implied volatility typically observed in stock and index markets; cf. Hull

and White (1987), Heston (1990).

Stochastic volatility allows for more accurate and flexible option pricing models. Unfortunately,

new difficulties arise both in the option pricing and in the parameter inference framework because of the

latent variance process V . Option prices have to satisfy a bivariate partial differential equation in two

state variables: the price and the variance of the underlying asset. Since the variance is not a traded

asset, arbitrage arguments are not sufficient to uniquely determine option prices. Hence, the variance

risk can not be hedged and the market price of variance risk explicitly enters into the partial differential

equation. The associated risk premium is typically assumed to be zero or a constant proportion of

variance. Analytical solutions of the bivariate partial differential equation are generally not available

even for European options and numerical methods are used. Only the Hull and White (1987) model,

8



where the variance follows a log-normal process

dVt = c2Vt dt + c3 Vt dWt, (1.5)

and the Heston (1993) model, where the variance follows a squared root process

dVt = (c1 − c2Vt) dt + c3

√
V dWt. (1.6)

have an analytical approximation formula and a quasi analytical formula to price European options,

respectively. Hull and White show that, under a given risk adjusted measure, the price of a European

call is the expected value of Black and Scholes price with squared volatility equals to the integrated

variance over the time to maturity, V T . Based on this result, they derived an approximation option

pricing formula in series form involving the conditional moments of V T .

Heston (1993) derives a quasi analytical option pricing formula to price European options in which

correlation between asset price and variance processes is allowed. The derivation is based on Fourier

inversion methods. Heston obtains an option pricing formula reminiscent of the Black and Scholes

formulas involving risk neutral probabilities that are recovered from inverting the respective charac-

teristic functions. This formula is quasi analytical as it involves integrals that have to be evaluated

numerically.

For other stochastic volatility models, numerical methods are available but these procedures are

computationally intensive and practically not feasible for instance are if large trading books have to

be quickly and frequently evaluated many of these procedures . In this thesis we derive an analytical

approximation formula to price European options when the asset price follows a GARCH diffusion

model.

In the following section, we show the statistical properties GARCH diffusion model.

9



1.2 The GARCH Diffusion Model

The GARCH diffusion model, first introduced by Wong (1964) and popularized1 by Nelson (1990),

is defined as follows. Let S = (St)t≥0 be the underlying currency price and V = (Vt)t≥0 its latent

instantaneous variance. (St, Vt)t≥0 satisfies the two-dimensional GARCH diffusion model

dSt = µSt dt +
√

Vt St dBt, (1.7)

dVt = (c1 − c2 Vt)dt + c3 Vt dWt, (1.8)

where c1, c2 and c3 are positive constants, µ is the positive constant drift of dSt/St, Bt and Wt are mu-

tually independent one-dimensional Brownian motions on some filtered probability space (Ω,F ,Ft,P)

with P is the objective measure. We set the initial time t = 0 and (S0, V0) ∈ R+ × R+. The process

V is mean reverting, with c1/c2 the long-run mean value and c2 the reversion rate (cf. also equation

(1.10)). For c2 small, the mean reversion is weak and Vt tends to stay above (or below) the long-run

mean value for long periods, i.e. it generates volatility cluster. The parameter c3 determines the ran-

dom behavior of the volatility: c3 = 0 implies a deterministic volatility process, and c3 > 0 a kurtosis

of log-return distributions larger than 3. When c1 = c2 = 0, the GARCH diffusion process reduces to

the log-normal process without drift as in the Hull and White (1987) model.

Given V0 > 0, Vt is positive P-almost surely, ∀t ≥ 0, and the strong solution is

Vt = V0 e−(c2 + 1
2 c2

3)t + c3Wt + c1

∫ t

0

e(c2 + 1
2 c2

3)(s−t) + c3(Wt−Ws)ds. (1.9)

The stationary distribution of V is the Inverse Gamma distribution with parameters r = 1 + 2c2/c2
3

and s = 2c1/c2
3, i.e. 1/Vt ; Γ(r, s); cf. Nelson (1990).

1For more recent studies based on he GARCH diffusion model see, for instance, Lewis (2000), Melenberg and

Werker (2001), Andersen, Bollerslev and Meddahi (2002) and references therein.
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When 2c2 > c2
3, the process V is strictly stationary, ergodic with conditional mean

E[Vt | V0] =
c1

c2
+ (V0 − c1

c2
) e−c2t, (1.10)

and variance

Var[Vt | V0] =
(c1/c2)

2

2c2/c2
3 − 1

+ e−c2t 2(c1/c2)(V0 − (c1/c2))
c2/c2

3 − 1
− e−2c2t (V0 − (c1/c2))

2

+ e(c2
3−2c2)t

(
V 2

0 −
2V0(c1/c2)
1− c2

3/c2
+

(c1/c2)2

(1− c2
3/2c2)(1− c2

3/c2)

)
. (1.11)

The unconditional expectation of (1.10) and (1.11) implies for the unconditional mean and variance

of V

E[Vt] =
c1

c2
, Var[Vt] =

(c1/c2)2

2c2/c2
3 − 1

. (1.12)

For the Monte Carlo Simulation of Section 2.2, we use equations (1.12) to set some reasonable param-

eters for the variance process (1.8). Higher order unconditional moments of V can be easily computed

using the stationary Inverse Gamma distribution.

The GARCH diffusion model is an interesting and plausible specification of the variance process

V. It is positive, mean reverting, with a known stationary distribution. By Itô’s lemma, the log-price

dynamics implied by the GARCH diffusion model (1.7)–(1.8) is

d ln St =
(

µ− Vt

2

)
dt +

√
VtdBt (1.13)

dVt = (c1 − c2Vt)dt + c3VtdWt. (1.14)

The discrete time log-returns sampled at discrete time points i∆, i = 1, . . . , for a given time interval

∆ > 0, are

Zi :=
∫ i∆

(i−1)∆

d ln Ss = ln Si∆ − ln S(i−1)∆.

The unconditional distribution of the process Zi is not known. But given the filtration σ{Vs, s ∈ [0, i]},

11



Zi is normally distributed, Zi ; N (Mi, Σi) where

Mi :=
∫ i∆

(i−1)∆

(
α− Vs

2

)
ds and Σi :=

∫ i∆

(i−1)∆

Vs ds.

This model allows for rich volatilities and asset prices patterns and can explain some stylized facts

observed in empirical studies. For convenience, we assume Mi = 0 , ∀i. Then,

E[Zi] = 0,

E[Zp
i Zp

j ] = 0, ∀p odd,

Cov(Zi, Zj) = 0, (1.15)

VarZ1 = E[Σ1] = (c1/c2)∆, (1.16)

VarZ2
1 = E[Z4

1 ]− E[Z2
1 ]2 = 3E[Σ2]− (c1/c2)2 ∆2

= 2 (c1/c2)2∆2 +
6(c2∆− 1 + e−c2∆)

c2
2

(c1/c2)2

(2c2/c2
3)− 1

, (1.17)

Cov(Z2
1 , Z2

2 ) =
(1− e−c2∆)2

c2
2

(c1/c2)2

(2c2/c2
3)− 1

(1.18)

and

Corr(Z2
1 , Z2

2 ) =
(1− e−c2∆)2 (c1/c2)

2

(2c2/c2
3)−1

2 c2
1∆2 + 6(c2∆− 1 + e−c2∆) (c1/c2)2

(2c2/c2
3)−1

.

Equations (1.15) and (1.18) imply that Zi’s are uncorrelated but not independent. The excess-kurtosis

K(Z1) of the stationary distribution of the Zi process is given by

K(Z1) :=
EZ4

1

(EZ2
1 )2

− 3

=
6(c2∆− 1 + e−c2∆)

c2
2∆2

1
(2c2/c2

3)− 1
> 0 (1.19)

Corr(Z2
1 , Z2

2 ) <

c2
3

2c2−c2
3

2 + 3 c2
3

2c2−c2
3

=
1

2 c2
3

2c2−c2
3

+ 3
.
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When c2
3 tends to 2c2, the kurtosis of log-return distributions diverges to infinity and the correlation

between squared log-returns approaches 1/3, i.e. the upper limit correlation of log-returns under mean

reverting stochastic variance. Moreover, the Inverse Gamma stationary distribution of V has finite

moments up to order r if and only if r < 1 + 2c2/c2
3, implying that log-returns distributions have

finite unconditional moments up to order 2r. Some empirical studies show that (daily) log-returns

distributions of several assets have not finite moments of all orders; cf., for instance, Dacorogna et

al. (2001) and Cont (2001).

On the contrary, when the variance follows a square root process as in the Heston model (1993)

the corresponding stationary Gamma distribution implies the log-return distributions of Zi with finite

unconditional moments in any order. Moreover, in the Heston (1993) model the excess-kurtosis is

at most 3 and the correlation between Z2
1 and Z2

2 at most 1/5; cf. Genon-Catalot, Jeantheau and

Laredo (2000). Therefore, the gamma distribution of Zi can be only moderately heavy-tailed compared

to the empirical evidence.

An other important empirical observation is that periods of high volatilities and periods of more

volatile volatilities tend to coincide; cf., for instance, Jones (2003). Hence, the volatility of volatility

seems to be level dependent. Under the GARCH diffusion model, the volatility σt :=
√

Vt follows the

dynamics,

dσt =
1
2

(
c1

σt
−

(
c2 +

c2
3

4

)
σt

)
dt +

c3

2
σt dWt.

Hence, the volatility of volatility is level dependent. On the contrary, under the Heston (1993) model,

the volatility σt follows

dσt =
1
2

(
c1 − c2

3/4
σt

− c2 σt

)
dt +

c3

2
dWt,

and the volatility of volatility is not level dependent.
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Chapter 2

Option Pricing under the GARCH

Diffusion Model

2.1 The Option Pricing Formula

In this section we derive an analytical approximation formula for European options when the under-

lying asset price satisfies equations (1.7)–(1.8). Since, the model (1.7)–(1.8) is appropriate to describe

exchange rates dynamics, we specify our option pricing formula for currency options.

A currency option price f(S, V, t) satisfies the following partial differential equation

1
2

V S2 ∂f2

∂S2
+

1
2

c2
3 V 2 ∂f2

∂V 2
+ (r − d) S

∂f

∂S
+ ((c1 − c2)V − λ(S, V, t))

∂f

∂V
− (r − d) f +

∂f

∂t
= 0,

where r and d are the domestic and the foreign interest rates, respectively. The unspecified term

λ(S, V, t) represents the market price of risk associated to the variance V . As V is not a traded asset,

arbitrage arguments are not enough to determine uniquely the option price f(S, V, t). λ(S, V, t) has to

be specified exogenously, for instance, based on consumption models; cf. Breeden (1979). As in other
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studies (cf., for instance, Chesney and Scott (1989), Heston (1993) and Jones (2003)), we specify the

variance risk premium λ(V, S, t) as a linear function1 of V ,

λ(S, V, t) = λV where λ =
c∗2 − c2

c3
. (2.1)

The functional form of λ in (2.1) implies that the risk-adjusted process is still a GARCH diffusion

process,

dSt = (rd − rf )St dt +
√

Vt St dB∗
t , (2.2)

dVt = (c1 − c∗2 Vt)dt + c3 Vt dW ∗
t , (2.3)

where B∗ and W ∗ are mutually independent Brownian motions under the risk-adjusted measure P∗.

We show in Appendix A.3 that the Randon Nikodyn derivative dP∗/dP|Ft
implied by the previous

change of measure is well-defined.

Under the risk-adjusted dynamics in equations (2.2)–(2.3) the option pricing result in Hull and

White (1987) holds: the price Csv for a European call with time to maturity T and strike price K is

given by

Csv =
∫ ∞

0

Cbs(V T )f(V T | V0) dV T , (2.4)

where Cbs is the Black and Scholes (1973) option price, V T is the integrated variance over the time

to maturity T ,

V T :=
1
T

∫ T

0

Vs ds (2.5)

1Linearity of the variance risk premium can be supported under log-utility when exchange rate volatility and market

risk have a common component of a particular form. The linear specification will not typically emerge under more general

preferences (for instance, time separable power utility) and should be viewed for such preferences as an approximation

to the true functional form. Cox Ingersoll and Ross (1985) use a similar approximation when modeling the risk premium

in interest rates.
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and f(V T | V0) is the conditional density function of V T given V0. The density f(V T | V0) is not

known and the option price Csv is not available in closed-form. The expectation in equation (2.4)

can be computed by Monte Carlo simulation, but such a procedure is very time-consuming. Hull

and White (1987) provide an analytical approximation for Csv in (2.4). They compute the Taylor

expansion of Cbs in equation (2.4) around the conditional mean of V T obtaining a series option

pricing formula that involves only the conditional moments of V T and the sensitivities of the Black

and Scholes price to the variance. Denoting by M1 := E[V T | V0] the conditional mean of V T and by

Mic := E[(V T −M1)i | V0], i ≥ 2, the i-th centered conditional moment of V T , the option pricing

series is

Csv = Cbs(M1)+
1
2

M2c
∂2Cbs

∂V
2

T

∣∣∣∣∣
V T =M1

+
1
6

M3c
∂3Cbs

∂V
3

T

∣∣∣∣∣
V T =M1

+
1
24

M4c
∂4Cbs

∂V
4

T

∣∣∣∣∣
V T =M1

+ O(M5c) (2.6)

with the derivatives

∂Cbs

∂V T

=
e−rf T S0

√
Te−d2

1/2

√
8πV T

, (2.7)

∂2Cbs

∂V
2

T

=
∂Cbs

∂V T

[
1
2

m2

(V T T )2
− 1

2 V T T
− 1

8

]
T,

∂3Cbs

∂V
3

T

=
∂Cbs

∂V T

[
m4

4(V T T )4
− m2 (12 + V T T )

8(V T T )3
+

48 + 8V T T + (V T T )2

64(V T T )2

]
T 2,

∂4Cbs

∂V
4

T

=
∂Cbs

∂V T

[
1
8

m6

(V T T )6
− 3

32
m4 (20 + V T T )

(V T T )
5 +

3
128

m2 (240 + 24V T T + (V T T )
2
)

(V T T )
4

− (960 + 144V T T + 12(V T T )
2

+ (V T T )
3
)

512(V T T )
3

]
T 3,

and m := log(S0/K) + (rd − rf )T. So far, the conditional moments of the integrated variance have

been calculated analytically only for few specifications of the variance process,

1. for the mean reverting Ornstein-Uhlenbeck process2 Cox and Miller (1972, Sec. 5.8) derived the

first two conditional moments of V T ;

2Since the Ornstein-Uhlenbeck process is normally distributed, it can not ensure positive variance.
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2. for the geometric Brownian motion with drift Hull and White (1987) derived the first two con-

ditional moments of V T and the first three conditional moments of V T for the variance process

with zero drift;

3. for the squared root process Bollerslev and Zhou (2002) derived the first two conditional mo-

ments. Lewis (2000a) derived the first four conditional moments of the integrated variance for

the general class of affine processes (including the squared root process).

Given the analytical conditional moments of V T it is very easy to price European options by the

series approximation in equation (2.6). Garcia et al. (2001) use this formula to price European options

under the Heston model as an alternative to the Heston option pricing formula; cf. also Ball and

Roma (1994). Indeed, implementing integral solutions for option prices, such as the Heston formula,

can be very delicate due to divergence of the integrand in some regions of the parameter space.

We derive the second, the third and the fourth conditional moments of V T when the variance V is

driven by the GARCH diffusion process (1.8). The first conditional moment was already known in the

finance literature. For convenience, in the following proposition we state only the first two conditional

moments. The third and the fourth conditional moments and the corresponding derivations will be

made available to the interested reader upon request.

Higher order moments are essential to capture the ‘smile’ effect of implied volatilities; cf., for

instance, Bodurtha and Courtadon (1987) for PHLX foreign currency options and Lewis (2000). We

denote these conditional moments by Mgd
1 , Mgd

2c , Mgd
3c and Mgd

4c . Here we state Mgd
1 , Mgd

2c . The

calculations are given in Appendix A.1.

Proposition 2.1 Let V = (Vt)t≥0 to satisfy the stochastic differential equation (1.8). Given (V0, c1) ∈

R+×R+ and c2 > c2
3, the first and the second conditional moments of the integrated variance V T are

Mgd
1 := E[V T |V0] =

c1

c2
+

(
V0 − c1

c2

)
1− e−c2T

c2T
, (2.8)
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Mgd
2c := E[(V T −Mgd

1 )
2|V0] = −e−2Tc2(c2V0 − c1)

2

T 2c4
2

+
2e(c2

3−2c2)T (2c2
1 + 2c1(c2

3 − 2c2)V0 + (2c2
2 − 3c2c

2
3 + c4

3)V
2
0 )

T 2(c2 − c2
3)

2(2c2 − c2
3)

2

−c2
3(c

2
1(4c2(3− Tc2) + (2Tc2 − 5)c2

3) + 2c1c2(−2c2 + c2
3)V0 + c2

2(c
2
3 − 2c2)V 2

0 )

T 2c4
2(c

2
3 − 2c2)

2

+
2e−Tc2c2

3(2c2
1(Tc2

2 − (1 + Tc2)c2
3) + 2c1c

2
2(1− Tc2 + Tc2

3)V0 + c2
2(c

2
3 − c2)V 2

0 )

T 2c4
2(c2 − c2

3)
2 .

(2.9)

These moments are obtained using properties of Brownian motion such as independence and station-

arity of non-overlapping increments and the linearity of dVt in Vt. As already observed, when c1 = 0

the GARCH diffusion process reduces to the log-normal process with drift and then Mgd
1 , Mgd

2c reduce

to the conditional mean and variance of V T in Hull and White (1987), p. 287.

Given the first four conditional moments of V T , under the GARCH diffusion model the call price

is

C̃gd = Cbs(M
gd
1 ) +

Mgd
2c

2
∂2Cbs

∂V
2

T

∣∣∣∣∣
V T =Mgd

1

+
Mgd

3c

6
∂3Cbs

∂V
3

T

∣∣∣∣∣
V T =Mgd

1

+
Mgd

4c

24
∂4Cbs

∂V
4

T

∣∣∣∣∣
V T =Mgd

1

. (2.10)

Although Mgd
1 , Mgd

2c , Mgd
3c and Mgd

4c are lengthy expressions, the closed-form approximation for-

mula (2.10) can be easily implemented in any standard software package providing option prices

by just plugging in model parameters without any computational efforts.

As we will show in the next section, our approximation formula (2.10) is very accurate for a large

set of reasonable parameters. Intuitively, when the time to maturity T is ‘short’, V T is not too far

from Mgd
1 = E[V T |V0], then we expect approximation (2.10) to converge quickly. When the time to

maturity T increases and the condition 2c2 > 3c2
3 holds, for the stochastic strong law of large numbers3,

3The strong large numbers law is as follows. If π is the limiting distribution of a stationary stochastic process X

and f is a real-valued function such that
R | f(x) | π(x) dx < ∞, then limT→+∞ 1

T

R T
0 f(Xs) ds =

R
f(x)π(x) dx a.s.;

cf., for instance, Bhattacharya and Waymire (1990), Theorem 12.2, p. 432. In our case, f(X) = X and the stationary
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V T tends to c1/c2, the mean value of the stationary distribution V , and M2c, M3c and M4c go to zero.

Therefore, we expect the approximation formula (2.10) to work well also for ‘long’ maturities. On

the contrary, in the Hull and White (1987) model, where the variance Vt follows a log-normal process

without drift, M2c and M3c tend to infinity when T (see Appendix A.2) increases and the series (2.6)

fails to give the right price; cf. Hull and White (1987) and Gesser and Poncet (1997). The effect of

moving to a mean reverting process from a log-normal process is to avoid that the variance explodes

or goes to zero when T increases.

The conditions 2c2 > 3c2
3 ensures that the stationary distribution of Vt has finite moments (at

least) up to order four. Hence, when 2c2 approaches 3c2
3, the formula (2.10) becomes less accurate

for long maturities, as for instance in Table (2.4), where the condition is violated. In this case, the

variance process is ‘too volatile’, that is the volatility of volatility parameter c3 is ‘too large’ and/or

the mean reversion rate is too weak (c2 is ‘too small’). However, this condition seems to be generally

satisfied in options markets; cf. Section 2.2.

Lewis (2000) derived a closed-form approximation for European option prices for a large class of

stochastic volatility models including the GARCH diffusion model (2.2)–(2.3). Lewis’s approximation

formula is based on a second order Taylor expansion of some complex integrals around c3 = 0; cf.

Lewis (2000, pp. 77–84). Taking a Taylor expansion of the moments in our formula (2.10) around

c3 = 0 and truncating it at the second order only, would generate Lewis’s formula. Therefore, for the

GARCH diffusion model, our approximation is more accurate.

In the following section, we study by Monte Carlo simulations the accuracy of the approximation

distribution of V is the Inverse Gamma, Y = 1/V ; Γ(r, s) with density πY (x) = sr xr−1 e−sx/Γ(r), where r =

1 + 2c2/c23 and s = 2c1/c23. Then,

lim
T→+∞

V T =

Z
vπV (v) dv =

Z
1

y
πY (y) dy =

Z +∞

0

1

y

sr yr−1 e−sy

Γ(r)
dy =

c1

c2

Z +∞

0

s2c2/c23 x(2c2/c23)−1 e−sx

Γ(2c2/c23)
dx =

c1

c2
a.s.,

where we used Γ(2c2/c23 + 1) = 2c2/c23 Γ(2c2/c23).
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formula (2.10).

2.2 Monte Carlo Simulations

In order to verify the accuracy of approximation (2.10) we compute European option prices by Monte

Carlo simulations. The advantage of using Monte Carlo estimates is that the standard error of es-

timates is known. Precisely, we compute put option prices4 according to equation (2.4) using the

conditional Monte Carlo method; cf. Boyle, Broadie and Glasserman (1997).

Specifically, we divide the time interval [0, T ] into s equal subintervals and we draw s independent

standard normal variables (υi)i=1,...,s. We simulate the random variable Vt in (2.3) over the discrete

time iT/s, for i = 1, . . . , s, using the Milstein scheme (cf. Kloeden and Platen (1999))

Vi = c1 ∆t + Vi−1(1− c∗2 ∆t + c3

√
∆t υi) +

1
2

c2
3 V 2

i−1 ((
√

∆t υi)2 −∆t),

where ∆t := T/s. Then, we compute the Black and Scholes put option price P
(n)
bs with squared

volatility s−1
∑s

i=1 Vi. Finally, iterating this procedure N times we obtain the Monte Carlo estimate

for the put option price

Pmc := N−1
N∑

n=1

P
(n)
bs ,

with the corresponding Monte Carlo standard error

emc :=

√
N−1

∑N
n=1(P

(n)
bs − Pmc)2√

N
.

When N goes to infinity, Pmc converges in probability to the put option price implied by (2.4). Notice

that we do not need to simulate the price process S.

4Monte Carlo standard errors are generally smaller for put option prices than for call option prices as in the first case

payoffs are bounded. Using the put-call parity call option prices are readily computed.
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To simulate the variance process (2.3) we use parameter values inferred from empirical estimates

of model (2.2)–(2.3). Typically, for currency and index daily log-returns the unconditional mean of V ,

c1/c∗2, ranges from 0.01 to 0.1 per year. The ‘half life’5 varies from few days to about a half year;

cf. Chesney and Scott (1989), Taylor and Xu (1994), Xu and Taylor (1994), Guo (1996, 1998) and

Fouque, Papanicolaou and Sircar (2000). This implies that c∗2 ranges from 1 to 40. Moreover, empirical

estimates of discrete GARCH(1,1)-M model on currency and index daily log-returns imply values of c3

ranging from about 1 to 4; cf., for instance, Hull and White (1987a, 1988) and Guo (1996,1998). For

stock log-returns, estimates of c3 are generally smaller. For the Monte Carlo simulations, we consider

times to maturity for European put options ranging from 30 to 504 days. We wrote a Matlab code to

long-run N = 106 simulations. The computation time varies between about 14 hours for T = 30 days

to 15 hours for T = 504 days on a PC Pentium IV 1GHz, running Windows XP.

In Table 2.1 we simulate the risk-adjusted variance process (2.3) using parameter values that we

infer (cf. Nelson (1990)) from the GARCH(1,1) estimates in Guo (1996) for the dollar/yen exchange

rates6, i.e. c1 = 0.16, c∗2 = 18 and c3 = 1.8. The variance process is quickly mean reverting (the

half life is about 10 trading days) and rather volatile, the two-standard deviation range for V is from

0.003 to 0.014; see equations (1.12). Table 2.1 shows the Monte Carlo put price Pmc; the put price

P̃ gd(i) given by the approximation formula (2.10) truncated up to order i-th, for i = 2, 3, 4; the

corresponding pricing error ep(i)% defined as ep(i)% := 100(P̃ gd(i) − Pmc)/Pmc and the Monte Carlo

standard error emc. The pricing errors ep allow to evaluate the contributions of the different terms to

option prices. The average pricing errors for ep(2)%, ep(3)% and ep(4)% are −0.094, 0.049 and −0.067,

5The ‘half life’ is the time necessary after a shock to halve the deviation of Vt from its long-run mean value, given

that there are no more shocks. For this model the half life is equal to ln (2)/c∗2 years. We compute the half life using

252 trading days

6As in Guo (1996) we assume the volatility risk premium λ(S, V, t) = 0.
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respectively. Although the variance process is rather volatile, the high mean reversion rate c∗2 implies

that the integrated variance process V T tends to stay around E[V T |V0] and that the approximation

(2.10) works well. Indeed, almost all errors are practically negligible across all strikes and maturities,

as they are within bid-ask spreads observed on currency option markets7.

In Table 2.2 we simulate the variance process (2.3) using the risk-neutral parameters reported by

Melenberg and Werker (2001)for the Dutch EOE index. The variance risk premium was inferred using

European call options on the Dutch index. The estimated correlation between price and volatility

was negligible. The risk-neutral coefficients are c1 = 0.53, c∗2 = 29.23 and c3 = 3.65. The long-run

mean value of the variance is 0.018 and the two-standard deviation range for V is 0–0.038. Table 2.2

is organized as Table 2.1. The average pricing errors for ep(2)%, ep(3)% and ep(4)% are 0.129, 0.010

and −0.174, respectively. In this case pricing errors ep(3)% are almost always lower than 1% (except

one case). Unfortunately, for some parameter choice, the fourth term in (2.10) can be highly unstable

across times to maturity and strike prices, due to the high variability of the fourth derivative of the

Black and Scholes price. Hence, even though Mgd
3 À Mgd

4 , ep(3) tend to be smaller than ep(4) pricing

errors.

In Table 2.3 and Table 2.4 we use parameter values that give a reasonable variance process as

discussed in Hull and White (1988). In Tables 2.3 we set c1 = 0.18, c∗2 = 2 and c3 = 0.8. The

parameter value c∗2 is quite small and implies a ‘slow’ mean reverting variance process (2.3) with half

life of about 87 trading days. The unconditional mean and standard deviation of V are 0.090 and

0.039, respectively, and the two-standard deviation range for V is 0.011–0.169. As the volatility of Vt is

not too large, the process V T tends to stay around E[V T |V0] and hence the series approximation (2.10)

is very accurate. The average pricing errors for ep(2)%, ep(3)% and ep(4)% are −0.035, 0.044 and

7Typically, bid-ask spreads on currency options are larger than 2% of option prices for out of the money options and

about 1% for more liquid at the money options.
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−0.018, respectively.

In Table 2.4 we set c1 and c∗2 as in Table 2.3 and c3 = 1.2. This implies that the standard deviation

of V is 0.068 and the two-standard deviation range for V is 0–0.225. The average pricing errors for

ep(2)%, ep(3)% and ep(4)% are −0.246, 0.401 and −1.412, respectively. The errors ep(3) are still

very small, but slightly larger than in Table 2.3 as the variance process is more volatile than in the

previous case. The pricing errors ep(4)% are very large, especially for long maturities, because the

fourth unconditional moment of Vt is not finite as the condition 2c2 > 3c2
3 does not hold.

Finally, in Table 2.5 we set c1 = 0.09, c∗2 = 4 and c3 = 1.2 as in Lewis (2000). The unconditional

mean of V is 0.022, the ‘half life’ is about 44 trading days and the two-standard deviation range for V

is 0.001–0.043. Also in this case pricing errors are generally quite small and the averages for ep(2)%,

ep(3)% and ep(4)% are 0.024, 0.020 and 0.053, respectively.

The simulation results reported in Tables 2.1–2.5 show that, for some short maturities and deep

out of the money options, P̃ gd(2) prices are not enough accurate, as pricing errors ep(2) are larger than

bid-ask tolerance. Using the option price approximation P̃ gd(3) reduces the previous largest pricing

errors and generally gives errors ep(3) within bid-ask spreads. In some cases (cf. Tables 2.1–2.2), due

to the instability of the fourth term in approximation formula (2.10), the option price approximation

P̃ gd(4) gives large pricing errors. Therefore, it seems to be convenient to truncate after three terms

the option pricing formula (2.10) for a simpler and, in some cases, more precise approximation.

Although ep pricing errors in Tables 2.1–2.5 are generally very small, such errors seems to be

display some patterns especially for long maturities. A possible explanation is as follows. The Black

and Scholes put price, which is the first term in the approximation formula given by (2.10), tend to

be larger than the Monte Carlo put prices. The second term in the put option price P̃ gd(2) is almost

always negative reducing the price bias of the Black and Scholes formula and partially explaining the

negative pricing errors ep(2) in Tables 2.3–2.5. The third term in P̃ gd(3) is almost always positive
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explaining the positive pricing errors ep(3) observed in the tables. The contribution of the fourth term

in P̃ gd(4) has not a clear sign.

We simulate the variance process (2.3) also for other reasonable parameter choices (not reported

here) and we find similar results. The approximation formula P̃ gd(3) induces pricing errors smaller

than 1% for at the money options and smaller than 2% for out of the money options. Then, this

approximation formula gives accurate prices within the tolerance expected because of market frictions.

2.3 Effects of Stochastic Volatility on Option Prices

In this section, we investigate the effects of the stochastic volatility driven by the GARCH diffusion

process (2.2)–(2.3) on European option prices. We study the so-called ‘price bias’, that is the difference

between option prices under stochastic volatility and option prices under deterministic volatility for

different parameter choices of c1, c∗2 and c3, across several strikes and maturities.

In the deterministic volatility setting c3 = 0, Merton (1973) showed that option prices are simply

given by the Black and Scholes formula with the modified volatility

σ2
det :=

1
T

∫ T

0

(c1 − c∗2Vs) ds =
c1

c∗2
+ (V0 − c1

c∗2
)

1− e−c∗2T

c∗2T
,

which is indeed the first conditional moment of V T , Mgd
1 . In our experiments, we set c1 = 0.09,

c∗2 = 4 and c3 = 1.2 as in Lewis (2000); cf. also Tables 2.5–??. Similar results (not reported here) are

obtained for other parameter values.

Figure 2.1 shows call option price biases for different values of the parameter c3, which controls

the volatility of volatility. As expected, the main effect of moving from deterministic to stochastic

volatilities is to decrease near-the-money option prices and to increase out-of-the-money and in-the-

money option prices; cf., for instance, Hull and White (1987) and Heston (1993). When c3 increases

the volatility and the kurtosis of the log-return distributions increases raising in the money and out of
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the money option prices and lowering at the money option prices. This effect shrinks for deep in the

money and deep out of the money options, as option prices tend to be insensitive to the volatility.

Figure 2.2 shows price biases for different values of c∗2. As c3 6= 0, the shapes of price biases are

similar to Figure 2.1. When c∗2 increases, the variance process V becomes less volatile for two reasons:

the long-run mean value of V reduces and the reversion rate increases. This effect tend to reduce the

price biases, across all strikes and maturities.

Figure 2.3 shows the effect of c1 on price biases. When c1 increases the long-run mean value of

V increases and price biases tend to become more negative for in the money and out of the money

option prices. For at the money option prices the evidence is mixed.

Finally, Figure 2.4 shows price biases for different values of the initial variance V0. The larger V0,

the more volatile is the variance process. The effect on the price biases of increasing V0 is quite similar

to the effect of increasing c3.

When the time to maturity increases, the negative price bias for at the money options becomes

more pronounced and holds for a wider range of strike prices. Only for ‘very long’ maturities (about

five years), the price bias is roughly zero for all strike prices. Then, the GARCH diffusion and the

deterministic volatility model tend to coincide, as the integrated variance V T and Mgd
1 are very close

to the long-run mean value c1/c∗2.

2.4 Implied Volatility Surfaces

In this section we study the implied volatility induced by the GARCH diffusion model (2.2)–(2.3),

i.e. the volatility σ2
imp which gives the Black and Scholes option price equals to the GARCH diffusion

option price, Cbs(σ2
imp) = C̃gd. Typically, to solve such implicit equation the Newton-Raphson method
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is used8.

Renault and Touzi (1996) show that, for any stochastic volatility process, the assumption of no

correlation between price and variance induces symmetric ‘volatility smiles’, i.e. symmetric shape of

implied volatilities with respect to m = ln (S0/K) + (r − d)T as a function of the strike prices; cf.

also Hull and White (1987). The functional dependence of implied volatilities on time to maturity,

i.e. the ‘term structure pattern’, depends on the specific variance process. In the following we study

qualitatively the volatility smile and the term structure pattern induced by the GARCH diffusion

model. As in Table 2.5 we set c1 = 0.09, c∗2 = 4 and c3 = 1.2 and we compute the GARCH diffusion

option prices (2.10) and the implied volatilities for different strikes and maturities. Figure 2.5 shows

volatility smiles for time to maturities equal to 30, 60, 90 and 120 days. Figure 2.6 shows the volatility

surface for time to maturity between 30 and 120 days and strike prices between 90 and 110. As the

implied volatility is symmetric with respect to m, volatility smiles are quite symmetric with respect to

the forward price. Moreover, the convexity of the volatility surface increases when the time to maturity

decreases. These features of implied volatility surface were observed for all parameter choices (positive

parameters). When the time to maturity increases the volatility surface flattens because the random

variable V T converges to the the long-run mean value c1/c∗2 by the stochastic strong law of large

number and σ2
imp → c1/c∗2 for all strike prices. These results are in qualitative agreement with the

empirical evidence on volatility surfaces observed in currency option markets, where volatility smiles

are quite symmetric with respect to the forward price, very pronounced at short maturities and almost

flat at long maturities; cf., for instance, Chesney and Scott (1989), Melino and Turbull (1990), Taylor

8See for instance the Matlab function blsimpvdiv or the Mathematica function BlackScholesCallImpVol. An ap-

proximation for the implied volatility is σ2
imp ≈ Mgd

1 + ( eCgd − Cbs(M
gd
1 ))/∂Cbs/∂V T

��
V T =M

gd
1

, that is a one-step

Newton-Raphson algorithm starting at Mgd
1 . As σ2

imp → Mgd
1 for T → ∞, Mgd

1 is a reasonable starting point for the

algorithm and indeed, one iteration provides rather accurate results.
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and Xu (1994), and Bollerslev and Zhou (2002). For instance, Taylor and Xu (1994) estimated the

relative height of volatility smiles for Deutsche mark versus US dollar option prices from 1985–1994.

The results are reported in Figure 2.7. Clearly, the volatility smiles are quite symmetric and more

convex for short maturities 9.

9Taylor and Xu found similar volatility smiles for other foreign exchange call options on Pound-Dollar, Yen-Dollar,

Swiss-Dollar exchange rates.
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T K Pmc
eP gd(2) eP gd(3) eP gd(4) ep(2)% ep(3)% ep(4)% emc × 104

30 90 0.0008 0.0008 0.0008 0.0008 −4.5641 1.3768 0.6479 0.0129

95 0.0800 0.0803 0.0800 0.0801 0.2754 −0.1116 0.0948 0.3610

100 1.2921 1.2918 1.2924 1.2919 −0.0177 0.0269 −0.0084 1.1997

105 5.0999 5.1002 5.0998 5.1000 0.0046 −0.0022 −0.0022 0.4231

110 10.0023 10.0023 10.0024 10.0023 −0.0003 0.0003 −0.0004 0.0294

60 90 0.0184 0.0184 0.0184 0.0184 0.3769 0.2996 0.1640 0.1330

95 0.2993 0.2995 0.2992 0.2993 0.0859 −0.0230 0.0033 0.8289

100 1.8284 1.8283 1.8290 1.8288 0.0076 0.0275 0.0212 1.5411

105 5.3497 5.3499 5.3496 5.3497 0.0047 −0.0011 0.0005 0.9216

110 10.0363 10.0365 10.0364 10.0363 0.0015 0.0004 0.0002 0.2225

90 90 0.0664 0.0665 0.0664 0.0664 0.2415 −0.0006 −0.0512 0.3067

95 0.5401 0.5403 0.5401 0.5392 0.0263 0.0004 −0.1771 1.0964

100 2.2411 2.2409 2.2414 2.2432 −0.0062 0.0164 0.0957 1.6780

105 5.6155 5.6156 5.6155 5.6146 0.0023 0.0004 −0.0156 1.1971

110 10.1131 10.1133 10.1131 10.1127 0.0022 −0.0003 −0.0046 0.4537

120 90 0.1393 0.1395 0.1393 0.1380 0.1276 −0.0119 −0.9736 0.4727

95 0.7760 0.7761 0.7760 0.7745 0.0137 0.0096 −0.1902 1.2603

100 2.5890 2.5889 2.5893 2.5937 −0.0026 0.0124 0.1821 1.7489

105 5.8721 5.8722 5.8722 5.8709 0.0017 0.0016 −0.0205 1.3634

110 10.2187 10.2189 10.2187 10.2163 0.0021 −0.0003 −0.0233 0.6541

180 90 0.3294 0.3296 0.3294 0.3239 0.0601 0.0165 −1.6659 0.7371

95 1.2161 1.2163 1.2163 1.2158 0.0138 0.0174 −0.0274 1.4470

100 3.1725 3.1726 3.1729 3.1819 0.0035 0.0112 0.2969 1.8187

105 6.3462 6.3464 6.3465 6.3466 0.0027 0.0037 0.0052 1.5509

110 10.4733 10.4735 10.4734 10.4667 0.0021 0.0007 −0.0632 0.9500

252 90 0.5928 0.5930 0.5929 0.5845 0.0243 0.0109 −1.3950 0.9571

95 1.6919 1.6921 1.6921 1.6942 0.0071 0.0106 0.1333 1.5684

100 3.7550 3.7551 3.7553 3.7678 0.0026 0.0068 0.3387 1.8616

105 6.8550 6.8551 6.8552 6.8582 0.0018 0.0028 0.0464 1.6719

110 10.8062 10.8063 10.8063 10.7977 0.0015 0.0008 −0.0784 1.1822

504 90 1.5438 1.5440 1.5440 1.5387 0.0111 0.0108 −0.3345 1.3327

95 3.0577 3.0579 3.0579 3.0660 0.0065 0.0078 0.2713 1.7337

100 5.3116 5.3118 5.3119 5.3273 0.0040 0.0051 0.2951 1.9142

105 8.3052 8.3054 8.3054 8.3145 0.0025 0.0031 0.1126 1.8354

110 11.9443 11.9445 11.9445 11.9410 0.0016 0.0017 −0.0276 1.5585

Table 2.1: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd(i) GARCH diffusion

put prices approximated by (2.10) truncated up to order i-th, for i = 2, 3, 4; ep(i)% = 100(P̃ gd(i) −
Pmc)/Pmc; emc Monte Carlo standard error. Model parameters: S0 = 100, r = d = 0; dV =

(0.16− 18 V )dt + 1.8 V dW , V0 = 0.16/18.
28



T K Pmc
eP gd(2) eP gd(3) eP gd(4) ep(2)% ep(3)% ep(4)% emc × 104

30 90 0.0236 0.0242 0.0240 0.0219 2.5477 1.5083 −7.1357 0.3503

95 0.3093 0.3107 0.3071 0.3137 0.4467 −0.7134 1.3975 1.5033

100 1.8344 1.8317 1.8389 1.8294 −0.1445 0.2473 −0.2728 2.6253

105 5.3602 5.3614 5.3580 5.3647 0.0235 −0.0398 0.0843 1.6594

110 10.0436 10.0449 10.0435 10.0421 0.0123 −0.0016 −0.0151 0.5242

60 90 0.1508 0.1523 0.1495 0.1508 1.0367 −0.8793 0.0362 0.9954

95 0.7899 0.7902 0.7898 0.7912 0.0313 −0.0177 0.1651 2.3314

100 2.6014 2.5995 2.6052 2.6010 −0.0721 0.1464 −0.0173 3.1471

105 5.8867 5.8868 5.8868 5.8880 0.0018 0.0017 0.0221 2.5150

110 10.2325 10.2343 10.2307 10.2331 0.0177 −0.0176 0.0054 1.3279

90 90 0.3449 0.3461 0.3438 0.3414 0.3371 −0.3171 −1.0108 1.4788

95 1.2348 1.2347 1.2355 1.2353 −0.0043 0.0563 0.0419 2.7146

100 3.1915 3.1904 3.1942 3.1981 −0.0354 0.0859 0.2068 3.3572

105 6.3659 6.3657 6.3668 6.3669 −0.0022 0.0139 0.0154 2.9048

110 10.4914 10.4926 10.4903 10.4874 0.0113 −0.0108 −0.0380 1.8716

120 90 0.5668 0.5675 0.5661 0.5596 0.1359 −0.1128 −1.2677 1.8267

95 1.6394 1.6393 1.6403 1.6417 −0.0071 0.0526 0.1408 2.9359

100 3.6891 3.6883 3.6911 3.7009 −0.0197 0.0555 0.3199 3.4717

105 6.7987 6.7985 6.7997 6.8018 −0.0026 0.0147 0.0465 3.1284

110 10.7723 10.7730 10.7717 10.7649 0.0068 −0.0049 −0.0682 2.2435

180 90 1.0310 1.0316 1.0311 1.0225 0.0546 0.0083 −0.8305 2.2774

95 2.3550 2.3552 2.3561 2.3621 0.0082 0.0457 0.3029 3.1795

100 4.5229 4.5229 4.5245 4.5405 −0.0004 0.0361 0.3886 3.5916

105 7.5601 7.5603 7.5613 7.5685 0.0024 0.0156 0.1106 3.3733

110 11.3372 11.3378 11.3375 11.3300 0.0049 0.0024 −0.0635 2.7073

252 90 1.5777 1.5781 1.5780 1.5718 0.0262 0.0217 −0.3725 2.6024

95 3.0980 3.0983 3.0990 3.1089 0.0095 0.0314 0.3520 3.3406

100 5.3549 5.3551 5.3561 5.3748 0.0044 0.0239 0.3731 3.6742

105 8.3478 8.3481 8.3488 8.3600 0.0036 0.0126 0.1466 3.5354

110 11.9831 11.9835 11.9836 11.9796 0.0036 0.0042 −0.0288 3.0333

504 90 3.2715 3.2723 3.2724 3.2751 0.0230 0.0271 0.1099 3.0858

95 5.1528 5.1536 5.1540 5.1681 0.0167 0.0228 0.2963 3.5523

100 7.5754 7.5763 7.5767 7.5957 0.0120 0.0172 0.2683 3.7759

105 10.5187 10.5196 10.5199 10.5352 0.0086 0.0118 0.1567 3.7472

110 13.9310 13.9318 13.9320 13.9375 0.0061 0.0075 0.0468 3.5050

Table 2.2: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd(i) GARCH diffusion put

prices approximated by (14) truncated up to order i-th, for i = 2, 3, 4; ep(i)% = 100(P̃ gd(i)−Pmc)/Pmc;

emc Monte Carlo standard error. Model parameters: S0 = 100, r = d = 0; dV = (0.53− 29.23 V )dt +

3.65 V dW , V0 = 0.53/29.23.
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T K Pmc
eP gd(2) eP gd(3) eP gd(4) ep(2)% ep(3)% ep(4)% emc × 104

30 90 0.7901 0.7902 0.7900 0.7876 0.0141 −0.0099 −0.3165 1.6735

95 2.0011 2.0008 2.0010 2.0021 −0.0169 −0.0062 0.0476 2.5395

100 4.1169 4.1164 4.1169 4.1207 −0.0137 −0.0022 0.0917 2.9438

105 7.1841 7.1837 7.1840 7.1853 −0.0052 −0.0018 0.0171 2.7010

110 11.0473 11.0473 11.0472 11.0449 0.0003 −0.0010 −0.0218 2.0293

60 90 1.9061 1.9061 1.9061 1.9064 −0.0027 0.0017 0.0140 4.0187

95 3.5125 3.5118 3.5133 3.5127 −0.0196 0.0222 0.0038 5.0139

100 5.8083 5.8074 5.8095 5.8084 −0.0163 0.0199 0.0012 5.4663

105 8.7862 8.7855 8.7871 8.7864 −0.0085 0.0097 0.0015 5.3017

110 12.3644 12.3642 12.3646 12.3646 −0.0016 0.0015 0.0022 4.6523

90 90 2.8985 2.8977 2.8990 2.8988 0.0291 0.0155 0.0084 6.0747

95 4.7109 4.7092 4.7128 4.7105 0.0378 0.0390 −0.0087 7.0986

100 7.1015 7.0994 7.1040 7.1008 0.0304 0.0346 −0.0099 7.5819

105 10.0522 10.0503 10.0542 10.0518 0.0190 0.0198 −0.0046 7.4915

110 13.5044 13.5033 13.5052 13.5046 0.0085 0.0059 0.0010 6.9242

120 90 3.7858 3.7841 3.7873 3.7860 −0.0433 0.0410 0.0056 7.8285

95 5.7337 5.7309 5.7372 5.7329 −0.0491 0.0606 −0.0143 8.8537

100 8.1892 8.1859 8.1935 8.1880 −0.0401 0.0523 −0.0154 9.3602

105 11.1311 11.1281 11.1348 11.1302 −0.0269 0.0334 −0.0081 9.3346

110 14.5125 14.5104 14.5147 14.5125 −0.0144 0.0148 0.0000 8.8543

180 90 5.3378 5.3346 5.3424 5.3375 −0.0601 0.0868 −0.0052 10.6045

95 7.4645 7.4598 7.4717 7.4625 −0.0628 0.0963 −0.0274 11.6077

100 10.0110 10.0057 10.0192 10.0082 −0.0528 0.0824 −0.0275 12.1468

105 12.9552 12.9502 12.9628 12.9530 −0.0384 0.0590 −0.0171 12.2263

110 16.2621 16.2582 16.2678 16.2614 −0.0239 0.0351 −0.0044 11.9015

252 90 6.9387 6.9328 6.9458 6.9361 −0.0852 0.1024 −0.0382 13.0138

95 9.2060 9.1984 9.2158 9.2009 −0.0822 0.1065 −0.0547 13.9836

100 11.8297 11.8214 11.8406 11.8237 −0.0699 0.0924 −0.0506 14.5487

105 14.7891 14.7811 14.7995 14.7837 −0.0542 0.0702 −0.0363 14.7208

110 18.0562 18.0493 18.0646 18.0527 −0.0383 0.0469 −0.0193 14.5415

504 90 11.3404 11.3323 11.3521 11.3366 −0.0715 0.1031 −0.0329 17.3351

95 13.8865 13.8771 13.9001 13.8812 −0.0674 0.0982 −0.0380 18.2109

100 16.6835 16.6736 16.6980 16.6776 −0.0595 0.0871 −0.0354 18.8137

105 19.7148 19.7049 19.7292 19.7092 −0.0501 0.0730 −0.0284 19.1580

110 22.9623 22.9531 22.9757 22.9579 −0.0402 0.0581 −0.0195 19.2664

Table 2.3: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd(i) GARCH diffusion put

prices approximated by (14) truncated up to order i-th, for i = 2, 3, 4; ep(i)% = 100(P̃ gd(i)−Pmc)/Pmc;

emc Monte Carlo standard error. Model parameters: S0 = 100, r = d = 0; dV = (0.18 − 2 V )dt +

0.8 V dW , V0 = 0.18/2.
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T K Pmc
eP gd(2) eP gd(3) eP gd(4) ep(2)% ep(3)% ep(4)% emc × 104

30 90 0.7903 0.7905 0.7894 0.6572 0.0265 −0.1032 −16.8318 2.5217

95 1.9927 1.9913 1.9924 2.0512 −0.0715 −0.0132 2.9359 3.8020

100 4.1040 4.1018 4.1043 4.3154 −0.0542 0.0078 5.1510 4.4035

105 7.1749 7.1733 7.1746 7.2487 −0.0218 −0.0032 1.0284 4.0433

110 11.0459 11.0458 11.0450 10.9197 −0.0008 −0.0080 −1.1422 3.0517

60 90 1.8942 1.8930 1.8934 1.9000 −0.0653 −0.0395 0.3078 6.0288

95 3.4865 3.4821 3.4906 3.4725 −0.1242 0.1182 −0.4017 7.4909

100 5.7761 5.7705 5.7826 5.7520 −0.0970 0.1131 −0.4162 8.1602

105 8.7583 8.7537 8.7629 8.7427 −0.0532 0.0518 −0.1780 7.9202

110 12.3481 12.3461 12.3483 12.3508 −0.0167 0.0011 0.0212 6.9710

90 90 2.8713 2.8658 2.8737 2.8718 −0.1896 0.0855 0.0192 9.0975

95 4.6673 4.6570 4.6791 4.6584 −0.2203 0.2544 −0.1909 10.5933

100 7.0509 7.0387 7.0669 7.0377 −0.1735 0.2268 −0.1869 11.3051

105 10.0057 9.9948 10.0186 9.9960 −0.1096 0.1283 −0.0973 11.1786

110 13.4706 13.4635 13.4754 13.4692 −0.0530 0.0353 −0.0104 10.3598

120 90 3.7432 3.7322 3.7529 3.7371 −0.2931 0.2592 −0.1610 11.7084

95 5.6738 5.6565 5.6972 5.6468 −0.3051 0.4126 −0.4754 13.1994

100 8.1220 8.1021 8.1511 8.0861 −0.2447 0.3588 −0.4416 13.9428

105 11.0676 11.0492 11.0927 11.0385 −0.1662 0.2267 −0.2631 13.9152

110 14.4615 14.4479 14.4753 14.4502 −0.0940 0.0955 −0.0782 13.2316

180 90 5.2682 5.2445 5.3010 5.2279 −0.4486 0.6238 −0.7644 15.8534

95 7.3776 7.3456 7.4311 7.2935 −0.4345 0.7247 −1.1400 17.3052

100 9.9165 9.8810 9.9784 9.8146 −0.3583 0.6242 −1.0280 18.0949

105 12.8633 12.8294 12.9202 12.7734 −0.2640 0.4422 −0.6989 18.2261

110 16.1813 16.1533 16.2224 16.1268 −0.1733 0.2536 −0.3372 17.7801

252 90 6.8458 6.8054 6.9104 6.7150 −0.5902 0.9427 −1.9103 19.4864

95 9.0969 9.0469 9.1869 8.8898 −0.5504 0.9895 −2.2772 20.8891

100 11.7133 11.6590 11.8138 11.4752 −0.4630 0.8583 −2.0329 21.7182

105 14.6740 14.6211 14.7694 14.4538 −0.3606 0.6502 −1.5008 21.9888

110 17.9501 17.9033 18.0272 17.7879 −0.2607 0.4297 −0.9034 21.7612

504 90 11.2078 11.1406 11.3528 10.5356 −0.5990 1.2940 −5.4470 28.4149

95 13.7415 13.6659 13.9123 12.9098 −0.5502 1.2428 −6.0527 27.5161

100 16.5319 16.4522 16.7143 15.6314 −0.4823 1.1035 −5.9976 26.2295

105 19.5621 19.4824 19.7423 18.6831 −0.4074 0.9214 −4.4932 28.9460

110 22.8135 22.7376 22.9793 22.0352 −0.3327 0.7267 −3.4116 29.1419

Table 2.4: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd(i) GARCH diffusion put

prices approximated by (14) truncated up to order i-th, for i = 2, 3, 4; ep(i)% = 100(P̃ gd(i)−Pmc)/Pmc;

emc Monte Carlo standard error. Model parameters: S0 = 100, r = d = 0; dV = (0.18 − 2 V )dt +

1.2 V dW , V0 = 0.18/2.
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T K Pmc
eP gd(2) eP gd(3) eP gd(4) ep(2)% ep(3)% ep(4)% emc × 104

30 90 0.0416 0.0419 0.0418 0.0417 0.8998 0.4710 0.2776 0.2796

95 0.4270 0.4273 0.4269 0.4273 0.0629 −0.0227 0.0759 1.2305

100 2.0541 2.0536 2.0546 2.0539 −0.0230 0.0235 −0.0094 2.0376

105 5.4911 5.4913 5.4910 5.4914 0.0043 −0.0016 0.0059 1.3532

110 10.0742 10.0747 10.0744 10.0744 0.0051 0.0016 0.0019 0.4322

60 90 0.2403 0.2415 0.2395 0.2409 0.5118 −0.3186 0.2691 1.2698

95 1.0088 1.0085 1.0088 1.0093 −0.0271 −0.0013 0.0489 2.7060

100 2.8976 2.8961 2.8995 2.8968 −0.0534 0.0661 −0.0294 3.5178

105 6.1229 6.1225 6.1230 6.1233 −0.0064 0.0019 0.0071 2.9091

110 10.3537 10.3550 10.3527 10.3546 0.0118 −0.0097 0.0088 1.6629

90 90 0.5059 0.5073 0.5040 0.5076 0.2868 −0.3736 0.3476 2.2925

95 1.5236 1.5223 1.5243 1.5238 −0.0811 0.0482 0.0119 3.8280

100 3.5450 3.5421 3.5484 3.5429 −0.0808 0.0953 −0.0581 4.5905

105 6.6746 6.6732 6.6756 6.6747 −0.0215 0.0146 0.0004 4.0842

110 10.6943 10.6955 10.6924 10.6963 0.0110 −0.0180 0.0186 2.8388

120 90 0.7895 0.7907 0.7873 0.7923 0.1612 −0.2753 0.3633 3.1594

95 1.9843 1.9823 1.9862 1.9839 −0.1032 0.0935 −0.0194 4.6713

100 4.0917 4.0879 4.0965 4.0884 −0.0926 0.1164 −0.0804 5.3827

105 7.1657 7.1634 7.1679 7.1651 −0.0321 0.0305 −0.0089 4.9653

110 11.0435 11.0443 11.0416 11.0464 0.0072 −0.0170 0.0262 3.8040

180 90 1.3561 1.3566 1.3550 1.3596 0.0413 −0.0806 0.2637 4.4457

95 2.7925 2.7896 2.7964 2.7910 −0.1048 0.1395 −0.0549 5.8221

100 5.0114 5.0069 5.0181 5.0068 −0.0903 0.1319 −0.0932 6.4495

105 8.0238 8.0206 8.0281 8.0219 −0.0401 0.0539 −0.0234 6.1656

110 11.7203 11.7202 11.7200 11.7235 −0.0009 −0.0026 0.0269 5.2043

252 90 2.0035 2.0028 2.0036 2.0056 −0.0340 0.0071 0.1075 5.4574

95 3.6288 3.6251 3.6333 3.6266 −0.1024 0.1240 −0.0631 6.6719

100 5.9334 5.9284 5.9400 5.9288 −0.0845 0.1108 −0.0770 7.2297

105 8.9091 8.9051 8.9140 8.9065 −0.0451 0.0551 −0.0293 7.0508

110 12.4759 12.4745 12.4770 12.4775 −0.0114 0.0084 0.0123 6.2867

504 90 3.9613 3.9603 3.9637 3.9655 −0.0267 0.0605 0.1053 7.0744

95 5.9352 5.9329 5.9394 5.9446 −0.0390 0.0710 0.1581 7.9420

100 8.4032 8.4004 8.4082 8.4148 −0.0335 0.0592 0.1378 8.3767

105 11.3436 11.3412 11.3481 11.3537 −0.0218 0.0396 0.0886 8.3715

110 14.7118 14.7103 14.7148 14.7175 −0.0099 0.0208 −0.0393 7.9875

Table 2.5: Pmc Monte Carlo put prices computed by N = 106 simulations; P̃ gd(i) GARCH diffusion put

prices approximated by (14) truncated up to order i-th, for i = 2, 3, 4; ep(i)% = 100(P̃ gd(i)−Pmc)/Pmc;

emc Monte Carlo standard error. Model parameters: S0 = 100, r = d = 0; dV = (0.09 − 4 V )dt +

1.2 V dW , V0 = 0.09/4.
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Figure 2.1: c3 effect. Percent Bias = 100 ( eCgd − Cbs) for different maturities and parameter values of c3,

when S0 = 100, r = d = 0; dV = (0.09− 4 V )dt + c3 V dW , V0 = 0.0225.
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Figure 2.2: c∗2 effect. Percent Bias = 100 ( eCgd − Cbs) for different maturities and parameter values of c∗2,

when S0 = 100, r = d = 0; dV = (0.9− c∗2 V )dt + 1.2 V dW , V0 = 0.0225.
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Figure 2.3: c1 effect. Percent Bias = 100 ( eCgd − Cbs) for different maturities and parameter values of c1,

when S0 = 100, r = d = 0; dV = (c1 − 4 V )dt + 1.2 V dW , V0 = 0.0225.
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Figure 2.4: V0 effect. Percent Bias = 100 ( eCgd − Cbs) for different maturities and initial variance V0, when

S0 = 100, r = d = 0; dV = (0.09− 4 V )dt + 1.2 V dW .
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Figure 2.5: Volatility smiles for maturities of 30, 60, 90 and 120 days and the parameter choice S0 = 100,

r = d = 0; dV = (0.09− 4 V )dt + 1.2 V dW , V0 = 0.0225, as in Table 2.5.
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Figure 2.7: Relative height of volatility smiles of Mark-Dollar call options (1985-1992)
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Chapter 3

Inference based on Nelson’s Theory

Inference on continuous time parameters of stochastic volatility models is an important issue in finan-

cial econometrics. The intractable likelihood function and the unobservable variance process prevent

simple and efficient estimation procedures for such models. Several estimation methods have been

proposed1, such as the simulation based method of moments of Duffie and Singleton (1993) or the

Bayesian Markov chain Monte Carlo methods of Jones (2003). Such procedures are rather difficult to

implement and computationally demanding.

Nelson (1990) proposed a simple estimator for the GARCH diffusion model. Under some mo-

ment conditions, Nelson shows that the discrete time GARCH(1,1)-M model (cf. Engle and Boller-

slev (1986)) converges in distribution to the GARCH diffusion model (1.7)–(1.8). Hence, the inference

on continuous time parameters reduces to inference on discrete time GARCH(1,1)-M parameters. As

GARCH(1,1)-M model can be easily estimated, this procedure has been advocated by many authors

(see, for instance, Engle and Lee (1996) and Lewis (2000)) to infer the continuous time parameters.

Moreover, in an empirical study, Engle and Lee (1996) show that the estimates of the GARCH diffusion

model based on the Nelson’s theory and on the indirect inference method are quite close. However,

1A survey on stochastic volatility models including the estimation problem is given, for instance, by Jiang (1998).
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to our knowledge, the accuracy of the continuous time parameter estimates obtained by the discrete

time parameter estimates has not been adequately verified.

In section 3.1 we investigate by Monte Carlo simulations the Nelson’s theory and the convergence,

under proper conditions, of the stochastic difference equations (3.1) to the stochastic differential equa-

tions (1.7)–(1.8) when the time interval between two observations goes to zero.

3.1 Simple Estimators for the GARCH Diffusion Model

The discrete time GARCH(1,1)-M model is

Ykh = Y(k−1)h + [µ− σ2
kh

2 ]h + σkh

√
hZkh

σ2
(k+1)h = w(h) + β(h)σ2

kh + α(h)σ2
khZ2

kh,

(3.1)

where Ykh := log(Skh), k ∈ N, Zkh ∼ i.i.d.N (0, 1) and σ2
kh is the conditional variance of Ykh −

Y(k−1)h given the σ-algebra Mkh generated by {Y0, . . . , Y(k−1)h} and {σ2
0 , . . . , σ2

kh} . Under some

moment conditions, Nelson showed that, the sequence of continuous time version of (3.1) converges in

distribution to the continuous time process (1.7)–(1.8) if h tends to zero. We show in Appendix A.4

that up to o(h), the procedure yields the following relation between continuous and discrete time

parameters

c1 = w(h)/h, c2 = 1− β(h) − α(h), c3 = α(h)
√

2/h; (3.2)

cf. Nelson (1990), pp. 15–18. Then, Maximum Likelihood estimates of the model (3.1) allow to infer

the values for c1, c2 and c3. Moreover, the theory predicts that when h goes to zero the inference results

should be more accurate. Using an Euler scheme2, we simulate 1,000 sample path realizations of the

2The Euler scheme for equations (1.13) used here is log(Si) = log(Si−1) + [µ − 0.5Vi−1]∆t +
p

Vi−1∆t εi and

Vi = c1 ∆t + Vi−1[1 − c2 ∆t + c3
√

∆t υi], where εi and υi denote independent standard normal random variables and

∆t = 1/(360 × 24). The sample path approximation to the diffusion can be made arbitrarily close by increasing the

number of equally spaced increments per unit time interval. In this setting, the Milstein scheme is not advisable as
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GARCH diffusion process (log St, Vt)t∈[0,Tsmp], for the parameter choice c1 = 0.18, c2 = 2, c3 = 1.2

(as in Table 2.4) and Tsmp = 10, 20, 40 years. For each sample path, we estimate the model (3.1)

using two-daily (h = 2/360), daily (h = 1/360) and two-hourly (h = 1/3, 000) log-returns and we infer

the continuous time parameters by formulae (3.2). Estimation results are given in Table 3.1; cf. also

Figures 3.1, 3.2 and 3.3.

As expected, the higher the sampling frequency, the more accurate the inference results are in

terms of biases and root mean squared errors. Obviously, results based on Tsmp = 40 years are more

accurate, but such a sample size is unrealistic in empirical studies. However, this simple estimation

procedure still provides accurate inference results using Tsmp = 20 years; cf. Figure 3.2. Monte Carlo

simulations (not reported here) based on other continuous time parameters lead to similar results.

Hence, such a procedure may be used for inference on the GARCH diffusion model parameters. More

involved estimation procedures should be required to outperform the above results.

Finally, when Tsmp = 40 years, for two-daily estimates the sample size is large enough to overcome

finite sample problems and regard the estimates as asymptotic3.

3.2 Empirical Application

Using the estimator based on the Nelson’s theory, we fit the GARCH diffusion model to daily log-

returns of Deutsche mark versus US dollar exchange rates. The data were downloaded from datas-

tream. We consider two sample periods.

The first period ranges from December 1988 to December 2003 for a total of 3,912 observations.

Summary statistics of log-returns are presented in the first panel of Table 3.2. The first panel in

multiple stochastic integrals can not be easily expressed in terms of increments of Brownian Motions; see for instance

Kloeden and Platen (1999).

3We repeat the Monte Carlo study using Tsmp = 60 years and we get similar results.
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Table 3.3 presents the Maximum Likelihood estimates of the GARCH(1,1)-M model with p-values

in brackets. The second panel shows the Ljung-Box test statistics for Z2
t and |Zt|. Under the null

hypothesis of no correlations up to lag q, such statistics are chi-square distributed with q degrees

of freedom. We set q = 15 and found no evidence against the null hypothesis. Hence, based on

such statistics, the model is tenable. Figure 3.4 shows the daily log-returns (first panel) and the

corresponding conditional variances estimated by the GARCH(1,1)-M model (second panel). The

continuous time parameters of the GARCH diffusion model, obtained by formulae (3.2), are c1 = 0.030,

c2 = 2.586 and c3 = 0.899 on annual basis. Hence, the variance process is slow mean reverting (the

half life is about 68 trading days) and the volatility is not too large. The unconditional mean of the

variance is 0.0116 and the kurtosis 3.56.

The second sample period ranges from January 1985 to October 1988, for a total of 1,000 observa-

tions. Summary statistics of log-returns are given in the second panel of Table 3.2. This data set was

used by Engle and Lee (1996) to estimate the GARCH diffusion model (1.7)–(1.8), applying the indi-

rect inference method; cf. Gourieroux et al. (1993). Hence, we can compare estimates for the GARCH

diffusion model based on the indirect inference and the Nelson’s theory. The Maximum Likelihood

estimates of the GARCH(1,1)-M are reported in Table 3.4. Figure 3.5 shows the daily log-returns

(first panel) and the conditional variances estimated by the GARCH(1,1)-M model (second panel).

The continuous time parameter estimates of the GARCH diffusion model are c2 = 7, c1/c2 = 0.023

and c3 = 3.1 (on anual basis). The corresponding estimates in Engle and Lee (1996) are c2 = 4,

c1/c2 = 0.020 and c3 = 2.6. Notwithstanding the small sample data, the accordance for the parameter

c3 and the long-run mean value c1/c2 is quite good. As predicted by Monte Carlo simulations in

Section 3.1, using the Nelson’s theory the parameter c2 is overestimated.
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c1 = 0.18 c2 = 2 c3 = 1.2

bias rsme bias rsme bias rsme

2days 0.0779 0.1525 1.0167 2.0361 -0.1332 0.2711

1 days 0.0626 0.1247 0.8340 1.7041 -0.0995 0.2043

2 hours 0.0396 0.0776 0.5571 1.1631 -0.0264 0.0826

2days 0.0442 0.0900 0.5814 1.2041 -0.1379 0.2185

1 days 0.0351 0.0721 0.4720 1.0035 -0.1003 0.1618

2 hours 0.0213 0.0505 0.3086 0.7758 -0.025 0.0606

2days 0.0283 0.0550 0.3531 0.7409 -0.1296 0.1718

1 days 0.0232 0.0465 0.2939 0.6377 -0.1003 0.1279

2 hours 0.0111 0.0302 0.1480 0.4692 -0.0257 0.0470

Table 3.1: Bias RMSE First panel: sample size 10 years; second panel: sample size 20 years; third

panel: sample size 40 years

mean variance kurtosis iqr

Dec.88–Dec.03 -0.000275 0.011 4.7 0.119

Jan.85–Oct.88 -0.006590 0.016 7.4 0.143

Table 3.2: Summary statistics (mean, variance, kurtosis and inter quartile range) of DM/US exchange

rates daily log-returns.

µ ω α β

Estimate 2.5 e-006 4.7e-007 0.030649 0.95909

p-value 0.8355 0.0000 0.0000 0.0000

Ljung-box testa Z2
t |Zt|

χ2 13.189 16.561

p-value 0.58772 0.34577

Table 3.3: GARCH(1,1)-M estimates for DM/US daily exchange rate from December 1988 to December

2003. Zt, µ, ω, α and β are defined in equations (3.1). aLjung-Box test follows χ2(15) with the 0.05

critical value being 25.
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µ ω α β

Estimate − 3.6e+04 2.5e-006 0.13913 0.83293

p-value 0.0811 0.0003 0.000 0.000

Ljung-box testa Z2
t |Zt|

χ2 14.977 11.978

p-value 0.45308 0.68066

Table 3.4: GARCH(1,1)-M estimates for DM/US daily exchange rates from January 1985 to October

1988. Zt, µ, ω, α and β are defined in equations (3.1). a Ljung-Box test follows χ2(15) with the 0.05

critical value being 25.
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Figure 3.1: Density estimates of the continuous time parameters c1 = 0.18, c2 = 2 and c3 = 1.2 of the GARCH

diffusion model (1.7)–(1.8) inferred by the parameter estimates of the discrete time GARCH-M model (3.1) at

two-daily, daily and two-hourly sampling frequencies. Sample size 10 years.
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Figure 3.2: Density estimates of the continuous time parameters c1 = 0.18, c2 = 2 and c3 = 1.2 of the GARCH

diffusion model (1.7)–(1.8) inferred by the parameter estimates of the discrete time GARCH-M model (3.1) at

two-daily, daily and two-hourly sampling frequencies. Sample size 20 years.
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Figure 3.3: Density estimates of the continuous time parameters c1 = 0.18, c2 = 2 and c3 = 1.2 of the GARCH

diffusion model (1.7)–(1.8) inferred by the parameter estimates of the discrete time GARCH-M model (3.1) at

two-daily, daily and two-hourly sampling frequencies. Sample size 40 years.
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t is defined in equations
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Chapter 4

Conclusions

In this thesis we derived an analytical closed-form approximation for European option prices when

the underlying currency price and its latent variance satisfy a GARCH diffusion model. This model is

the continuous-time limit of a standard GARCH(1,1) in mean model. It generates realistic statistical

properties for the underlying currency price. Based on Monte Carlo simulations, we provide evidence

for the accuracy of our formula. Simulation studies are made for various sets of parameters, which

were derived by earlier empirical studies. Moreover, the properties of implied volatilities induced by

the GARCH diffusion process are investigated. The results indicate that the properties of implied

volatilities are in agreement with the empirical evidence from currency options literature.

The more specific contributions of this thesis are the following. We derive analytically the first

four conditional moments of the integrated variance implied by the GARCH diffusion process. This

result has several implications. Firstly and foremost, such conditional moments allow to obtain an

analytical closed-form approximation for European option prices under the GARCH diffusion model.

The approximation can be easily implemented in any standard software package. Hence, just plugging

in the model parameters, it provides option prices without any computational efforts. Secondly, our

analytical approximation allows to easily study volatility surfaces induced by GARCH diffusion models.
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Thirdly, the conditional moments of the integrated variance generalize the conditional moments derived

by Hull and White (1987) for log-normal variance processes. Finally, such conditional moments can be

used to estimate the continuous time parameters of the GARCH diffusion model using high frequency

data; cf. Bollerslev and Zhou (2002).

Nelson’s theory suggests an power estimation procedure for the GARCH diffusion model param-

eters. Using simulated and real data, we find that inference results based on such a procedure are

rather accurate.
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Appendix A

Proof of Propositions and other

Mathematical Issues

A.1 Proof of Proposition 2.1

In the following, we derive the first two conditional moments of the integrated variance V T for the

GARCH diffusion process,

V T =
V0

T

∫ T

0

dt e−(c2+
1
2 c2

3) t ec3Wt +
c1

T

∫ T

0

dt

∫ t

0

ds e(c2+
1
2 c2

3)(s−t) ec3 (Wt−Ws). (A.1)

To prove Proposition 2.1 we recall that, if w is a normal random variable w ∼ N (0, t)

E[eλw] = e
λ2 t
2 . (A.2)

We also need the following lemma

Lemma A.1.1

∀ x > y > 0,

F (x, y) = e−(c2+
1
2 c2

3)(x+y) E[ec3(Wx+Wy)] = e−c2 xe(c2
3−c2)y. (A.3)

∀ x > y > α > 0,

G(x, y, α) = e−(c2+
1
2 c2

3)(x+y−α) E[ec3(Wx+Wy−Wα)] = e−c2 xe(c2
3−c2)ye(c2−c2

3)α. (A.4)
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∀ x > α > y > 0,

H(x, y, α) = e−(c2+
1
2 c2

3)(x+y−α) E[ec3(Wx+Wy−Wα)] = e−c2 (x +y−α). (A.5)

∀ x > y > α > β > 0,

L(x, y, α, β) = e−(c2+
1
2 c2

3)(x+y−α−β)E[ ec3(Wx+Wy−Wα−Wβ) ] = e−c2 xe(c2
3−c2)ye(c2−c2

3)αec2β . (A.6)

∀ x > α > y > β > 0,

M(x, y, α, β) = e−(c2+
1
2 c2

3)(x+y−α−β)E[ ec3(Wx+Wy−Wα−Wβ) ] = e−c2 (x+y−α−β). (A.7)

Proof. To prove (A.3) we write. Wx + Wy = (Wx − Wy) + 2 Wy. As (Wx − Wy) and Wy are

non-overlapping increments of the Brownian motion W , (Wx −Wy) ∼ N (0, x−y) and 2Wy ∼ N (0, 4y)

one has

E[ec3(Wx+Wy)] = E[ec3 (Wx−Wy)+2Wy ] = E[ec3 (Wx−Wy)]E[ec3 2Wy ],

then formula (A.3) follows directly from (A.2).

To prove (A.4), use Wx + Wy −Wα = (Wx − Wy) + 2 (Wy −Wα) + Wα.

To prove (A.5), use Wx + Wy −Wα = (Wx −Wα) + Wy.

To prove (A.6), use Wx + Wy −Wα −Wβ = (Wx − Wy) + 2 (Wy −Wα) + Wα −Wβ .

To prove (A.7), use Wx + Wy −Wα −Wβ = (Wx −Wα) + (Wy −Wβ). 2

A.1.1 First conditional moment

The first conditional moment of V T is given by

Mgd
1 := E[V T | V0]

=
V0

T

∫ T

0

dt e−(c2+
1
2 c2

3) t E[ec3 Wt ] +
c1

T

∫ T

0

dt

∫ t

0

ds e(c2 + 1
2 c2

3) (s−t) E[ec3 (Wt−Ws)].
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As Wt ∼ N (0, t) and Wt −Ws ∼ N (0, t− s), using (A.2) we get the first conditional moment (2.8) in

Proposition 2.1,

Mgd
1 :=

V0

T

∫ T

0

dt e−(c2+
1
2 c2

3)t e
1
2 c2

3 t +
c1

T

∫ T

0

dt

∫ t

0

ds e(c2+
1
2 c2

3)(s−t) e
1
2 c2

3(t−s)

= V0

∫ T

0

e−c2 t dt + c1

∫ T

0

dt

∫ t

0

ds ec2(s−t) =
V0

c2

(
1− e−c2T

T

)
+

c1

T

∫ T

0

1− e−c2 t

c2
dt

=
c1

c2
+

(
V0 − c1

c2

)
1− e−c2T

c2T
.

A.1.2 Second conditional moment

The second conditional moment of V T is given by

E[V
2

T | V0] = E

[
1

T 2

∫ T

0

dr2

∫ T

0

dr1 (Vr1 Vr2)

]
=

1
T 2

∫ T

0

dr2

∫ T

0

dr1 E[Vr1 Vr2 ]

=
2!
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[Vr1 Vr2 ]

=
2!
T 2

∫ T

0

dr2

∫ r2

0

dr1

(
E[A] + E[B] + E[C] + E[D]

)
, (A.8)

where

A := V 2
0 e−(c2+

1
2 c2

3)(r1+r2)+c3(Wr1 +Wr2),

B := c1 V0 e−(c2+
1
2 c2

3)r1+c3 Wr1

∫ r2

0

ds2 e(c2+
1
2 c2

3)(s2−r2)+c3(Wr2−Ws2),

C := c1 V0 e−(c2+
1
2 c2

3)r2+c3Wr2

∫ r1

0

ds1 e(c2+
1
2 c2

3)(s1−r1)+c3(Wr1−Ws1),

D := c2
1

∫ r1

0

ds2

∫ r2

0

ds1 e(c2+
1
2 c2

3)(s1−r1+s2−r2)ec3(Wr1−Ws1+Wr2−Ws2).

We compute each addend in (A.8).

• Calculation of

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[A] =

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 V 2
0 e−(c2+

1
2 c2

3)(r1+r2)E[ec3(Wr1+Wr2)].
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As r2 > r1 > 0, we use formula (A.3) with x = r2 and y = r1

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[A] =
2 V 2

0

T 2

∫ T

0

dr2

∫ r2

0

dr1 F (r2, r1),

and iterating integrations

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[A] =
2 V 2

0

T 2

[
e−(2c2−c2

3)T

(c2
3 − 2c2)(c2

3 − c2)
+

e−c2T

c2 (c2
3 − c2)

− 1
c2 (c2

3 − 2c2)

]
.(A.9)

• Calculation of

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[B] =

2 c1 V0

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds1 e−(c2+
1
2 c2

3)(r2+r1−s1) E[ec3(Wr2 + Wr1 −Ws1)].

As r2 > r1 > s1 > 0, we use formula (A.4) with x = r2, y = r1 and α = s1 to get

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[B] =
2 c1 V0

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds1 G(r2, r1, s1)

=
c1 V0

T 2 c4
2 (c2 − c2

3)
2 (−2 c2 + c2

3)
×

[
− c2 e−T c2 (−2 c2 + c2

3)
(
c2
2 (−2 + T c2) + 2 c2 c2

3 − (2 + T c2) c4
3

)

+ c2 (c2 − c2
3)

2 (− 2 c2 (−1 + T c2) + (−2 + T c2) c2
3

)
+ 2 c4

2 eT (c2
3−2 c2)

]
. (A.10)

• Calculation of

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[C].

Simply notice that

∫ T

0

dr2

∫ T

0

dr1 E[B] =
∫ T

0

dr2

∫ T

0

dr1 E[C]. (A.11)
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• Calculation of

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[D] =

2 c2
1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r2

0

ds2

∫ r1

0

ds1

(
e−(c2+

1
2 c2

3)(r2+r1−s2−s1)E[ ec3(Wr2+Wr1−Ws1−Ws2) ]
)
.

We divide the integration domain of s2 and s1 as follows

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[D] =

2 c2
1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds2

∫ s2

0

ds1

(
...

)
+ (A.12)

+
2 c2

1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds2

∫ r1

s2

ds1

(
...

)
+ (A.13)

+
2 c2

1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r2

r1

ds2

∫ r1

0

ds1

(
...

)
. (A.14)

The previous partition allows us to use

formula (A.6) with x = r2, y = r1, α = s2, β = s1 in (A.12) as T > r2 > r1 > s2 > s1 > 0;

formula (A.6) with x = r2, y = r1, α = s1, β = s2 in (A.13) as T > r2 > r1 > s1 > s2 > 0;

formula (A.7) with x = r2, y = r1, α = s2, β = s1 in (A.14) as T > r2 > s2 > r1 > s1 > 0; then

2
T 2

∫ T

0

dr2

∫ r2

0

dr1 E[D] =

=
2 c2

1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds2

∫ s2

0

ds1 L(r2, r1, s2, s1)

+
2 c2

1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r1

0

ds2

∫ r1

s2

ds1 L(r2, r1, s1, s2)

+
2 c2

1

T 2

∫ T

0

dr2

∫ r2

0

dr1

∫ r2

r1

ds2

∫ r1

0

ds1 M(r2, r1, s2, s1),
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and iterating integrations

2
T 2

∫ T

0

∫ r2

0

E[D] dr1 dr2 =
c2
1

T 2 c4
2 (c2 − c2

3)
2 (−2 c2 + c2

3)
2×

[
− 2 e−T c2

(− 2 c2 + c2
3

)2 (
c2
2 − T c3

2 − 2 c2 c2
3 + (3 + T c2) c4

3

)

+
(
c2 − c2

3

)2 ((
4 c2

2 (−1 + T c2)
2 − 4 c2 (4 + T c2 (−3 + T c2)) c2

3 + (6 + T c2 (−4 + T c2)) c4
3

)
+

+4 eT (c2
3−2 c2) c4

2

]
.

(A.15)

Summing (A.9), (A.10), (A.11) and (A.15) we get the second conditional moment of V T :

Mgd
2 := E[V

2

T | V0] = 1
T 2 c4

2 (c2−c2
3)

2 (−2 c2+c2
3)

2

[
e−2 T c2

(
− 2 eT c2

(− 2 c2 + c2
3

)2

(
c2
1

(
c2
2 − T c3

2 − 2 c2 c2
3 + (3 + T c2) c4

3

)

+c1 c2

(
c2
2 (−2 + T c2) + 2 c2 c2

3 − (2 + T c2) c4
3

)
V0+

c3
2

(
c2 − c2

3

)
V 2

0

)
+ e2 T c2

(
c2 − c2

3

)2 (
c2
1

(
4 c2

2 (−1 + T c2)
2

−4 c2 (4 + T c2 (−3 + T c2)) c2
3 + (6 + T c2 (−4 + T c2)) c4

3

)
+

2 c1 c2

(
2 c2 − c2

3

) (
2 c2 (−1 + T c2)− (−2 + T c2) c2

3

)

V0 + 2 c3
2

(
2 c2 − c2

3

)
V 2

0

)
+ 2 eT c2

3 c4
2

(
2 c2

1 − 2 c1

(
2 c2 − c2

3

)
V0+

(
2 c2

2 − 3 c2 c2
3 + c4

3

)
V 2

0

))]
.

(A.16)

The second central conditional moment of V T , Mgd
2c , stated in (2.9) Proposition 2.1 is given by Mgd

2c =

Mgd
2 − (Mgd

1 )2.

A.2 Conditional Moments of V T under Log-Normal Variance

The Hull and White approximation formula for European option prices, based on equation (2.6),

involves the conditional moments of the integrated variance V T . In the following, we show that such

approximation formula does not hold for long maturity options when the variance of the asset price is
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driven by a log-normal process

dVt = c2 Vt dt + c3 Vt dWt, (A.17)

such as in the Hull and White (1987) option pricing model.

We consider the case c2 = 0 (log-normal process without drift) and the case c2 6= 0 (log-normal

process with drift).

1. Case c2 = 0 and c3 6= 0. Hull and White show that

M ln
1 := E[V T | V0] = V0, (A.18)

M ln
2c := E[(V T −M ln

1 )
2 | V0] = 2 V 2

0

[
ec2

3T − c2
3T − 1

c4
3T

2
− 1

2

]
. (A.19)

When T −→∞, M ln
2c −→∞ and

M ln
2c ≈ 2 V 2

0

[
ec2

3T

c4
3T

2

]
for c2

3T À 1.

Hence, in the case c2
3 T À 1, the Hull and White approximation series does not hold.

2. Case c2 6= 0 and c3 ∈ R+ \ {c2, −2c2}. Hull and White show that

M ln
1c = V0

[
ec2T − 1

c2T

]
, (A.20)

M ln
2c = V 2

0

[
2 e(2c2+c2

3)T

(c2
3 + c2)(c2

3 + 2 c2)T 2
− e2 c2 T

c2
2T

2
(A.21)

+
ec2 T

c2
2 T 2

(
2 c2

3

c2
3 + c2

)
− 1

c2
2T

2

(
c2
3

c2
3 + 2 c2

)]
.

When c2 < 0 and T −→∞,

M ln
1c ≈

V0

−c2 T
−→ 0,

and if c2
3 < −2c2,

M ln
2c ≈

−c2
3

c2
2T

2(c2
3 + 2 c2)

−→ 0,
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otherwise if c2
3 > −2c2,

M ln
2c ≈

2e(2c2+c2
3)T

(c2
3 + c2)(c2

3 + 2 c2)T 2
−→∞.

When c2 > 0 and T −→∞,

M ln
1c ≈ V0, and M ln

2c ≈
2e(2c2+c2

3)T

(c2
3 + c2)(c2

3 + 2 c2)T 2
−→∞.

Hence, when the time to maturities increases, the series formula based on equation (2.6) degen-

erates.

A log-normal variance process can be adopted only for short maturity options. Moreover, the solution

of the equation (A.17) is

Vt = V0 e( c2− c2
3/2 ) t + c3 Wt ,

and for the law of iterated logarithm and the law of large numbers (cf. Karatzas and Shreve 1988),

1. if c2 < c2
3/2,

lim
t−→∞

Vt = 0, a.s.

2. if c2 > c2
3/2,

lim
t−→∞

Vt = ∞, a.s.

3. if c2 = c2
3/2,

inf
0≤t≤∞

Vt = 0, a.s.

sup0≤t≤∞Vt = ∞, a.s.

Hence, when t −→∞, Vt −→ 0 or Vt −→∞, and this is in contrast with the observed mean reversion

of implied and historical volatilities.
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A.3 The Market Price of Risk and the Novikov’s Condition

In this appendix, using the Novikov’s condition we show that the change of measure from P to P∗

in Section 2.1 is well defined. Recall that P∗ is a martingale measure, i.e. a probability measure,

equivalent to the objective probability measure P, under which discounted asset price processes are

Ft-adapted martingales. Such a measure ensures the absence of arbitrage opportunities and is unique

if and only if the market is complete; cf. Harrison and Kreps (1979), Harrison and Pliska (1981) and

Delbaen and Schachermayer (1994). In stochastic volatility setting markets are incomplete. Hence,

the martingale measure is not unique and any such a measure implies admissible arbitrage free option

prices.

The data generating process is given by equations (1.7)–(1.8)

dSt = µStdt +
√

VtStdBt, dVt = (c1 − c2Vt)dt + c3VtdWt,

where (Bt,Wt) is a two-dimensional Brownian motion on (Ω,F ,Ft,P).

From the integral form of martingale representation (cf. Karatzas and Shreve (1991), any equivalent

martingale measure P∗ is characterized by the density process with respect to P. This density can be

written as

Mt(λ
(1)
t , λ

(2)
t ) :=

dP∗

dP

∣∣∣∣
Ft

= exp
(∫ t

0

λ(1)
s dBs − 1

2

∫ t

0

λ(1)
s

2
ds +

∫ t

0

λ(2)
s dWs − 1

2

∫ t

0

λ(2)
s

2
ds

)
, (A.22)

where (λ(1), λ(2)) is an Ft-adapted process and satisfies the integrability conditions
∫ T

0
λ

(1)
s

2
ds < ∞

and
∫ T

0
λ

(2)
s

2
ds < ∞, a.s. By the Girsanov’s theorem, the process (B∗

t ,W ∗
t ) defined by

B∗
t = Bt +

∫ t

0

λ(1)
s ds and W ∗

t = Wt +
∫ t

0

λ(2)
s ds (A.23)

is a two-dimensional Brownian motion under P∗. Hence, (1.7)–(1.8) and (A.23) imply the dynamic of

the asset price under P∗

dSt = (µ−
√

Vtλ
(1)
t )St dt +

√
VtSt dB∗

t ,
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dVt = (c1 − c2Vt − c3Vtλ
(2)
t ) dt + c3Vt dW ∗

t .

By Itô’s lemma, the stochastic differential equation driving the discounted process S
(d)
t := e−rtSt

under P∗ is

dS
(d)
t = (µ− r −

√
Vt λ

(1)
t )S

(d)
t dt +

√
Vt S

(d)
t dB∗

t , (A.24)

where r := rd−rf . To ensure no arbitrage opportunity in the economy, S(d) has to be a P∗-martingale

then the stochastic differential equation (A.24) has to be driftless

µ− r =
√

Vt λ
(1)
t , P∗ − a.s. (A.25)

The process (λ(1), λ(2)) is interpreted as the risk premia associated to the two sources of uncertainty

in the economy, B and W . As S is the only traded asset, the no arbitrage condition (A.25) determines

only λ
(1)
t . Any ‘proper’ choice of the volatility risk premium process λ

(2)
t , 0 ≤ t ≤ T , gives a martingale

measure P∗ characterized by the density process Mt

(
(µ− r)V −1/2

t , λ
(2)
t

)
with respect to P. Hence,

P∗ is not unique; cf. Harrison and Pliska (1981, 1983).

We assume

λ
(2)
t = (c∗2 − c2)/c3, ∀t, (A.26)

which implies the risk neutral dynamic of V in (2.3)

dVt = (c1 − c∗2Vt) dt + c3Vt dW ∗
t .

Given the risk premia (A.25)–(A.26), the Radon Nikodym derivative is

Mt :=
dP∗

dP

∣∣∣∣
Ft

= exp

(∫ t

0

µ− r√
Vs

dBs − 1
2

∫ t

0

(µ− r)2

Vs
ds +

c∗2 − c2

c3
Wt − 1

2
(c∗2 − c2)2

c2
3

t

)
(A.27)

is ‘well-defined’ when the (sufficient) Novikov’s condition is satisfied,

EP


exp

∫ T

0

λ
(1)
s

2
+ λ

(2)
s

2

2
ds


 = exp

(
(c∗2 − c2)2 T

2 c2
3

)
EP

[
exp

∫ T

0

(µ− r)2

2Vs
ds

]
< ∞. (A.28)
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Jones (2003) provide an upper bound for the expectation in (A.28) using Jensen’s inequality and

Fubini’s theorem. Since the exponential is a convex function,

EP

[
exp

(
1
2

∫ T

0

(µ− r)2

Vs
ds

)]
≤

∫ T

0

EP
[
exp

(µ− r)2

2 Vs

]
ds, (A.29)

and we have to show the finiteness of E
[
exp

(
1
2 (µ− r)2V −1

s

)]
. As the stationary distribution of V is

the Inverse Gamma distribution with parameters r = 1 + 2c2/c2
3 and s = 2c1/c2

3,

EP
[
exp

(
(µ− r)2

2 Vs

)]
=

∫ +∞

0

exp
(

1
2

(
(µ− r)2 − s

)
g

)
sr

Γ(r)
gr−1 dg < ∞. (A.30)

This expectation is finite when

(µ− r)2 < 2 s, (A.31)

otherwise the integral in (A.30) does not converge on (0,∞). For most reasonable continuous time

parameters of the GARCH diffusion model (µ− r)2 is smaller than 0.04 and 2s is always greater than

0.2, then condition (A.31) should be satisfied.

A.4 Nelson’s Moment Matching Procedure

In this appendix, using the moment matching procedure in Nelson (1990) we characterize the discrete

time GARCH(1,1)-M sequence which converges to the continuous time GARCH diffusion model.

Recall, the sequence of discrete time GARCH(1,1)-M model in (3.1), depending on h, is

Ykh = Y(k−1)h + [µ− σ2
kh

2
]h + σkh

√
hZkh,

σ2
(k+1)h = w(h) + β(h)σ2

kh + α(h)σ2
khZ2

kh,

where Ykh := log(Skh), k ∈ N, Zkh ∼ i.i.d.N (0, 1) and σ2
kh is the conditional variance of (Ykh−Y(k−1)h)

given the σ-algebra Mkh generated by {Y0, . . . , Y(k−1)h} and {σ2
0 , . . . , σ2

kh}. Assume that

P[(Y0, σ0
2) ∈ Γ] = νh(Γ), ∀Γ ∈ B(R2), (A.32)
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such that {νh}h↓0 = ν0, where ν0 is the probability measure of the GARCH diffusion model (log St, Vt)

at time t = 0, and assume that for each h ≥ 0, νh((Y0, σ
2
0) : σ2

0 > 0) = 1. Define the sequence of

continuous time process (Yt, σ
2
t ) as step functions from the sequence of the discrete time GARCH(1,1)-

M model in (3.1)

Yt = Ykh and σ2
t = σ2

kh, for kh ≤ t < (k + 1)h, (A.33)

where σ2
t represents the variance per unit of time h. Nelson show that when the drift and the second

moment of (Ykh, σ2
(k+1)h) per unit of time converge to well-behaved limits and the first difference of

(Ykh, σ2
(k+1)h) have the fourth moment that converges to zero at a proper rate when h goes to zero,

(Yt, σ
2
t ) converges in distribution to the GARCH diffusion model (1.13).

In the following, we look for the sequence {w(h), β(h), α(h)} ∈ (R+)3 which implies the previous

convergence1.

The discrete time process (3.1) is Markovian and the drift per unit of time of (Ykh, σ2
(k+1)h) is

E
[
Ykh − Y(k−1)h

h
| Mkh

]
= µ− σ2

kh

2
, (A.34)

E

[
σ2

(k+1)h − σ2
kh

h
| Mkh

]
=

w(h)

h
+ σ2

kh

(β(h) + α(h)E[Z2
kh | Mkh]− 1)

h

=
w(h)

h
+ σ2

kh

(β(h) + α(h) − 1)
h

. (A.35)

The drift per unit of time has to converge to the drift per unit of time of the GARCH diffusion model,

(c1 − c2 V ), and this implies

lim
h↓0

w(h)

h
= c1, (A.36)

lim
h↓0

(β(h) + α(h) − 1)
h

= c2. (A.37)

Equations (A.36)–(A.37) give the relation between β(h), α(h), w(h) and c1, c2.

1Notice that {w(h), β(h), α(h)} ∈ (R+)3 ensures a positive σ2
t process.
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The second moments per unit of time of (Ykh, σ2
(k+1)h) is

E

[
(σ2

(k+1)h − σ2
kh)2

h
| Mkh

]

=
w(h)2

h
+ σ2

kh

2w(h)

h
(β(h) + α(h)E[Z2

kh | Mkh]− 1) +
σ4

kh

h
E

[(
β(h) + α(h)Z2

kh − 1
)2

| Mkh

]

=
w(h)2

h
+ σ2

kh

2w(h)

h
(β(h) + α(h) − 1) +

σ4
kh

h

(
(α(h) + β(h) − 1)2 + α(h)2(E[Z4

kh | Mkh]− 1)
)

=
w(h)2

h
+ σ2

kh

2w(h)

h
(β(h) + α(h) − 1) +

σ4
kh

h
(α(h) + β(h) − 1)2 +

σ4
kh

h
2α(h)2, (A.38)

E
[
(Ykh − Y(k−1)h)2

h
| Mkh

]

=
(

µ− σ2
kh

2

)2

h + σ2
khE

[
Z2

kh | Mkh

]
=

(
µ− σ2

kh

2

)2

h + σ2
kh, (A.39)

E

[
(Ykh − Y(k−1)h)(σ2

(k+1)h − σ2
kh)

h
| Mkh

]

= E

[
((µ− σ2

kh

2 )h + σkh

√
hZkh)(w(h) + σ2

kh(β(h) + α(h)Z2
kh − 1))

h
| Mkh

]

= (µ− σ2
kh

2
)w(h) + σ2

kh(µ− σ2
kh

2
)(β(h) + α(h)E

[
Z2

kh | Mkh

]− 1)

+
σkh√

h
E

[
Zkhw(h)σ2

kh(β(h)Zkh + α(h)Z3
kh − Zkh)) | Mkh

]

= (µ− σ2
kh

2
)w(h) + σ2

kh(µ− σ2
kh

2
)(β(h) + α(h) − 1). (A.40)

Such a second moment has to converge to the variance-covariance matrix per unit of time of the

GARCH diffusion model,

Var ((log St+dt, Vt+dt) | Ft)
dt

=




Vt 0

0 c2
3 V 2

t


 .

This implies that

lim
h↓0

2α(h)2

h
= c2

3, (A.41)
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giving the relationship between α(h) and c3. Substituting (A.36), ( A.37) and (A.41) into (A.38),

(A.39) and(A.40), one has

E

[
(σ2

(k+1)h − σ2
kh)2

h
| Mkh

]
= α(h)2σ4

kh + o(1) (A.42)

E
[
(Ykh − Y(k−1)h)2

h
| Mkh

]
= σ2

kh + o(1) (A.43)

E

[
(Ykh − Y(k−1)h)(σ2

(k+1)h − σ2
kh)

h
| Mkh

]
= o(1) (A.44)

where the o(1) term vanish uniformly on compact sets as h goes to zero. Up to order o(h), the sequence

{w(h), β(h), α(h)} is

c1 = w(h)/h, c2 = 1− β(h) − α(h), c3 = α(h)
√

2/h.

Under such a sequence, the fourth moments of (Ykh − Y(k−1)h) and (σ2
(k+1)h − σ2

kh) converge to zero

and the convergence result holds.

66



Bibliography

[1] Andersen T.G., L. Benzoni and J. Lund (2002), “An empirical investigation of continuous-time

equity retur models”, Journal of Finance, 57, 1239–1284.

[2] Ball C. A. and A. Roma (1994), “Stochastic Volatility Option Pricing”, Journal of Financial and

Quantitative Analysis, 29, 589–607.

[3] Barone-Adesi G., H. Rasmussen and C. Ravanelli (2003), “An Option Pricing Formula for the

GARCH Diffusion Model”, working paper, University of Lugano and NCCR FINRSIK.

[4] Barone-Adesi G. and R. E. Whaley (1987), “Efficient analytic approximation of American option

values”, Journal of Finance, 42, 1–20.

[5] Beckers S.(1981), “Standard Deviations Implied in Option Process as Predictors of Future Stock

Price Variability”, Journal of Banking and Finance, 5, 363–382.

[6] Black F. and M. Scholes (1973), “The Pricing of Options and Corporate Liabilities”, Journal of

Political Economy, 81, 637–659.

[7] Bhattacharya R. N. and E. C. Waymire (1990), Stochastic Processes with Application, John Wiley

and son, New York, N.Y.

67



[8] Bodurtha J. and G. Courtadon (1987), “Tests of the American Option Pricing Model in the

Foreign Currency Option Market”, Journal of Financial and Quantitative Analysis, 22, 153–167.

[9] Bollerslev T. and H. Zhou (2002), “Estimating Stochastic Volatility Diffusion using Conditional

Moments of Integrated Volatility”, Journal of Econometrics, 109, 33–65.

[10] Boyle P., M. Broadie and P. Glasserman (1997), “Monte Carlo Methods for Security Pricing”,

Journal of Economic Dynamics and Control, 21, 1267–1321.

[11] Breeden D. T. (1979), “An Intertemporal Asset Pricing Model with Stochastic Consumption and

Investment Opportunities”, Journal of Financial Economics, 7, 265–296.

[12] Canina L. and Figlewskki(1993), “The Informational Content of Implied Volatility”, Rewiev of

Financial Studies, 6, 659–681.

[13] Chernov M. and E. Ghysels (2000), “A Study Towards a Unified Approach to the Joint Estima-

tion of Objective and Risk-Neutral Measures for the Purpose of Options Valuation”, Journal of

Financial Economics, 56, 407–458.

[14] Chesney M. and L.O. Scott (1989), “Pricing European Currency Options: a Comparison of

the Modified Black-Scholes Model and a Random Variance Model”, Journal of Financial and

Quantitative Analysis, 24, 267–284.

[15] Cont R. (2001),“Empirical properties of asset returns: stylized facts and statistical issues”, Quan-

titative Finance, 1, 223–236.

[16] Cox J. C., J. E. Ingersoll and S. A. Ross (1995), “A Theory of the Term Structure of Interest

Rates”, Econometrica, 53, 385–408.

[17] Cox D. R. and H. D. Miller (1972), The Theory of Stochastic Processes, Chapman and Hall,

London.

68



[18] Dacorogna M. M, R. Genay, U. A. Mller, R. B. Olsen and O.V. Pictet (2001), TAn Introduction

to High-Frequency Finance, Academic Press, San Diego, CA.

[19] Delbaen, F., and W. Schachermayer (1994), “A General Version of the fundamental Theorem of

Asset pricing”, Mathematische Annalen, 300, 463–520.

[20] Engle R.F. and T. Bollerslev (1986), “Modelling the Persistence of Conditional Variances”, Econo-

metric Reviews, 5, 1–50.

[21] Engle R.F. and G.G.J. Lee (1996),“Estimating Diffusion Models of Stochastic Volatility”, in Rossi

P.E. (Ed.), Modeling Stock Market Volatility: Bridging the Gap to Continuous Time, New York:

Academic Press, 333–384.

[22] Fama E. (1965), “The Behaviour of Stock Prices”, Journal of Business, 38, 34–105.

[23] Fouque J., G. Papanicolaou and K.R. Sircar (2000), Derivatives in Financial Markets with

Stochastic Volatility, Cambridge University Press, Cambridge.

[24] Garcia R., M.A. Lewis and E. Renault (2001), “Estimation of Objective and Risk-Neutral Dis-

tributions Based on Moments of the Integrated Volatility ”, working paper, Cirano.

[25] Genon-Catalot V., T. Jeantheau and C. Laredo (2000), “Stochastic Volatility Models as Hidden

Markov Models and Statistical Applications”, Bernoulli, 6, 1051–1079.

[26] Gesser V. and P. Poncet (1997), “Volatility Patterns: Theory and Some Evidence from the Dollar-

Mark Option Market”, The Journal of Derivatives, 5, 46–65.

[27] Guo D. (1996), “The Predictive Power of Implied Stochastic Variance from Currency Options”,

Journal of Futures Markets, 16, 915–942.

69



[28] Guo D. (1998), “The Risk Premium of Volatility Implicit in Currency Options”, Journal of

Business and Economic Statistics, 16, 498–507.

[29] Gourieroux C., A. Monfort and E. Renault(1993), “Inderect Inference”, Journal of Applied Econo-

metrics, 8, Suppl. and S85–S118.

[30] Harrison J.M. and S. Pliska (1981), “Martingales and Stochastic Integrals in the Theory of Con-

tinuous trading”, Stochastic Processes and their Applications, 11, 215–260.

[31] Harrison J.M. and S. Pliska (1933), “A Stochastic Calculus Model of Continuous Trading: Com-

plete Markets”, Stochastic Processes and their Applications, 15, 313–316.

[32] Heston S. (1993), “A Closed-Form Solution for Options with Stochastic Volatility with Applica-

tions to Bond and Currency Options”, Review of Financial Studies, 6, 327–343.

[33] Hull J. and A. White (1987), “The Pricing of Options on Assets with Stochastic Volatilities”,

Journal of Finance, 42, 281–300.

[34] Hull J. and A. White (1987a), “Hedging the Risks from Writing Foreign Currency Options”,

Journal of International money and Finance, 42, 131–152.

[35] Hull J. and A. White (1988), “An Analysis of the Bias in Option Pricing Caused by a Stochastic

Volatility”, Journal of International Economics, 24, 129–145.

[36] Jiang G. (1998), ”Stochastic Volatility and Option Pricing”, in J.L. Knight and S. E. Satchell

(Eds.) Forecasting Volatility in the Financial Market, London: Butterworth Hernemann, pp. 45-

96.

[37] Karatzas I. and S. Shreve (1991), Brownian Motion and Stochastic Calculus, Springer-Verlag,

New York.

70



[38] Kloeden P.E. and E. Platen (1999), Numerical Solution of Stochastic Differential Equations,

Springer-Verlag, New York.

[39] Jorion P. (1995), “Predicting Volatility in the Foreign Exchange Market”, Journal of Finance,

50, 507–528.

[40] Jones C.S. (2003), “The Dynamics of Stochastic Volatility: Evidence from Underlying and Options

Markets”, Journal of Econometrics, 116, 181–224.

[41] Lantane H. and R. Rendleman (1976), “Standard Deviation of Stock Price Ratios Implied in

Option Prices” Journal of Finance, 31, 369–381.

[42] Leippold M., Trojani F. and Vanini P. “A Geometric Approach to Multiperiod Mean-Variance

Optimization of Assets and Liabilities” Journal of Economic Dynamics and Control, forthcoming.

[43] Lewis A.L. (2000), Option Valuation under Stochastic Volatility, Finance Press, California, USA.

[44] Lewis A.L. (2000a), “Analytical Expressions for the Moments of the Integrated Volatility in Affine

Stochastic Volatility Models”, working paper, Cirano.

[45] Mandelbrot B. (1963), “The Variation of Certain Speculative Prices”, Journal of Business, 36,

394–419.

[46] Melenberg B. and B.J.M. Werker (2001), “The Pricing of Volatility Risk: An Empirical Example”,

working paper, Tilburg University.

[47] Melino A. and S.M. Turnbull (1990), “Pricing Foreign Currency Options with Stochastic Volatil-

ity”, Journal of Econometrics, 45, 239–265.

[48] Merton R.C. (1973), “Theory of Rational Option Pricing”, Bell Journal of Economics and Man-

agement Science, 4, 141–183.

71



[49] Nelson D.B. (1990), “ARCH Models as Diffusion Approximations”, Journal of Econometrics,

45, 7–38.

[50] Renault E. and N. Touzi (1996), “Option Hedging and Implied Volatilities in a Stochastic Volatil-

ity Model”, Mathematical Finance, 6, 279–302.

[51] Sircar K.R. and G.C. Papanicolaou (1999), “Stochastic Volatility, Smile and Asymptotics”, Ap-

plied Mathematical Finance, 6, 107–145.

[52] Scott L.O. (1987), “Option Pricing when the Variance Change Randomly: Theory, Estimation

and an Application”, Journal of Financial and Quantitative Analysis, 22, 419–438.

[53] Taylor S.J., (1994), “Modeling Stochastic Volatility: a Review and Comparative Study”, Mathe-

matical Finance 4, 183–204.

[54] Taylor S.J. and X. Xu (1994), “The Magnitude of Implied Volatility Smiles: Theory and Empirical

Evidence for Exchange Rates”, The Review of Futures Markets, 13, 355–380.

[55] Wiggins J. (1987), “Option Values under Stochastic Volatility”, Journal of Financial Economics,

19, 351–372.

[56] Wong E. (1964), “The Construction of a Class of Stationary Markoff Processes”, in Belleman

R. (Ed.), Sixteenth Symposium in Applied Mathematics, Stochastic Processes in Mathematical

Physics and Engineering, American Mathematical Society, Providence, 264–276.

[57] Xu X. and S.J. Taylor (1994), “Term Structure of Volatility Implied by Foreign Exchange Op-

tions”, Journal of Finance and Quantitative Analysis, 29, 57–74.

72


