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Introduction

The statistical properties of asset returns have been extensively investigated in the empirical finan-

cial literature; cf., for instance, Bollerslev, Chou and Kroner (1992), Foresi and Peracchi (1995),

Pagan (1996), Cont (2001) and references therein. Some well-known empirical characteristics of spe-

culative asset returns are time changing volatilities, volatility clustering, leverage effects and heavy

tailed distributions1. Most of these stylized facts can be reproduced by nonlinear time series model for

asset returns, like for instance models of the (G)ARCH family; cf. Engle (1982) and Bollerslev (1986).

Therefore, such models are of crucial importance both for financial modelling and for empirical appli-

cations.

Several authors have applied nonlinear time series models to describe the dynamics of volatility

in financial applications. In dynamic portfolio selection problems, dynamic volatility based strategies

have been shown to outperform static asset allocation models which do not take into account volati-

lity changes; cf. Ferson and Siegel (2001) and Fleming, Kirby and Ostdiek (2001, 2003). Similarly,

Busse (1999) provided evidence that mutual fund managers tend to reduce their market exposure

during periods of high expected volatilities suggesting that many active portfolio managers behave

like volatility timers.

1These basic facts were already documented in the sixties by Mandelbrot (1963) and Fama (1965).
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In the option pricing framework, the Black and Scholes (1973) and Merton (1973) option pricing

model has been formulated under the assumption of i.i.d. normally distributed log-returns. In order

to account for volatility smiles/smirks, term structure patterns and further stylized facts observed

in option prices, the basic model has been extended to allow also for stochastic volatilities of asset

returns. This introduces nonlinearities in asset prices and/or volatility dynamics; cf., for instance, Hull

and White (1987), Scott (1987), Wiggins (1987), Stein and Stein (1991), Heston and Nandi (2000),

Barone-Adesi, Engle and Mancini (2004).

In the risk management area, an accurate model for portfolio returns is necessary in order to obtain

reliable risk measure estimates, such as the VaR or the expected shortfall of a portfolio return. Some

broadly used VaR prediction methods in the practice assume i.i.d. asset returns or normally distributed

innovations; cf., for instance, Riskmetrics (1995). These methods cannot account for changing volati-

lities or heavy tailed distributions of asset returns and tend therefore often to underestimate risk

figures and ‘required capitals’ of trading portfolios. In such cases, financial institutions can suffer

unexpected large losses precisely when the reserve amounts are inadequate; cf., for instance, Barone-

Adesi, Bourgoin and Giannopoulos (1998), Barone-Adesi, Giannopoulos and Vosper (1999, 2000),

McNeil and Frey (2000) and Pritsker (2001).

Asset returns are also characterized by several ‘irregularities’ due for instance to liquidity patterns

or market crashes that can hardly be included/reflected in a time series model. Therefore, it can be

often more realistic to expect that parametric time series models can describe only some ‘structural’

part of asset returns, which is not affected by such irregularities. This viewpoint can be relevant for

many financial questions, as for instance in portfolio selection problems where model misspecifica-

tion/uncertainty is explicitly included in agents’ intertemporal preferences; cf., for instance, Trojani

and Vanini (2002). From a more statistically oriented viewpoint, time series models can be affected

by several forms of misspecification. A pragmatic and realistic approach in this respect consists in
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assuming that the underlying data generating process can locally deviate from the structural or the

stochastic part of some parametric (reference) model. A general theoretical framework to handle this

last type of model misspecification is provided by the Theory of Robust Statistics, which aims to pro-

vide inference results for the structural part of the data generating process. At the same time, robust

statistics attempts at quantifying the maximal bias of a statistic under local model misspecifications

and at detecting observations that are influential for a given problem2. The seminal ideas on robust

inference traces back to Huber (1964), who introduced M -estimators as a generalization of Maximum

Likelihood estimators. Then, Hampel (1968, 1974) introduced a fundamental tool in robust statistics,

i.e. the influence function, to investigate the robustness and the asymptotic bias properties of a sta-

tistic. In the robust testing framework, Ronchetti (1982) and Heritier and Ronchetti (1994) formalized

bounded-influence tests for general hypotheses. In the time series context, Künsch (1984) and Martin

and Yohai (1986) introduced a time series influence function while Ronchetti and Trojani (2001) and

Ortelli and Trojani (2004) derived robust GMM and robust EMM estimators and tests for a large

class of models.

This thesis contributes to this research area by proposing and applying some feasible optimal robust

estimators and tests for general nonlinear location and scale time series models. More specifically, we

propose a general framework to handle local misspecifications of nonlinear second order parametric

models for time series and we provide an application of such a methodology to risk management. We

show how robust inference procedures can improve the statistical analysis of nonlinear time series

models for asset returns in terms of parameter estimates and inference results, both on simulated and

real data. Such statistical improvements should translate into financial and economic improvements.

In our risk management application we show that robust procedures provide more accurate and stable

2See for some overviews on the Theory of Robust Statistics Huber (1981) and Hampel, Ronchetti, Rousseeuw and

Stahel (1986).

3



VaR profiles over time. In such cases, financial institutions can adapt more smoothly and more

efficiently risk exposures, thereby obtaining a comparative market advantage.

Outline. The thesis consists of two main chapters organized as independent articles. Chapter 1

proposes a new robust estimator for the parameters of a general conditional location and scale model.

It also provides optimal robust versions of likelihood-type tests for such models. The efficiency and

the robustness properties of the proposed statistics are studied in some Monte Carlo simulations and

in an application to exchange rate data.

Chapter 2 presents an application of the new robust methodologies to risk management. We

estimate a model of the (G)ARCH family for historical portfolio returns with the robust estimator

proposed in Chapter 1. Then, resampling procedures are applied on standardized residuals to estimate

VaR risk measures. Finally, the method is backtested on four stock price series and compared to

competing approaches based on non robust volatility estimation procedures for the volatility process.

4



Chapter 1

Optimal Conditionally Unbiased

Bounded-Influence Inference in

Dynamic Location and Scale

Models

1.1 Abstract

This paper studies the local robustness of estimation and testing procedures of the conditional location

and scale parameters in a strictly stationary time series model. We first derive optimal bounded-

influence estimators for the parameters of conditional location and scale models under a conditionally

Gaussian reference model. Based on these results, optimal bounded-influence versions of the classical
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likelihood-based tests for parametric hypotheses are then obtained. We propose a feasible and efficient

algorithm for the computation of our robust estimators, which makes use of some analytical Laplace

approximations to estimate the auxiliary recentering vectors ensuring Fisher consistency in robust

estimation. This strongly reduces the necessary computation time by avoiding the simulation of

multidimensional integrals, a task that has typically to be addressed in the robust estimation of

nonlinear models for time series. In some Monte Carlo simulations of an AR(1)-ARCH(1) process we

show that our robust estimators and tests maintain a very high efficiency under ideal model conditions

and at the same time perform very satisfactorily under several forms of departures from a conditionally

normal AR(1)-ARCH(1) process. On the contrary, classical Pseudo Maximum Likelihood inference

procedures are found to be highly inefficient under such local model misspecifications. These patterns

are confirmed by an application to robust testing for ARCH.

1.2 Introduction

This paper studies the local robustness properties of estimation and testing procedures for the condi-

tional location and scale parameters of a strictly stationary time series model; see (1.1) below.

First, it characterizes the local robustness of inference procedures within such a model class by

considering explicitly the features of the given time series setting. Second, it derives optimal robust

estimation and inference procedures starting from the class of conditionally unbiased estimators for

the parameters of the conditional location and scale equations. Finally, it offers easily computable

numerical procedures for robust estimation in the given setting, which are only slightly more demand-

ing than those required by a classical Pseudo Maximum Likelihood (PML, Gourieroux, Monfort and

Trognon (1984)) estimation. This avoids the simulation of multidimensional integrals—a typical task

in the robust estimation of nonlinear models for time series—thereby largely reducing the computa-
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tion time.

The class of conditional location and scale time series models is quite broad and includes sev-

eral well-known dynamic models largely applied in economics and empirical finance, such as pure

conditional scale models (like ARCH and GARCH models; Engle (1982) and Bollerslev (1986)) or

models that jointly parameterize the conditional location and the scale of the given time series (like

for instance ARCH in mean models; Engle, Lilien and Robins (1987)). Typically, classical (non ro-

bust) estimation of the parameters of such models is obtained by means of a PML approach based on

the nominal assumption of a conditionally Gaussian log-likelihood; see, for instance, Bollerslev and

Wooldridge (1992).

Such PML estimators are based on an unbounded conditional score function, implying—as we show

below—an unbounded times series influence function (IF, Künsch (1984) and Hampel (1974)) for the

implied asymptotic functional estimator. As a consequence, PML estimators for conditional location

and scale models are not robust with respect to local departures from conditional normality. In this

paper we derive inference procedures for the parameters of conditional location and scale models which

are robust to local nonparametric misspecifications of a parametric, conditionally Gaussian, location

and scale reference model. More specifically, we consider the class of robust, conditionally unbiased,

M -estimators for the parameters of conditional location and scale models1 and derive the optimal (i.e.

the most efficient) robust estimator within this class. Based on such estimators, several Maximum

Likelihood (ML)-type bounded-influence tests for parametric hypotheses on the parameters of the

conditional location and scale equations are then obtained following the approach proposed in Heritier

and Ronchetti (1994) and Ronchetti and Trojani (2001).

The need for robust procedures both in estimation and testing has been stressed by many authors

1As we show below, this class of estimators is convenient to develop robust inference procedures for the model setting

considered in the paper.
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and is now widely recognized both in the statistical and the econometric literature; cf., for instance,

Hampel (1974), Koenker and Bassett (1978), Huber (1981), Koenker (1982), Hampel et al. (1986), Pe-

racchi (1990), and more recently Markatou and Ronchetti (1997), Krishnakumar and Ronchetti (1997),

Ronchetti and Trojani (2001), Ortelli and Trojani (2004). However, the problem of robust estimation

for the parameters of conditional location and scale models has been considered so far by a few authors

and only from the specific perspective of high breakdown estimation. Even less attention has been

devoted to robust inference within conditional location and scale models. High breakdown estimators

resistant to large amount of contamination in the sample data have been proposed by Sakata and

White (1998) and Muler and Yohai (1999). These estimators are very useful at the exploratory stage

and estimation stage. Here we focus at the inference stage, where we typically have an approximate

model and we can expect small deviations from the model. Alternatives to high breakdown estimators

are also needed because these estimators are computationally intensive and cannot be applied to

estimate the parameters of a class of broadly applied models—such as threshold ARCH or ARCH in

mean models2.

This paper derives optimal bounded-influence estimation and testing procedures for a general con-

ditional location and scale time series model, which are computationally only slightly more demanding

than the ones required by a classical PML estimation of such models. The more specific contributions

to the current literature are the following.

First, we characterize the robustness of conditionally unbiased M -estimators for nonlinear condi-

tional location and scale models by computing the time series IF for the implied asymptotic functional

2More precisely, Muler and Yohai (1999) proposed a class of high breakdown estimators for pure ARCH processes

(having zero conditional mean). Sakata and White (1998) proposed a class of high breakdown estimators for models

where the parameter space can be partitioned according to the parameters arising in the conditional location and scale

equations. For these estimators, they also computed formally the corresponding (time series) breakdown point.
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estimator. This has been defined by Künsch (1984) who applied this concept to AR(p) processes.

We extend this result to our general model (1.1); see below. This is a first necessary step which allows

us to construct robust statistical procedures which can control for (i) the local asymptotic bias on the

parameter estimates and (ii) the local asymptotic distortion on the level and the power of ML-type

tests.

Second, we derive the optimal bounded-influence estimator for the parameters of conditional lo-

cation and scale models under a conditionally Gaussian reference model. This extends the optimality

result in Künsch (1984) (obtained for AR(p) models) and the application of optimal conditionally un-

biased M -estimators in Künsch, Stefanski and Carroll (1989) (obtained for generalized linear models)

to general nonlinear second order dynamic models. Based on these results, optimal bounded-influence

versions of the classical Wald, score and likelihood ratio tests are derived along the general lines

proposed in Heritier and Ronchetti (1994) and Ronchetti and Trojani (2001).

Third, we propose a feasible algorithm for the computation of our optimal robust estimators, which

can be easily implemented in standard packages, such as Matlab. This procedure is based on a trunca-

ting procedure which uses a set of Huber’s weights to downweight the impact of influential observations.

Fisher consistency at the model is preserved by means of some auxiliary recentering vectors, which

in a time series setting have generally to be computed by simulations—as for instance in a Robust

Generalized Method of Moments (RGMM, Ronchetti and Trojani (2001)) setting. Using the condi-

tional unbiasedness of our estimator we provide analytical Laplace approximations for such vectors

which strongly reduce the necessary computation time by avoiding the simulation of multidimensional

integrals.

Fourth, we study by Monte Carlo simulation the efficiency and the robustness properties of our

estimator. We estimate a simple AR(1)-ARCH(1) process under several models of local contamination

of a conditionally Gaussian process. Under the Gaussian reference model the classical ML estimator

9



and our robust estimator have essentially the same efficiency. On the contrary, under local deviations

from conditional normality classical PML estimators, tests and confidence intervals are found to be

highly inefficient, while robust procedures perform very satisfactorily.

Finally, we present an application to robust testing for ARCH where robust procedures help to

identify ARCH structures which could not be detected using the classical inference approach.

The structure of the paper is as follows. Section 1.3 introduces the conditional location-scale model

and the classical PML estimation procedure. Section 1.4 computes the time series IF for conditionally

unbiased M -estimators. The asymptotic bias on the parameter estimates induced by local deviations

from the conditional Gaussian reference model is then approximated by means of the IF. In a second

step, the optimal robust estimator is derived and the optimality of robust inference procedures based

on such an estimator is discussed. The section is concluded by deriving an analytic approximation for

the auxiliary recentering vectors in our robust estimation and by presenting the algorithm that can be

used to compute our robust estimator in applications. Section 1.5 discusses robust testing procedures

based on our robust estimators and gives some advice for applications. Section 1.6 presents the

Monte Carlo experiments where the performance of our robust estimation and inference approach is

evaluated in the setting of an AR(1)-ARCH(1) model. The empirical application to testing for ARCH

is presented in Section 1.7. Section 1.8 summarizes and concludes.

1.3 The Standard Setting

Let Y := (yt)t∈Z be a real valued strictly stationary random sequence on the probability space

(R∞,F ,P∗). Assume that P∗ belongs to some parametric model P := {Pθ, θ ∈ Θ ⊆ Rp}, i.e. P∗ = Pθ0

10



for some3 θ0 ∈ Θ. Assume that yt satisfies the second order regression model

yt = µt(θ0) + εt(θ0),

ε2
t (θ0) = σ2

t (θ0) + νt(θ0),
(1.1)

where µt(θ0) and σ2
t (θ0) parameterize, respectively, the conditional mean and the conditional variance

of yt given the information Ft−1 up to time4 t− 1. Therefore, under Pθ0

E[εt(θ0)|Ft−1] = E[νt(θ0)|Ft−1] = 0, (1.2)

for all t ∈ Z. Denote by ym
1 := (y1, . . . , ym) the finite random sequence of Y and by Pm

∗ the restriction

of P∗ on the σ-algebra generated by m process coordinates, i.e. the m-dimensional marginal distribution

of ym
1 induced by P∗. Similarly, define ym+t

1+t := (y1+t, . . . , ym+t) for all t ∈ Z and denote by y1
−∞ :=

(. . . , y−1, y0, y1) the infinite random sequence of Y up to time 1.

Our aim is to develop robust inference procedures for model (1.1) when the true distribution P∗

belongs to some nonparametric neighborhood of a parametric reference model Pθ0 . Then model (1.1)

is regarded as an “approximate” description of the true data generating process P∗.

Model (1.1) covers a broad class of well-known parametric models for time series. Some examples

are presented in the sequel.

Example 1.1 AR(1) models assume

µt(θ0) = ρ yt−1, |ρ| < 1,

σ2
t (θ0) = σ2.

(1.3)

Robust inference procedures for linear auto-regressive processes have been well studied in robust

statistics. Künsch (1984) defined a time series influence function (IF) in this context and derived

3This correct specification assumption is relaxed in Section 1.4.

4This implies that the distribution of (εt(θ0), νt(θ0))|Ft−1 is also parameterized by θ0.
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an optimally bounded-influence estimator for the parameters of a general AR(p) model. Martin and

Yohai (1986) provided bounded-influence estimators for AR and MA models and studied the asymp-

totic bias implied by additive outliers. Finally, Bustos and Yohai (1986) proposed robust estimators

for the parameters of an ARMA model using robust estimators of the residuals autocovariances.

Example 1.2 AR(1)-ARCH(1) models (cf. Engle (1982)) assume5

µt(θ0) = ρ0 + ρ1 yt−1,

σ2
t (θ0) = α0 + α1(yt−1 − ρ0 − ρ1 yt−2)2

(1.4)

for ρ0 ∈ R, |ρ1| < 1, α0 > 0 and 0 ≤ α1 < 1. Bounded-influence estimators for such models are

available in the class of robust GMM (RGMM) or robust EMM (REMM) estimators; cf. Ronchetti

and Trojani (2001) and Ortelli and Trojani (2004), respectively. Sakata and White (1998) developed

high breakdown estimators for conditional location and scale models that include (1.4) as a special

case. Muler and Yohai (1999) considered the pure ARCH setting.

Example 1.3 Double threshold AR(1)-ARCH(1) models with volatility asymmetries (see for instance

Li and Li (1996) and Glosten, Jagannathan and Runkle (1993)) assume

µt(θ0) = β0 + (β1 + β2 d1,t−1) yt−1,

σ2
t (θ0) = α0 + α1 d1,t−1 + (α2 + γ0 d2,t−1)(yt−1 − β0 − (β1 + β2 d1,t−2) yt−2)2

(1.5)

with the dummy variable d1,t−1 = 1 if β0 + β1 yt−1 > 0 and zero otherwise, d2,t−1 = 1 if εt−1(θ0) < 0

and zero otherwise6. To our knowledge, so far no robust estimators have been applied to estimate such

5This class is very popular in financial econometrics because it accounts for two important stylized facts of financial

time series, namely, heavy tails and volatility clustering of asset returns; cf., for instance, Mandelbrot (1963) and

Fama (1965).

6These models are broadly used in financial applications because they account for the leverage effect, i.e. the stronger

impact on volatility of bad news (εt−1(θ0) < 0) than good news (εt−1(θ0) ≥ 0) when γ0 > 0.
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models. In principle robust EMM procedures could be applied to this model class. However, they

would be highly computationally intensive. By contrast, the high breakdown estimators of Sakata

and White (1998) cannot be applied directly to threshold ARCH models of the above form because

they assume that the parameter space Θ can be partitioned as Θ = Θ1 × Θ2 in order to imply

µt(θ0) = µt(θ1), for θ1 ∈ Θ1 and all t ∈ Z.

Example 1.4 GARCH(1,1) models (cf. Bollerslev (1986)) assume

µt(θ0) = 0,

σ2
t (θ0) = α0 + α1y

2
t−1 + δ σ2

t−1(θ0)

= α0/(1− δ) + α1

∑∞
j=0 δjy2

t−1−j ,

(1.6)

where α0, α1, δ > 0 and α1 + δ < 1. The last equality for σ2
t (θ0) highlights that a GARCH model

is indeed an ARCH model with an infinite number of lagged y variables. Formally, high breakdown

estimators for GARCH models are not available. Sakata and White (1998) conjecture that their

estimators should have a relatively high breakdown point also for GARCH models under appropriate

assumptions. On the other hand, robust EMM procedures can be applied to obtain bounded-influence

estimators for these models.

Our goal is to derive efficient, locally robust estimators and testing procedures for the joint inference

on the conditional mean and the conditional variance parameters of model (1.1)–(1.2), that do not

require heavy computational methods.

In the sequel we first briefly review the classical Pseudo Maximum Likelihood estimation procedure

of model (1.1)–(1.2). In a later section we will derive the optimal robust version (see Hampel (1974)

and Stefanski, Carroll and Ruppert (1986)) of such estimators.

Under the assumption that P∗ = Pθ0 ∈ P, a Maximum Likelihood (ML) estimator of θ0 is avail-

able. This happens, for instance, when under Pθ0 the random variable yt has a conditionally Gaussian
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distribution, yt|Ft−1 ∼ N (µt(θ0), σ2
t (θ0)). For many applications, the assumption of normality is not

satisfied. Generalizations of ML then only assume that the dynamic equations (1.1) are satisfied by yt

under P∗, i.e. that the model is dynamically correctly specified. Let P0 denote some probability distri-

bution on (R∞,F) which implies the dynamic model (1.1)–(1.2) for yt. When P∗ = P0, ML estimators

of θ0 are no longer available as the distribution of εt(θ0) is unknown. Therefore, the conditional lo-

cation and scale model (1.1)–(1.2) is typically estimated by the Pseudo Maximum Likelihood (PML,

Gourieroux, Monfort and Trognon (1984)) method based on a conditionally Gaussian score function;

cf. also Bollerslev and Wooldridge (1992) for GARCH-type models.

Specifically, such a PML estimator (PMLE) θ̂pml
n is the solution of the maximization problem

max
θ∈Θ

n∑
t=1

l(ỹt
1; θ),

where

l(ỹt
1; θ) := −1

2
ln σ2

t (θ)− 1
2

(ỹt − µt(θ))2

σ2
t (θ)

and ỹn
1 := (ỹ1, ỹ2, . . . , ỹn) are sample observations of the process7 Y. Under P0 and by means of

standard regularity conditions8, ln(θ) := n−1
∑n

t=1 l(ỹt
1; θ) converges almost surely, uniformly on Θ,

to l(θ) := E0[l(y; θ)], where E0[·] is the expectation under P0 and either y = ym
1 for some m < ∞ (as

in Example 1.1, 1.2 and 1.3) or y = y1
−∞ (as in Example 1.4). Such a distinction between the cases

m < ∞ and m = ∞ entirely depends on the specification of µt(θ0) and σ2
t (θ0) in model (1.1).

As the Gaussian pseudo true density is in the class of quadratic exponential densities9, θ̂pml
n is

consistent under P0. Precisely, consistency is implied by the unique maximum of l(θ) at θ0. Then, the

7As usual, when µt(θ) and/or σ2
t (θ) depend on pre-sample values y0, y−1, . . ., such values are replaced, for estimation

purposes, by ‘in-sample estimates’.

8See for instance Gourieroux, Monfort and Trognon (1984) Appendix 1, Section 1.

9See Gourieroux, Monfort and Trognon (1984), p. 691.
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following asymptotic first order condition holds

E0[s(y1
−∞; θ0)] = 0, (1.7)

where s(y1
−∞; θ) := ∂l(y1

−∞; θ)/∂θ denotes the pseudo score function based on the Gaussian pseudo

true density, i.e.

s(y1
−∞; θ) =

1
σ2

1(θ)
∂µ1(θ)

∂θ
ε1(θ) +

1
2σ2

1(θ)
∂σ2

1(θ)
∂θ

(
ε2
1(θ)

σ2
1(θ)

− 1
)

. (1.8)

The asymptotic condition (1.7) is equivalent to equation (1.2) and (1.8). The PMLE of θ0 then solves

the finite sample estimating equations

n−1
n∑

t=1

s(ỹt
1; θ̂

pml
n ) = 0, (1.9)

which are the finite sample version of the asymptotic condition (1.7). Under the model P0, the

usual Taylor expansion of (1.9) implies that
√

n(θ̂pml
n − θ0) converges in distribution to the Gaussian

distribution N (0, V (s; θ0)), where V (s; θ0) := J(θ0)−1 I(θ0)J(θ0)−1 and

J(θ0) := E0

[
−∂s(y1

−∞; θ)
∂θ>

]

θ=θ0

, I(θ0) := E0

[
s(y1

−∞; θ0) s(y1
−∞; θ0)>

]
;

cf. again Bollerslev and Wooldridge (1992), p. 148.

When P0 = Pθ0 the conditional distribution of εt(θ0) is truly Gaussian, yt|Ft−1 ∼ N (µt(θ0), σ2
t (θ0))

and the PMLE is indeed the MLE of θ0. In this case, I(θ0) = J(θ0) and V (s; θ0) attains the Cramér-

Rao lower bound I(θ0)−1. The Gaussianity of yt only affects the efficiency of the PMLE and not the

functional form of the estimating equation (1.9). Hence, the bias in the estimate of θ0 induced by

contaminated distributions will have the same functional form for the PMLE and the MLE (and will

be given by the influence function (1.18)).

It is well-known that PMLE’s are in the class of M -estimators since they are defined by the roots of

the implicit equation (1.9). This class is very convenient to develop robust estimators; cf. Huber (1981)
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and Hampel et al. (1986). The next section proposes a class of robust M -estimators and an optimal

robust version of the PMLE for time series models of the form (1.1)–(1.2).

1.4 Locally Robust Estimation

In this section we relax the assumption that the true underlying distribution P∗ is given by the

parametric distribution Pθ0 . Specifically, we allow P∗ to be in a nonparametric neighborhood of the

reference model specified by the parametric distribution Pθ0 for Y. For instance, the case P∗ = P0 falls

in this setting, when the distance between the error distribution under P0 and Pθ0 is “small”, and the

PMLE can be used for inference on θ0. However, as we will show, the PMLE is not robust and if P∗ is

indeed “slightly” different from P0 the arising asymptotic bias can be very large. In general, we allow

the model Pθ0 to be dynamically misspecified with respect to P∗.

Here, we are interested in robust M -estimators which are “resistant” to local deviations of P∗ from

the given reference model Pθ0 . Recall that under Pθ0 one has εt(θ0)|Ft−1 ∼ N(0, σ2
t (θ0)), where εt(θ0)

and σ2
t (θ0) are defined by (1.1). Hence, the reference distribution of Y is indirectly specified by the

uncorrelated, standard Gaussian, random sequence (ut(θ0))t∈Z, where ut(θ0) := εt(θ0)σt(θ0)−1.

To analyze the local stability properties of M -estimators, we introduce the following functional

notation for the asymptotic value of an estimator a(·) (cf., for instance, Martin and Yohai (1986),

p. 786),

a : dom(a) ⊂Mm
stat −→ Θ,

where Mm
stat := {m-dimensional marginals of strictly stationary processes} and m ∈ N∗. Then, the

M -functional a(·) is implicitly defined by an estimating function ψ : Rm ×Θ −→ Rp such that

E[ψ(y1, . . . , ym; a(Pm
∗ ))] = 0, (1.10)
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where Pm
∗ is the restriction of P∗ on m process coordinates. As already pointed out, the number of

process coordinates m entirely depends on the parametric model (1.1) of interest. For instance, in

Examples 1.1, 1.2 and 1.3 we have m = 2, 3, 3, respectively, while in Example 1.4 m = ∞. In robust

statistics, only the finite dimensional case m < ∞ has been well studied in the setting of linear AR

models; cf. Künsch (1984). For the infinite dimensional case m = ∞Martin and Yohai (1986) proposed

a specific influence function to study the asymptotic bias implied by a specific contamination, namely

the replacement model, for the estimates of MA models.

In the rest of the paper, we consider the finite dimensional case m < ∞. Hence, the asymptotic

value estimates of θ0 is obtained by evaluating a(·) at the m-dimensional distribution Pm
∗ . The reference

model distribution is given by Pm
θ0

. As we focus on local robustness we consider local deviations of Pm
∗

from Pm
θ0

. Therefore, we assume that Pm
∗ is in the following nonparametric neighborhood Uη(Pm

θ0
) of

the reference model Pm
θ0

,

Uη(Pm
θ0

) := {Pm
η = (1− η)Pm

θ0
+ ηGm, η ≤ b, b ∈ [0, 1], Gm ∈Mm

stat}. (1.11)

The neighborhood defined in (1.11) is a simple way to formalize local perturbations10 of the model Pm
θ0

.

Recall that the reference model Pm
θ0

needs not to be the true model for Y but has rather to be

interpreted as an “approximate” model for the true data generating process Pm
∗ , where the notion of

“approximate” model is formalized implicitly in terms of “small” distributional distances.

Remark 1.1 The true underlying model Pm
∗ is well approximated by some element of Uη(Pm

θ0
) in all

cases where we have a ε percentage of contaminated sample data as (cf. Künsch (1984), p. 846)

Pm
∗ = (1− ε c(m))Pm

θ0
+ ε c(m)Gm + o(ε), (1.12)

10Notice that dk(Pm
η ,Pm

θ0
) ≤ η for all Gm ∈Mm

stat, where dk(·, ·) denotes the Kolmogorov distance.
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where c(m) := ∂p(m, ε)/∂ε|ε=0 and

p(m, ε) = P [ at least one outlier in a block of length m ].

However, since p(m, 0) = 0 for all m ∈ N and limm→∞ p(m, ε) = 1 for all ε > 0, we have limm→∞ c(m) =

∞. Therefore, when m = ∞, (1.12) cannot be applied11 to define a neighborhood for the reference

distribution Pθ0 of Y. In general, any mixture distribution Pε = (1 − ε)Pθ0 + εG, ε ∈ [0, 1], on an

infinite dimensional state space does not correspond to any interesting distribution for time series

models as it implies that any sample path of the series is generated either by Pθ0 or by G; cf. Martin

and Yohai (1986), p. 791. One possible way to study the local robustness of a statistic in this setting

is to focus on a specific contamination model. For instance, additive outlier models have been studied

in Martin and Yohai (1986) in the context of (linear) MA models. In this case, the “neighborhood”

of the reference model Pθ0 is implicitly defined by all possible distributions induced by the assumed

contamination models.

In the next section we introduce the influence function for time series to characterize the asymptotic

bias and the asymptotic variance of an M -functional estimator a(·) defined by (1.10). This will

motivate, in a second step, our optimal robust estimator for models of the form (1.1)–(1.2).

1.4.1 Time Series Influence Function

Robust procedures aim at the estimation of the parameter θ0 in the reference model Pm
θ0

when local

deviations from such a reference model are allowed. Such deviations induce an asymptotic bias on the

functional estimator a(·) defined by12

bias := a(Pm
∗ )− a(Pm

θ0
) = a(Pm

∗ )− θ0.

11This problem is related to the second ‘open question’ in Künsch (1984), p. 859.

12We assume that a(·) is Fisher consistent.
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For the robust inference on θ0, the standard robustness condition on the corresponding estimator

is a bounded asymptotic bias. To describe the linearized asymptotic bias of a(·) induced by some

model Pm
η ∈ Uη(Pm

θ0
), one can consider the first order von Mises (1947) expansion of a(·) at Pm

θ0
(cf.,

for instance, Fernholz (1983)),

a(Pm
η )− a(Pm

θ0
) = η a′(θ0,Gm) + o(‖Pm

η − Pm
θ0
‖), (1.13)

where a′(θ0,Gm) is the Gâteaux derivative of a(·) in the direction Gm − Pm
θ0

, i.e.

a′(θ0,Gm) := lim
η↓0

a((1− η)Pm
θ0

+ ηGm)− a(Pm
θ0

)
η

,

provided the limit exists. By contrast with a simple i.i.d. setting, in a time series framework a′(θ0,Gm)

is determined by a set of equivalent kernels. To characterize such kernels, we introduce the following

concept from the theory of robust statistics; cf. Künsch (1984), p. 847.

Definition 1.1 The influence function of the functional estimator a(·) is an equivalent class of kernels

IF : Rm ×Θ −→ Rp such that

a′(θ,Gm) =
∫

Rm

IF (y; θ) dGm(y), for all Gm ∈Mm
stat.

We use the short notation IF (y; θ) for IF (y; a,Pθ) as in Künsch (1984). In the one dimensional case,

m = 1, the set of kernels is a singleton. Hence, in this case the influence function (IF) is unique and

can be directly computed by taking functional Gâteaux derivatives of a(·) in the direction δx − P1
θ0

,

where δx is the Dirac mass at x ∈ R; cf. Hampel (1974) and Hampel et al. (1986).

In the m-dimensional case, m ≥ 2, the IF can no longer be computed just by taking derivatives of

a(·) in some suitable singular directions, namely because two different extremal measures in Mm
stat are

not mutually singular. Therefore, any differentiation in such directions gives a corresponding kernel13

13For instance, for the functional estimator a(·) of the AR(1) model in Example 1.1, two different kernels are obtained

when differentiating in the directions (δx(1),y(2) + δy(1),x(2) )/2 and (δx(1),y(2) + δy(1),z(2) + δz(1),x(2) )/3, respectively;

cf. Künsch (1984), p. 847.
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conforming to Definition 1.1; cf. Künsch (1984), p. 847. As a consequence, in this case the kernel is

not unique. Moreover, any function

IF (y1, . . . , ym; θ) + g(y1, . . . , ym−1; θ)− g(y2, . . . , ym; θ), (1.14)

where g : Rm−1×Θ −→ Rp is an integrable function, is again a kernel satisfying Definition 1.1, because

EGm [g(y1, . . . , ym−1; θ)− g(y2, . . . , ym; θ)] = 0,

by the strictly stationarity of Gm.

Künsch (1984) introduced a natural additional condition on a kernel satisfying Definition 1.1, which

determines a unique version of the IF up to additive constants. This condition simply requires that,

at the reference model Pm
θ0

, ym|y1, . . . , ym−1 has no influence on the asymptotic bias of the estimator.

Definition 1.2 The conditional influence function, IF cond(ym
1 ; θ0), of the functional estimator a(·) is

a kernel satisfying Definition 1.1, such that

Eθ0 [IF cond(y1, . . . , ym; θ0)|Fm−1] = 0, (1.15)

where Eθ0 [·] denotes the expectation with respect to the reference distribution Pm
θ0

.

IF cond is unique14 (cf. Künsch (1984), Th. 1.3) and has some desirable properties. First, under

the reference model Pm
θ0

, it implies the following simple expression for the asymptotic covariance

matrix V (ψ; θ0) of a(·)

V (ψ; θ0) := Eθ0 [IF cond(ym
1 ; θ0) IF cond(ym

1 ; θ0)>],

which in applications does not need to be estimated by a Newey and West (1987) covariance ma-

trix estimator, because of the martingale difference property (1.15). Moreover, as shown in the sequel,

14Under condition (1.15) the g-function in (1.14) is unique up to an additive constant.
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conditional IF for MLE’s has a natural interpretation in terms of the information matrix and a straight-

forward derivation; cf. Künsch (1984), (1.25).

Since under the model Pθ0 the process (IF cond(ym+t
1+t ; θ0))t∈Z is a martingale difference sequence

and the conditional mean-variance of yt is correctly specified, it is natural to introduce the class of

conditionally unbiased M -estimators for θ0. These functional estimators a(·) are implicitly defined by

some function ψ : Rm ×Θ −→ Rp, such that the conditional moment conditions

Eθ0 [ψ(y1, . . . , ym; a(Pm
θ0

))|Fm−1] = 0 (1.16)

hold for a unique θ0 ∈ Θ. Such estimators have several desirable properties that are presented

below. By construction (ψ(y1+t, . . . , ym+t; θ0))t∈Z is also a martingale difference sequence under the

model Pθ0 . Thus, by definition a(·) is conditionally Fisher consistent and the asymptotic estimating

equation for θ0 is

Eθ0 [ψ(y1, . . . , ym; a(Pm
θ0

))] = 0. (1.17)

The Gaussian score function (1.8) is an example of a function ψ defining a conditionally unbiased

estimator of θ0.

Example 1.5 The PMLE for the AR(1)-ARCH(1) process in Example 1.2 is defined by the ψ function

ψ(y3
1 ; θ0) = −k1,3 + k2,3

y3 − ρ0 − ρ1y2√
α0 + α1(y2 − ρ0 − ρ1y1)2

+ k1,3
(y3 − ρ0 − ρ1y2)2

α0 + α1(y2 − ρ0 − ρ1y1)2

where

k1,3 :=
1

2σ2
3




−2α1(y2 − ρ0 − ρ1y1)

−2α1(y2 − ρ0 − ρ1y1)y1

1

(y2 − ρ0 − ρ1y1)2




, k2,3 :=
1
σ3




1

y2

0

0




.
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More generally, the function ψ for the PMLE of model (1.1)–(1.2) has the functional form

ψ(ym
1 ; θ0) = −k1,m + k2,m um(θ0) + k1,m u2

m(θ0),

where

k1,m :=
1

2σ2
m(θ0)

∂σ2
m(θ)
∂θ

∣∣∣∣
θ=θ0

, k2,m :=
1

σm(θ0)
∂µm(θ)

∂θ

∣∣∣∣
θ=θ0

.

Therefore, different specifications of µm(θ0) and σ2
m(θ0) are easily accommodated in the Fm−1-

measurable random vectors k1,m and k2,m. Since Eθ0 [um(θ0)|Fm−1] = 0 and Eθ0 [um(θ0)2|Fm−1] = 1,

ψ defines a conditionally unbiased M -estimator.

The main property of a conditionally unbiased M -estimator defined by (1.16) is that the corre-

sponding conditional IF is computed as in the one dimensional case by calculating the limit

IF cond(xm
1 ; θ0) := lim

η↓0
a((1− η)Pm

θ0
+ η δx(1),...,x(m))− a(Pm

θ0
)

η
,

where δx(1),...,x(m) is the Dirac mass at {(y1, . . . , ym) = (x(1), . . . , x(m))} and provided the limit exists.

Precisely, by defining Pm

η := (1 − η)Pm
θ0

+ η δx(1),...,x(m) and implicitly differentiating equation (1.17)

in the direction δx(1),...,x(m) − Pm
θ0

yields

0 =
∂

∂η
EPm

η
[ψ(y; a(Pm

η ))]
∣∣∣∣
η=0

= EPm
θ0

[
∂ψ(y; a(Pm

θ ))>

∂a

]

θ=θ0

∂

∂η
a(Pm

η )
∣∣∣∣
η=0

+
∫

Rm

ψ(y; a(Pm
θ0

))
∂

∂η
dPm

η (y)
∣∣∣∣
η=0

and, as (∂/∂η)Pm

η

∣∣∣
η=0

= δx(1),...,x(m) − Pm
θ0

, using (1.17)

IF cond(xm
1 ; a(Pm

θ0
)) = D(ψ; a(Pm

θ0
))−1 ψ(xm

1 ; a(Pm
θ0

)), (1.18)

where

D(ψ; θ0) := −EPm
θ0

[
∂ψ(y; θ)>

∂θ

]

θ=θ0

.
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As the conditional IF is unique and defines a martingale difference process, equation (1.18) is the only

admissible representation. When the dependence of the conditional IF on the corresponding score

function ψ has to be emphasized we use in the sequel the notation IF cond
ψ .

If the conditional IF exists then one can prove also for our more general model setting that it is

unique (up to an additive constant) by using the same arguments as in the first part of the proof of

Th. 1.3 in Künsch (1984). Existence of the conditional IF for the case of a bounded score function ψ

(which is the relevant case for our robust estimator introduced in Section 1.4.2) can also be proved

along the lines of Th. 1.3 in Künsch (1984).

If condition (1.16) does not hold, the conditional IF is not given by (1.18), as the following simple

example shows.

Example 1.6 For an AR(1) process in Example 1.1, an unconditionally unbiased M -estimator for

θ0 = (ρ σ2)> can be defined by the following ψ-function

ψ(y1, y2; θ0) =




y2y1 − σ2ρ/(1− ρ2)

y2
2 − σ2/(1− ρ2)


 .

However, the conditional IF of such an estimator is not given by (1.18) because ψ is not a martingale

difference.

A bounded conditional IF ensures a bounded linearized asymptotic bias induced by any contaminated

distribution Pm
η in the neighborhood Uη(Pm

θ0
)

bias := a(Pm
η )− a(Pm

θ0
) = η

∫

Rm

IF cond(y; θ0)
∂

∂η
Pm

η (dy)
∣∣∣∣
η=0

+ o(‖Pm
η − Pm

θ0
‖)

and the derivative on the right hand side is uniformly bounded for any Pm
η ∈ Uη(Pm

θ0
) when m < ∞.

Moreover, since the conditional IF is linearly related to the ψ-function of the asymptotic estimating

equation (1.17), it is bounded if and only if the ψ-function is bounded. As the Gaussian score fun-

ction (1.8) is unbounded (at least) in ε1(θ), PMLE’s based on such a score function are not robust.
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For MLE’s the conditional IF is

IF cond(ym
1 ; θ0) = I(θ0)−1s(ym

1 ; θ0),

where I(θ0) is the information matrix. For instance, the conditional IF of the MLE in Example 1.1 is

IF cond(x1, x2; θ0) =




(1− ρ2)−1 0

0 0.5σ−4




−1 


σ−2(x2 − ρx1)x1

−0.5σ−2 + 0.5σ−4(x2 − ρx1)2


 .

For a contaminated distribution P2
η = (1 − η)P2

θ0
+ ηG2 we can then compute the implied linearized

asymptotic bias as

a(P2
η)− a(Pθ0) ≈ η




(1− ρ2)−1 0

0 0.5σ−4




−1 


σ−2(ζ(1,2) − ρζ(2))

−0.5σ−2 + 0.5σ−4
(
(1 + ρ2)ζ(2) − 2ρζ(1,2)

)


 ,

where

ζ(1,2) := EG2 [y1y2] and ζ(2) := EG2 [y2
1 ] = EG2 [y2

2 ] because G2 ∈M2
stat.

Hence, the asymptotic bias can be arbitrarily large, depending on the values of ζ(1,2) and ζ(2) on the

neighborhood Uη(P2
θ0

). In Figure 1.1 we plot ‖V (s; θ0)−1/2 IF cond(x1, x2; θ0)‖, that is the normed self-

standardized IF of the MLE for θ0 under P2
θ0

(cf. also Section 1.4.2 below), as a function of x1 and x2 for

the parameter choice ρ = 0.8 and σ2 = 2. In the left and right region of the grid (where, respectively,

x1 is ‘low’, x2 is ‘high’ and vice versa), the normed self-standardized IF is clearly unbounded denoting

high sensitivity of the MLE to possible “jumps” in the data15.

As already mentioned, a bounded conditional IF ensures a bounded asymptotic bias for any dis-

tribution in the neighborhood U(Pm
θ0

) of the reference model Pm
θ0

. In the next section we define such a

robust estimator for the parameters of model (1.1).

15In this example the most robust estimator has a self-standardized sensitivity no larger than
√

2; cf. Hampel et

al. (1986), p. 228.
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1.4.2 Optimal Conditionally Unbiased Robust Estimators

In the following we derive the optimal bounded-influence estimator (see Proposition 1.1 and Corol-

lary 1.1) for models of the form (1.1)–(1.2), under the conditionally Gaussian reference model Pm
θ0

, in

the class of conditionally unbiased M -estimators for θ0.

The most common approach to derive bounded-influence estimators is to impose a bound on

the ‘self-standardized sensitivity’ γ of the estimator (cf., for instance, Krasker and Welsch (1982))

defined by

γ(ψ) := sup
z∈Rm

‖V (ψ; θ0)−1/2IF cond
ψ (z; θ0)‖,

where V (ψ; θ0) = Eθ0 [IF cond
ψ (z; θ0) IF cond

ψ (z; θ0)>]. This sensitivity measure has some desirable pro-

perties. Firstly, the bound on γ does not depend on the scaling of observations, a feature that improves

the algorithm convergence. Secondly, the maximal bias for level and power of several ML-type tests

can be controlled by imposing a bound on γ; cf. Heritier and Ronchetti (1994) and Ronchetti and

Trojani (2001). By definition, non robust estimators have γ = ∞ while bounded influence estimators

have γ ≤ c < ∞, for some positive constant c ≥ √
p; cf. Hampel et al. (1986), p. 228.

Optimality Results

Under a conditionally Gaussian reference model Pm
θ0

, the MLE for θ0 is most efficient but not robust.

Then, robustness can be ensured only by “paying” a small loss in efficiency at the reference model Pm
θ0

.

Here we propose an estimator of θ0 that achieves the same optimality result within the class of

conditionally unbiased M -estimators as in Künsch, Stefanski and Carroll (1989).

Consider the functional estimator a(·) of θ0 implicitly defined by

Eθ0 [ψc(ym
1 ; a(Pm

θ0
))] = 0, (1.19)
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where ψc(ym
1 ; θ) := A(θ)ψbif (ym

1 ; θ),

ψbif (ym
1 ; θ) :=

(
s(ym

1 ; θ)− τ(ym−1
1 ; θ)

)
w(ym

1 ; θ), (1.20)

and w(ym
1 ; θ) := min(1, c ‖A(θ)

(
s(ym

1 ; θ)− τ(ym−1
1 ; θ)

) ‖−1). The non singular matrix A(θ) ∈ Rp×Rp

and the Fm−1-measurable random vectors τ(ym−1
1 ; θ) ∈ Rp are determined, respectively, by solving

the implicit equations

Eθ0 [ψc(ym
1 ; θ0) ψc(ym

1 ; θ0)>] = I, (1.21)

Eθ0 [ψc(ym
1 ; θ0)|Fm−1] = 0. (1.22)

We discuss below the interpretation and the computation of the A matrix and the τ -vectors. The esti-

mating function ψc (or the unscaled version ψbif ) is conditionally unbiased at the reference model and is

a truncated version of the ML score as, by construction, ‖ψc(ym
1 ; θ)‖ ≤ c. Moreover, as (ψc(ym+t

1+t ; θ0))t∈Z

is a martingale difference sequence under Pθ0 , the conditional IF of the functional estimator a(·) is

given by (1.18),

IF cond
ψc

(ym
1 ; a(Pm

θ0
)) = D(ψc; θ0)−1 ψc(ym

1 ; a(Pm
θ0

)).

The estimating function ψbif satisfies the following optimality criterion.

Proposition 1.1 If for a given constant of c ≥ √
p, equations (1.21) and (1.22) have solutions A(θ0)

and τ(ym−1
1 ; θ0), respectively, then ψbif minimizes tr(V (ψ; θ0)V (ψbif ; θ0)−1) among all ψ satisfy-

ing (1.16) and

sup
z∈Rm

(
IF cond

ψ (z; θ0)> V (ψbif ; θ0)−1 IF cond
ψ (z; θ0)

)1/2 ≤ c. (1.23)

Up to multiplication by a constant matrix, ψbif is unique almost surely.

Any score function ψopt such that V (ψ; θ0) − V (ψopt; θ0) is positive semi-definite for all ψ satisfy-

ing (1.16) is called strongly efficient and the following corollary holds; cf. also Stefanski et. al. (1986),

p. 416.

26



Corollary 1.1 If ψbif exists and there exists an unbiased, strongly efficient score function ψopt sa-

tisfying γ(ψopt) ≤ c < ∞, then the two estimators coincide.

Proofs are given in Appendix A.1. Under general conditions (see Clarke (1983, 1986) and Heritier

and Ronchetti (1994)), the optimal robust estimator a(·) is consistent and asymptotically normally

distributed at the reference model Pm
θ0

with an asymptotic covariance matrix given by

V (ψc; θ0) = Eθ0

[
∂

∂θ
ψc(ym

1 ; θ0)>
]−1

Eθ0

[
∂

∂θ>
ψc(ym

1 ; θ0)
]−1

= D(ψc; θ0)−1 D(ψc; θ0)−>,

where for brevity B−> := (B>)−1 for any invertible matrix B.

Remark 1.2 The conditions given in the references above guarantee the Fréchet differentiability of

the functional corresponding to the estimator a(·) which in turn implies the asymptotic normality in a

ε n−1/2-neighborhood of the reference model; see also Bednarski (1993). These conditions are satisfied

for M -estimators with a score function ψ which is bounded, continuous, and a.e. differentiable. Notice

in particular that the PMLE is defined by an unbounded score function and is not Fréchet differentiable.

Under the reference model Pm
θ0

, the simple expression for V (ψc; θ0) is implied by condition (1.22) and

the Newey and West (1987) covariance matrix estimator is not necessary. Although (s(ym+t
1+t ; θ0))t∈Z

is a martingale difference sequence under the reference model Pm
θ0

, not any truncated version of the

Gaussian score function s is a martingale difference sequence. Such a property has to be explicitly

imposed as in condition (1.22).

Interpretation of A and τ

The A matrix is a scaling matrix ensuring that the upper bound c on the function ψc is also the upper

bound on the normed self-standardized influence function. Indeed, under the scaling condition (1.21),
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V (ψc; θ0)−1 = D(ψc; θ0)>D(ψc; θ0) and

‖V (ψc; θ0)−1/2 IF cond
ψc

(y; θ0)‖2 := IF cond
ψc

(y; θ0)> V (ψc; θ0)−1 IF cond
ψc

(y; θ0)

= ψc(y; θ0)>D(ψc; θ0)−> V (ψc; θ0)−1 D(ψc; θ0)−1ψc(y; θ0)

= ‖ψc(y; θ0)‖2.

Hence, the normed self-standardized IF of a(·) is equal to the Euclidian norm of the robust score

function ψc, which is bounded by c. The A matrix is computed by a simple iterative procedure given

in Section 1.4.3, where we propose an algorithm to compute the optimal estimator (1.19)–(1.22).

Further, to satisfy the conditional Fisher consistency condition (1.22), each truncated score func-

tion has to be shifted by some corresponding τ -vector. This implicitly defines the random sequence

of τ -vectors (τ(ym−1+t
1+t ; θ0))t∈Z associated to (ψc(ym+t

1+t ; θ0))t∈Z. The existence of such a sequence is

guaranteed by the continuity of the mapping τ(ym−1
1 ; θ) 7−→ ( s(ym

1 ; θ) − τ(ym−1
1 ; θ) ) w(ym

1 ; θ) and

by the mean value theorem; cf. also Lemma 2.1 in Künsch et al. (1989). As τ(ym−1
1 ; θ0) is Fm−1-

measurable,

τ(ym−1
1 ; θ0) =

Eθ0 [s(y
m
1 ; θ0) w(ym

1 ; θ0)|Fm−1]
Eθ0 [w(ym

1 ; θ0)|Fm−1]
. (1.24)

In general, the expectations involved in (1.24) cannot be expressed analytically and numerical proce-

dures must be used for computations. However, this makes robust estimation procedures of models of

the form (1.1) very time consuming. For the conditionally Gaussian reference model Pm
θ0

we therefore

provide an accurate analytical approximation of τ(ym−1
1 ; θ0) for all models of the form (1.1)–(1.2). Such

approximations make use crucially of the conditionally unbiasedness of a robust score function ψc. In

the unconditionally unbiased case, the centering τ -vector defining an unconditionally unbiased robust

28



M -estimator is implicitly defined by the condition Eθ0 [(s(y
m
1 ; θ0)− τ(θ0)) w(ym

1 ; θ0)] = 0, implying16

τ(θ0) =
Eθ0 [s(y

m
1 ; θ0)w(ym

1 ; θ0)]
Eθ0 [w(ym

1 ; θ0)]
. (1.25)

In general, the expectations in (1.25) cannot be expressed analytically, except in some very particular

cases like AR(p) model settings where τ(θ0) = 0, because the computation of τ requires computing

some unconditional moments under Pm
θ0

. In virtually all cases relevant for this paper, such moments

are unknown. Therefore, in these cases the functional dependence of τ on θ0 and A in (1.25) must be

computed by solving some m-dimensional integrals by Monte Carlo simulation17. These simulations

make algorithms for robust estimators computationally very demanding.

Analytical Approximations for τ(ym
1 ; θ0)

Under the reference distribution Pm
θ0

and for models of the form (1.1)–(1.2), we provide a simple and

easy implementable accurate approximation for τ(ym−1
1 ; θ) in equation (1.24). In the following we

briefly explain the procedure; detailed calculations are given in Appendix A.2. We proceed in two

steps.

In the first step, given τ (0) as initial value for τ(ym−1
1 ; θ0), we compute the real roots of the following

quartic equation, with respect to the real variable um(θ0),

0 = ‖A(θ0)
(
s(ym

1 ; θ0)− τ (0)
) ‖2 − c2

:= ‖A(θ0)
(−k1,m + k2,m um(θ0) + k1,m u2

m(θ0)− τ (0)
) ‖2 − c2,

(1.26)

where

k1,m :=
1

2σ2
m(θ0)

∂σ2
m(θ)
∂θ

∣∣∣∣
θ=θ0

, k2,m :=
1

σm(θ0)
∂µm(θ)

∂θ

∣∣∣∣
θ=θ0

.

16In the i.i.d. setting the class of conditionally unbiased M -estimators is equivalent to the unconditional ones and

τ(ym−1
1 ; θ0) ≡ τ(θ0) as Eθ0 [·|Fm−1] = Eθ0 [·].

17Since the y variables are not i.i.d., sufficiently long simulations are necessary in order to adequately capture the

time dependence in the Y process, such as in the RGMM estimator case in Ronchetti and Trojani (2001).
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Notice that k1,m and k2,m are Fm−1-measurable. This allows us to solve equation (1.26) with respect

to um(θ0). In almost all simulations and all empirical estimations equation (1.26) had only two real

roots. Therefore, we only consider that case for brevity. The case of four real roots is discussed in

Appendix A.2.

In the second step, we ‘split’ the integrals in (1.24) according to the roots determined by (1.26).

Precisely, denoting the roots by um and um, with um ≤ um, the denominator in (1.24) is given by

Eθ0 [w(ym
1 ; θ0)|Fm−1] =

∫ um

−∞

c

‖A(θ0)(s(υ; θ0)− τ (0))‖ dΦ(u) + [Φ(um)− Φ(um)] +
∫ +∞

um

c

‖A(θ0)(s(υ; θ0)− τ (0))‖ dΦ(u),

(1.27)

where υ := (y1, . . . , ym−1, µm(θ0) + σm(θ0)u) and φ(·) and Φ(·) denote the standard Gaussian density

and cumulative function, respectively. Typical values of um range from 2.7 to 3.5 (the opposite for um),

so that both um and um are quite far in the tails of a standard normal distribution. Therefore, the

‘main contribution’ to the expectation on the left hand side of (1.27) comes from the term in the

square brackets18. Since the integrals on the right hand side of (1.27) are ‘symmetric’, we can consider

only the integral on the right tail. As mentioned, full analytical solutions are not available. However,

since um is ‘quite far’ in the right tail of a standard Gaussian distribution, the integral can be well

approximated using the Laplace’s method; cf. for instance Jensen (1995), Th. 3.1.1. This gives
∫ +∞

um

c

‖A(θ0)(s(υ; θ0)− τ (0))‖φ(u) du

:=
∫ +∞

um

qd(u)
1√
2π

exp(−0.5u2) du

=
1√
2π

exp(−0.5u2
m)

1
um

(
qd(0) +

q′d(0)
um

+
q′′d(0)
u2

m

+ O

(
1

u3
m

))
(1.28)

=: Ld(um) + O

(
1

u3
m

)
,

18The Gaussian density φ(u) is roughly zero for u /∈ (−4, 4) and c ‖A(θ0)(s(υ; θ0)− τ (0))‖−1 ↓ 0 for u → ±∞.
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with the obvious notation for qd(u) and where qd(z) := qd(um + z) exp(−0.5z2).19

The integral in the numerator of (1.24) is split in the same way as in (1.27). Then the integrals

on the tails are again approximated using the Laplace method. Detailed calculations are presented in

Appendix A.2. The resulting formula for the computation of τ is given in the next proposition.

Proposition 1.2 Given the second order regression model (1.1)–(1.2) and the conditionally Gaussian

reference model Pm
θ0

, if the quartic equation (1.26) has only two real roots um ≤ um, then

τ(ym−1
1 ; θ0)=

−Ln(um)− k1,m [Φ(um)− Φ(um)] + k2,mM1,m + k1,mM2,m + Ln(um)
−Ld(um) + [Φ(um)− Φ(um)] + Ld(um)

+O
(
u−3

m

)
+O

(
u−3

m

)
,

where M1,m := φ(um)− φ(um), M2,m := umφ(um)− umφ(um) + Φ(um)−Φ(um). Ln(·) and Ld(·) are

defined in Appendix A.2 and correspond to some Laplace’s approximations for the integrals in the

numerator and in the denominator of (1.24).

We recall that Proposition 1.2 is available because τ(ym−1
1 ; θ), k1,m and k2,m are Fm−1-measurable.

This allows us to ‘split’ the integrals involved in (1.24) and to approximate the Gaussian integrals.

Remark 1.3 Intuitively, the real roots um and um in equation (1.26) determine the range where the

standardized innovation um(θ0) is ‘not influential’ (in terms of self-standardized sensitivity of a(·)) for

the arising asymptotic bias because

‖A(θ0) (s(ym
1 ; θ0)− τ (0))‖ ≤ c, ⇐⇒ um(θ0) ∈ [um, um],

> c, ⇐⇒ um(θ0) ∈ (−∞, um) ∪ (um, +∞),

and the normed self-standardized IF of the functional estimator a(·) is equal to the Euclidian norm of

the ψc-function.

Example 1.7 For the AR(1)-ARCH(1) process of Example 1.2 and the parameters ρ0 = 0.01, ρ1 =

0.8, α0 = 0.02 and α1 = 0.8 Figure 1.2 shows ‖A(θ0) s(y3
1 ; θ0)‖, i.e. the normed self-standardized IF

19For the Laplace’s approximation of the integral on the left tail replace Ld(um) by −Ld(um) in (1.28).
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of the PMLE, as a function of u3(θ0) and for some values of y1 and y2. Clearly, ‖A(θ0) s(y3
1 ; θ0)‖ is

unbounded and increases very rapidly for some values of y1 and y2. For the PMLE (τ (0) = 0 and

w(y3
1 ; θ0) = 1), the real roots in equation (1.26) are given by the intersections of ‖A(θ0) s(y3

1 ; θ0)‖ with

a constant line at some given value of c. For instance, the most robust estimator has c = 2 and even

in such a case equation (1.26) has two real roots for the two cases depicted in Figure 1.2. In our

Monte Carlo simulations in Section 1.6 we consider a robust estimator of the AR(1)-ARCH(1) model

with c = 9.

1.4.3 Algorithm

To compute the robust estimator defined in (1.19)–(1.22) an iterative algorithm has to be adopted

because the weights w(ym
1 ; a(Pm

θ0
)), the matrix A(a(Pm

θ0
)) and the random vectors τ(ym−1

1 ; a(Pm
θ0

))

depend on the value of the estimator itself in a nonlinear way. Given a constant c ≥ √
p (cf. Hampel

et al. (1986), p. 228), the robust estimator is computed by the following four steps algorithm.

1. Fix a starting value θ(0) for θ0, and initial values τ
(0)
t := τ(ỹt−1

t−m+1; θ
(0)) = 0, for all t = 1, . . . , n

and A(0) such that

A(0)>A(0) =

[
n−1

n∑
t=1

s(ỹt
t−m+1; θ

(0)) s(ỹt
t−m+1; θ

(0))>
]−1

.

2. Compute, for all t = 1, . . . , n, the real roots of equations (1.26), and the associated new values

τ
(1)
t := τ(ỹt−1

t−m+1; θ
(0)) for τt and the new matrix A(1) for A defined by

τ
(1)
t :=

−Ln(ut)− k1,t [Φ(ut)− Φ(ut)] + k2,tM1,t + k1,tM2,t + Ln(ut)
−Ld(ut) + [Φ(ut)− Φ(ut)] + Ld(ut)

,

(A(1)>A(1))−1 :=

n−1
∑n

t=1

(
s(ỹt

t−m+1; θ
(0))− τ

(0)
t

) (
s(ỹt

t−m+1; θ
(0))− τ

(0)
t

)>
×

min2(1, c ‖A(0) (s(ỹt
t−m+1; θ

(0))− τ (0))‖−1).
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3. Compute the robust estimator θ(1) implied by (1.19) for given A(1) and τ
(1)
t as the solution of

the implicit equation

n∑
t=1

(
s(ỹt

t−m+1; θ
(1))− τ

(1)
t

)
min(1, c ‖A(1) (s(ỹt

t−m+1; θ
(0))− τ

(1)
t )‖−1) = 0.

4. Replace A(0) by A(1) and τ
(0)
t by τ

(1)
t for all t = 1, . . . , n and iterate Steps 2 and 3 above until

convergence of the sequence (θ(i))i∈N of estimators associated to (1.19) and to the sequence

(A(i), τ (i))i∈N, where τ (i) := (τ (i)
1 , . . . , τ

(i)
n ).

Starting values for θ(0) could be the PML estimate of θ0 or the result of a grid search algorithm. We

wrote a Matlab code to implement the algorithm and we used the Matlab function ‘roots’ to compute

the real roots of equation (1.26). Analytical expressions for the τ -vectors avoid “internal” simulations

to compute the robust estimator. This largely reduces the computation time. For comparison, we

implemented a second algorithm in which the τ integrals were computed numerically using the Matlab

function ‘quadl’. This algorithm is unfeasible as the computation time of a is almost two hours already

for a simple AR(1)-ARCH(1) model. For further comparison, we also implemented a robust GMM

estimator as in Ronchetti and Trojani (2001) with moment conditions A(θ)(s(ym
1 ; θ)− τ(θ)) w(ym

1 ; θ),

where τ(θ) is given by (1.25). In our simulations of Section 1.6, the computation time of the estima-

tor (1.19)–(1.22) was about 20% the one of such a robust GMM estimator.

1.5 Robust Testing Procedures

The robust estimator defined in (1.19)–(1.22) allows us to derive the optimal robust version of several

ML-type tests to control the maximal bias on the level and the power of the tests induced by local

distributional misspecifications of a null or an alternative hypothesis. Precisely, the robust versions of

the classical Wald, score and likelihood ratio tests based on the robust estimator in (1.19)–(1.22) can
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be derived following the general approach proposed by Heritier and Ronchetti (1994) and Ronchetti

and Trojani (2001). Such robust tests satisfy the optimality criterion of maximizing the asymptotic

power subject to a bound on the asymptotic bias of the level and the power test. In the following, we

present the robust testing procedure and discuss in detail only the robust version of the Wald test.

The score and likelihood ratio test can be similarly derived.

Consider a general null hypothesis of the form

g(a(Pm
θ0

)) = 0, (1.29)

for a smooth function g : Θ −→ Rr such that (∂/∂ a) g(a(Pm
θ ))> is of full column rank r for all θ ∈ Θ.

The aim is to analyze the local stability properties of a ML-type test based on the robust estimator

defined in Section 1.4.2. We consider test statistics nQ that are quadratic forms of a functional U ,

nQ(Pm
n ) := nU(Pm

n )>U(Pm
n ), n ∈ N, (1.30)

where Pm
n is the empirical m-dimensional distribution of the observations ỹ1, . . . , ỹn. The functional

U associated with the Wald test is20

UW (Pm
n ) :=

[
∂g(θ)
∂θ>

V (ψc; θ)
∂g(θ)>

∂θ

]−1/2

θ=a(Pm
n )

g(a(Pm
n )).

Under the reference model Pm
θ0

and the null hypothesis (1.29), nQ(Pm
n ) converges in distribution to a χ2

distribution with r degrees of freedom. To apply the methodology in Heritier and Ronchetti (1994),

we make the following assumption.

Assumption 1.1 Let a bounded-influence estimator a of a(Pm
θ0

) be given. Then,

√
n

(
a(Pm

n )− a(Pm
η(ε,n))

)
→ N (0, V (ψ; θ0)), n →∞ (1.31)

in distribution, uniformly over the sequence (Uη(ε,n)(Pm
θ0

))n∈N of η(ε, n)-neighborhoods of Pm
θ0

defined

by (1.11) for η := η(ε, n) = ε n−1/2 and G ∈ dom(a).

20For the functional U associated with the score and the likelihood ratio test see Heritier and Ronchetti (1994), p. 898.
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Assumption 1.1 is implied by the Fréchet differentiability of the functional a(·); cf. Remark 1.2 after

Corollary 1.1. Under Assumption 1.1 the following proposition holds.

Proposition 1.3 Let a be the robust estimator defined by (1.19)–(1.22) and denote by α the level

functional of the test based on the functional Q(·) in (1.30). Further let (Pm
η(ε,n))n∈N be a sequence

of η(ε, n)-contaminations of the underlying null distribution Pm
θ0

, each of them belonging to the corre-

sponding neighborhood Uη(ε,n)(Pm
θ0

) as defined in (1.11). Then,

lim
n→∞

α(Pm
η(ε,n)) = α0 + µ ε2

∥∥∥∥
∫

Rm

IF (z; U(Pm
θ0

)) dGm(z)
∥∥∥∥

2

+ o(ε2), (1.32)

for all Gm ∈ dom(α), where U(·) is the U -functional associated with the corresponding test,

µ := − ∂

∂β
Hr(q1−α0 ; β)

∣∣∣∣
β=0

,

Hr(·; β) is the cumulative distribution function of a noncentral χ2(r;β) distribution with r degrees of

freedom and noncentrality parameter β ≥ 0, q1−α0 is the 1−α0 quantile of a χ2(r; 0) distribution and

α0 = α(Pm
θ0

) is the nominal level of the test. Moreover, the bias of α(Pm
η(ε,n)) is uniformly bounded by

the inequality

lim
n→∞

|α(Pm
η(ε,n))− α0| ≤ µ ε2 sup

z∈Rm

‖V (ψc; θ0)−1/2 IF cond
ψc

(z; a)‖2 + o(ε2).

As a consequence of Proposition 1.3, the maximal asymptotic bias for the level of the test based on a

is bounded by

lim
n→∞

|α(Pm
η(ε,n))− α0| ≤ µ (ε c)2 + o(ε2). (1.33)

The “power” counterpart of Proposition 1.3 can also be obtained. Hence, also the maximal asymptotic

bias of the power induced by local contaminations of the alternative distribution can be controlled by

imposing a bound on the self-standardized sensitivity of a; cf. Ronchetti and Trojani (2001), Th. 2.
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An important issue in the application of our robust inference procedures is the selection of an

appropriate tuning constant c in (1.19). It appears from the optimality result in Section 1.4.2 and

from (1.33) that such a constant controls the degree of robustness of our robust procedure. This

constant can be chosen according to different criteria. For instance, if one takes a formal inference

point of view, one can use (1.33) to set c as ‘fraction’ of the expected degree of contamination ε and the

maximal allowed bias on the level of the test. A table providing guidance on how to select c according

to such a formal inference criterion is given in Ronchetti and Trojani (2001), p. 54. Alternatively, a

more informal way is to compute the robust estimates for different values of c by imposing a given

percentage of downweighted observations.

1.6 Monte Carlo Simulations

In this section we compare by Monte Carlo simulations the performance of the classical PMLE and the

robust estimator at the reference model and in the presence of model contaminations. We estimate the

AR(1)-ARCH(1) model presented in Example 1.2. We simulate the following contaminated models

“near” the reference model Pθ0 .

1. Standard Gaussian innovations. In this experiment, the innovation ut(θ0) has a standard Gaus-

sian distribution, the PMLE is the MLE and we compare the efficiency of the robust and the

MLE under the reference model Pθ0 .

2. Replacement model (cf. for instance Martin and Yohai (1986)). Under such a model the observed

process X := (xt)t∈Z is generated according to the following data generating process,

xt = (1− ϑη
t )yt + ϑη

t ξt, (1.34)

where the clean process Y := (yt)t∈Z is generated by the reference model Pθ0 and (ϑη
t )t∈Z is an
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i.i.d. 0-1 random sequence independent of Y with the property P(ϑη
t = 1) = η. Hence, at a

time t ∈ Z, the clean observation yt is replaced by ξt with probability η. In our simulations we

set η = 0.5% and ξt = 1.5 for all t. Such a low probability of contaminations is motivated by

some difficulties of the standard PMLE to converge when higher probabilities of contaminations

occur (for e.g. η = 1%). In this experiment the model (1.1)–(1.2) is dynamically “slightly”

misspecified as the dynamic equations (1.1) are not satisfied. This experiment allows to compare

the performances of the PML and the robust estimator when very few observations deviate from

the assumed model.

3. Innovative outlier model (cf. for instance Bustos and Yohai (1986)). Under such a contamination

the innovations are given by ut(θ0) = ǔt(θ0) [(1 − ε) + ε %2]−1/2, where ǔt(θ0) is distributed as

the following mixture distribution

ǔt(θ0) ∼ (1− ε)N (0, 1) + εN (0, %2). (1.35)

We set ε = 1% and % = 3. Contamination (1.35) describes situations where a given shock (or

outlier) affects also future realizations of the process Y. Furthermore, as ut(θ0) ∼ i.i.d.(0, 1),

the dynamic equations in model (1.1)–(1.2) are satisfied and the model is dynamically correctly

specified. Hence, this is a typical situation in which the PMLE is applied (and it is not the

MLE) and there are no theoretical efficiency reasons to prefer one estimator to the other.

The simulation design covers a good range of local deviations from the reference model Pθ0 . The tail

indices (cf. Gasko and Rosenberger (1983), p. 322) of the innovation ut under the given distributions

are 1 for the standard Gaussian distribution, approximately 1.08 for the replacement model (1.34)

and 1.03 for the innovative outlier model (1.35). For comparison, a standard Student t5 distribution

has a tail index of 1.34. Therefore, all simulated distributions are very close and samples from different

processes are virtually undistinguishable.
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We simulate the AR(1)-ARCH(1) model (1.4) for the following parameter choice: ρ0 = 0.01,

ρ1 = 0.8, α0 = 0.02, α1 = 0.8, under the different distributions for yt presented above and for the

sample size n = 1,000. The tuning constant for the robust estimator was set at c = 9. Such a rather

large value implies that very few observations were downweighted21.

Each model is simulated 5,000 times. For each simulation we compute the PML and the robust

estimates for θ0 and the corresponding covariance matrices. Then, for each parameter we compute the

corresponding confidence interval at the 95% confidence level.

1.6.1 Point Estimation

Estimation results are presented in Tables 1.1–1.3. For each estimated parameter, the first row contains

summary statistics for the PML estimates and the second row for the robust estimates. In Figures 1.3–

1.5 we plot the estimated densities of the classical and robust estimator. Table 1.1 shows that the

efficiency loss of the robust estimator at the reference model Pθ0 is almost negligible. Specifically, the

mean squared errors of all parameter estimates are very close. This is confirmed by Figure 1.3. We

recall that in this experiment the PMLE is the MLE. Table 1.2 and Figure 1.4 show instead large mean

squared errors of PML estimates. By contrast, robust estimates maintain low mean squared errors.

It is somehow surprising that such inefficiencies in PML estimates are induced by contaminating (on

average) only 0.5% of the sample observations. Finally, Table 1.3 and Figure 1.5 show that, in terms

of mean squared error, both estimators correctly estimate the conditional mean parameters ρ0 and

ρ1. However, the robust estimator always outperforms the PMLE, especially in the estimation of the

conditional variance parameters α0 and α1. We recall that, under the innovative outlier model (1.35),

the PMLE should “perform well” as model (1.1)–(1.2) is correctly specified.

21For instance, under the reference model Pθ0 only 3 or 4 (out of 1,000) observations were slightly downweighted with

weights of 0.8–0.9.
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In a simulation study not reported here we compared the performances of the RGMM estimates

introduced in Section 1.4.3 and our robust estimator under the reference model Pθ0 and the replacement

model (1.34) for η = 5%, ξt ∼ N (0, 1) and c = 4 for both estimators. The two performances were

quite close, up to the large differences in the computation time.

1.6.2 Interval estimation

Figures 1.6–1.8 show the boxplots of the estimated confidence interval lengths for the PML and the

robust estimates. Actual confidence interval coverages are close to the nominal 95% in both cases. An

exception is the confidence interval of the parameter α0 which is 78% for PML and 92% for the robust

version under the replacement model (1.34). Figure 1.6 shows that, under the reference model Pθ0 , the

confidence intervals lengths for both techniques are almost identical. However, Figure 1.7 shows that,

under the replacement model (1.34), the PML confidence intervals are much larger than the robust

ones, denoting large inaccuracy on the inference results. Finally, Figure 1.8 shows that confidence

intervals are tighter for robust estimates than for PML estimates, especially for the conditional variance

parameters α0 and α1.

1.6.3 Hypothesis Testing

To analyze the performance, outside the contamination model, of the classical PML estimator and our

robust estimator from the perspective of hypothesis testing we also simulated 1,000 sample paths of an

AR(1)-ARCH(1) model for the parameter choice ρ0 = 0 and ρ1 = 0, 0.05, 0.10 and α0 = 0.02, α1 = 0.8

under scaled Student t3 and scaled Student t5 innovations, respectively. We do not necessarily believe

that the innovations follow these distributions but we take t3 and t5 as examples of distributions

which are very close to the normal model. Under scaled Student t innovations the model (1.1)–(1.2) is

dynamically correctly specified and hence the PMLE should perform well. In our experiment we tested
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the joint null hypothesis ρ0 = 0 and ρ1 = 0 by means of a corresponding classical and robust Wald

statistic, respectively. The empirical rejection frequencies of a Wald test based on the classical PML

estimator and a Wald test based on our robust estimator are calculated for a fixed nominal level of

the test of 5%. The results are presented in Table 1.4. The estimated standard error of the empirical

rejection frequency p̂ (using the binomial distribution) is 0.7%, 1.4% and 1.5% for p̂ = 5%, 30%, 60%,

respectively. Table 1.4 shows that the robust Wald test performs very well across all models, while

the classical test is oversized in finite sample and shows a lower power than the robust one.

The low power of classical tests under even slight departures from conditional normality suggests

that robust tests could be useful in application to unmask some possible ‘dynamics’ in the data hidden

by the presence of influential observations.

1.7 Empirical Application

We apply classical and robust Wald tests for ARCH to weekly exchange rate returns of the Swedish

krona against the US dollar over the period November 29th, 1993 until November 17th, 2003. The

data were downloaded from Datastream and consist of 522 observations. The first ten sample auto-

correlations of squared and absolute returns are not significantly different from zero. Moreover, the

Jarque-Bera test has a p-value of 0.47 not rejecting normality. Classical PML estimates for the param-

eters ρ0, ρ1, α0 and α1 of an AR(1)-ARCH(1) model (and Wald test p-values for the hypothesis that

the corresponding parameter is zero) are 0.02 (0.73), −0.030 (0.53), 1.86 (0), 0.06 (0.22). The robust

estimates under a tuning constant c = 4 are 0.01 (0.88), 0.014 (0.75), 1.64 (0), 0.47 (0). Therefore,

as in typical financial return series, the conditional mean parameters are not significantly different

from zero. Moreover, the PML estimate of the ARCH parameter α1 is also not significant. Hence, the

classical Wald test does not reject the homoscedasticity hypothesis. By contrast, the robust estimate
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of this ARCH parameter is highly significant, showing that ARCH effects in the data are possibly

obscured by some outlying observations detected by the robust weights presented in the bottom panel

of Figure 1.9. These results are consistent with the low power of PML tests under non normal con-

ditional returns in Section 1.6.3. Finally, it is interesting to notice that one would expect outliers to

enhance the ARCH structure. Instead, because the estimation of the volatility by classical techniques

is inflated, the potential ARCH structure is hidden by the presence of a few outlying observations.

1.8 Conclusions

We derived optimal bounded-influence estimators for the parameters of conditional location and scale

models under a conditionally Gaussian reference model. Based on these results, we obtained optimal

bounded-influence versions of the classical likelihood-based tests for parametric hypotheses. We pro-

posed an efficient algorithm for the computation of our robust estimators, which strongly reduces the

necessary computation time by avoiding the simulation of multidimensional integrals. Monte Carlo

simulations show that our robust estimators maintain a very high efficiency under ideal model condi-

tions and have good robustness properties under local departures from conditional normality, both in

estimation and inference. On the contrary, classical PML estimators are highly inefficient even under

small departures from conditional Gaussianity. An application to exchange rate data confirms these

patterns.
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true mean median q25 q75 Stdv q75 − q25 MSE%

ρ0 0.0100 0.0099 0.0066 0.0133 0.0051 0.0067 0.0026

0.01 0.0100 0.0100 0.0066 0.0134 0.0051 0.0067 0.0026

ρ1 0.7983 0.7989 0.7896 0.8074 0.0140 0.0178 0.0199

0.8 0.7977 0.7985 0.7890 0.8070 0.0142 0.0181 0.0208

α0 0.0200 0.0199 0.0189 0.0210 0.0015 0.0021 0.0002

0.02 0.0200 0.0200 0.0189 0.0211 0.0015 0.0021 0.0002

α1 0.7976 0.7986 0.7461 0.8496 0.0758 0.1034 0.5756

0.8 0.8007 0.8016 0.7490 0.8525 0.0765 0.1035 0.5850

Table 1.1: Summary statistics for each estimated parameter θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> for the MLE

(first row) and the robust estimator (second row) based on 5,000 simulations of 1,000 observations of

the AR(1)-ARCH(1) model in Example 1.2 under the reference model Pθ0 , i.e. a standard Gaussian

distribution for innovations; cf. Figure 1.3.
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true mean median q25 q75 Stdv q75 − q25 MSE%

ρ0 0.0166 0.0161 0.0102 0.0227 0.0094 0.0125 0.0132

0.01 0.0112 0.0111 0.0074 0.0150 0.0057 0.0076 0.0034

ρ1 0.7930 0.7952 0.7787 0.8089 0.0280 0.0302 0.0832

0.8 0.7959 0.7965 0.7864 0.8063 0.0154 0.0200 0.0254

α0 0.0298 0.0290 0.0246 0.0341 0.0070 0.0095 0.0145

0.02 0.0222 0.0218 0.0204 0.0236 0.0027 0.0032 0.0012

α1 0.8037 0.8052 0.7069 0.9125 0.1337 0.2055 1.7880

0.8 0.8081 0.8064 0.7486 0.8704 0.0896 0.1218 0.8097

Table 1.2: Summary statistics for each estimated parameter θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> for the PMLE

(first row) and the robust estimator (second row) based on 5,000 simulations of 1,000 observations of

the AR(1)-ARCH(1) model in Example 1.2 under the replacement model (1.34); cf. Figure 1.4.
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true mean median q25 q75 Stdv q75 − q25 MSE%

ρ0 0.0100 0.0100 0.0065 0.0135 0.0055 0.0070 0.0030

0.01 0.0100 0.0100 0.0067 0.0132 0.0051 0.0064 0.0026

ρ1 0.7982 0.7988 0.7882 0.8086 0.0159 0.0204 0.0256

0.8 0.7978 0.7983 0.7889 0.8074 0.0143 0.0185 0.0209

α0 0.0199 0.0199 0.0189 0.0210 0.0016 0.0022 0.0003

0.02 0.0194 0.0194 0.0184 0.0203 0.0014 0.0019 0.0002

α1 0.7989 0.7992 0.7405 0.8594 0.0895 0.1189 0.8006

0.8 0.7727 0.7748 0.7225 0.8221 0.0747 0.0995 0.6328

Table 1.3: Summary statistics for each estimated parameter θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> for the PMLE

(first row) and the robust estimator (second row) based on 5,000 simulations of 1,000 observations of

the AR(1)-ARCH(1) model in Example 1.2 under the innovative outlier model (1.35); cf. Figure 1.5.

t3 t5

ρ1 PML ROB PML ROB

0.00 0.08 0.05 0.07 0.05

0.05 0.17 0.24 0.22 0.26

0.10 0.46 0.65 0.62 0.74

Table 1.4: Each entry in the Table corresponds to the empirical rejection frequency of the joint

hypothesis ρ0 = 0 and ρ1 = 0 obtained using 5% critical values for the χ2 test and based on 1,000

simulations of 1,000 observations of the AR(1)-ARCH(1) model in Example 1.2 under scaled t3 and

scaled t5 innovations, respectively.
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Figure 1.3: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> based on 5,000 simulations of 1,000 obser-

vations of the AR(1)-ARCH(1) process in Example 1.2 under the reference model Pθ0 , i.e. Gaussian

distribution for innovations; cf. Table 1.1.
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Figure 1.4: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> based on 5,000 simulations of 1,000

observations of the AR(1)-ARCH(1) process in Example 1.2 under the replacement model (1.34);

cf. Table 1.2.
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Figure 1.5: Estimated densities of θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> based on 5,000 simulations of 1,000

observations of the AR(1)-ARCH(1) process in Example 1.2 under the innovative outlier model (1.35);

cf. Table 1.3.
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Figure 1.6: Boxplot of the lengths of ML (column 1) and robust (column 2) confidence intervals

for θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 1.3) under the reference model Pθ0 .
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Figure 1.7: Boxplot of the lengths of PML (column 1) and robust (column 2) confidence intervals

for θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 1.4) under the replacement model (1.34).
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Figure 1.8: Boxplot of the lengths of PML (column 1) and robust (column 2) confidence intervals

for θ̂0 := (ρ̂0 ρ̂1 α̂0 α̂1)> (cf. Figure 1.5) under the innovative outlier model (1.35).
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Figure 1.9: Weekly exchange rate returns of the Swedish krona versus the US dollar, for the period

11/29/1993 until 11/17/2003 (top panel) and the weights implied by the robust estimate of the AR(1)-

ARCH(1) model with c = 4 (bottom panel).
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Chapter 2

Robust Volatility Estimations for

VaR Predictions

2.1 Abstract

This paper proposes a robust procedure to estimate asset volatilities in order to obtain accurate risk

measure predictions. A model of the (G)ARCH family for historical portfolio returns is estimated with

an efficient robust estimator. Resampling procedures are applied on standardized residuals to estimate

VaR risk measures. In some Monte Carlo simulations we show that our robust approach performs well

compared to competing approaches based on non robust volatility estimation procedures. Backtesting

on four stock price series show that our robust approach gives more stable VaR profiles and reserve

amounts than classical approaches and a similar backtesting performance.
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2.2 Introduction

In this paper we propose a robust procedure for risk measure estimates, based on the robust filtering

of historically simulated portfolio returns. Precisely, a model of the (G)ARCH family for portfolio

returns volatilities is estimated by an efficient robust estimator. Historical residual returns are stan-

dardized by past conditional volatilities to make them suitable for historical simulation. Then, they

are scaled by the current conditional volatility forecast to reflect current market conditions. Simulated

financial returns based on these residuals allow to estimate the future distribution of portfolio returns.

From such a distribution several measures of market risk can be easily computed; cf. Barone-Adesi,

Giannopoulos and Vosper (1999, 2000).

Large portfolios of traded assets held by most financial institutions have made the measurement

of market risk, i.e. the risk of losses on the trading book due to adverse market movements, a primary

concern for regulators and for internal risk managers. In particular, banks are required to hold a certain

amount of capital against adverse market movements. According to the Basle Committee (1996), the

risk capital of any bank must be sufficient to cover losses on the trading book over a ten days holding

period 99% of the times. Such a risk capital is usually called Value at Risk (VaR). Of course, holding

periods and confidence levels may vary according to the form of investigated problems. For internal

purposes, most banks use VaR at a 95% confidence level and a horizon of one day. From a statistical

viewpoint the VaR is simply the quantile of the profit and loss (P&L) distribution of a given portfolio

over a certain holding period.

In the financial literature other measures of market risk have been proposed. For instance, Artzner

et al. (1999) showed the theoretical deficiencies of VaR as a measure of market risk and proposed the

expected shortfall (or tail conditional expectation), i.e. the expected loss given that the loss exceeds

the VaR, as a sounder alternative. The main problem in implementing all such risk measures is to
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obtain accurate estimates for the tails of P&L distributions. Two main approaches have been proposed

for estimating P&L distributions1: nonparametric historical simulation (HS) methods and parametric

methods based on dynamic models for the conditional volatility of asset returns.

In the HS method the estimated P&L distribution of a portfolio is simply the empirical distribution

of past gains and losses that the bank would have earned by holding that portfolio. Hence, the method

is easy to implement and avoids “ad hoc” assumptions on the shape of the P&L distribution (such as

normality). However, this method suffers from serious drawbacks. Firstly, the implicit assumption of

independent and identically distributed (i.i.d.) historically simulated returns is unrealistic. It is well-

known that the volatility of asset returns tends to change in time and that periods of high volatilities

tend to cluster; cf., for instance, Cont (2001). The method is unable to distinguish between periods

of high and low volatility and can not reflect the present market conditions.

Parametric models of volatility dynamics, such as GARCH models, yield risk measure estimates

which reflect the current level of volatilities. However, such models often assume conditional normality

of innovations (see, e.g., JP Morgan’s Riskmetrics (1995)), while real data seems to exhibit excess

kurtosis. Hence, these methods tend to underestimate the portfolio riskiness.

The filtered historical simulation (FHS) method offers the advantages of the previous two ap-

proaches. The conditional heteroscedasticity of asset returns is taken into account by modelling asset

returns with a GARCH-type model. The scaled residuals (or “filtered” returns) are, at least approxi-

mately, an i.i.d. series suitable for resampling procedures and historical simulation. The non-normality

of conditional asset returns typically induces a heavy tailed distribution for the scaled residuals.

So far the FHS method have been applied based on the PML estimates of GARCH-type models;

cf., for instance, Barone-Adesi et al. (1999) and McNeil and Frey (2000). Unfortunately, it is known

that such estimates can be largely determined by a few outlying observations, inducing misleading

1See for instance Duffie and Pan (1997) and the references therein.
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inference results; cf., for instance, Künsch (1984), Sakata and White (1998) and Mancini, Ronchetti

and Trojani (2004). Of course, outlying observations (due for instance to some liquidity patterns or

market crashes) are a fundamental component of the data generating process and in particular of

the riskiness we aim to measure. However, such outlying observations are typically unexplained by

parametric volatility models, which can reasonably well-describe only some “structural” part of the

data generating process. Moreover, these “shocks” can induce biased PML estimates, i.e. parameter

estimates not representative for the parametric reference model. In these cases, filtering and forecasting

procedures can be negatively affected using biased inadequate parameter estimates.

In this paper we propose to “filter” the historical portfolio returns by some robustly estimated

GARCH model (cf. Mancini et al. (2004)) and then to estimate the future distribution of financial

returns by applying the FHS method. For brevity, we call this procedure robust FHS method. Using

our robust estimator, efficient parameter estimates for the parametric reference model are obtained

under general local deviations of the true data generating process from such a reference model. In a

second step, historical portfolio returns are filtered using such a reference model and VaR estimates

are computed applying resampling procedures.

In order to verify the accuracy of VaR figures reported by financial institutions, the Basle Com-

mittee (1996) recommends the so-called “backtesting” procedure. If an institution correctly reports,

say, the daily VaR’s at 1% confidence level the actual daily losses should exceed (on average) the

reported VaR’s only 1% of the time. The trading day in which the actual loss exceeds the reported

VaR is considered a violation. If the number of violations is “high” regulators will force the bank to

increase the capital charge. As interest rates paid on such capital charges are virtually negligible, the

bank will suffer a substantial opportunity cost. In risk management, the stability over time of the

reserve amounts is also a desirable feature, as for a financial institution it is difficult to rapidly adjust

the capital base. Furthermore, stable VaR profiles over time also allow to adapt outstanding risk
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exposures to VaR limits more smoothly and, thus, more efficiently. In the backtest of Section 2.5 we

show that the proposed robust FHS method induces more stable reserve estimates then the classical

ones and a similar backtesting performance.

Recently, Diebold, Schuermann and Stroughair (1998) and McNeil and Frey (2000) proposed an

approach to estimate risk measures based on the FHS method, where each tail of the filtered return

distribution is separately estimated using an Extreme Value Theory approach. This procedure offers a

parametric form for the tails of the conditional return distributions and allows for some extrapolation

beyond the range of the data, even if care is required at this point2. A potentially alternative approach

is to compute risk measures “directly”, i.e. without using the FHS method, applying statistical tools

designed to estimate regression quantiles and conditional distributions; see for instance Koenker and

Bassett (1978), Foresi and Peracchi (1995) and Peracchi (2002). However, possible drawbacks of

regression quantiles are their behaviour under heteroschedasticity and the non robustness to “bad”

leverage points; see Koenker and Bassett (1982).

The structure of the paper is as follows. Section 2.3 briefly recalls the FHS method and introduces

the robust estimator applied in the robust FHS method. Section 2.4 shows some Monte Carlo simula-

tions comparing classical and robust FHS methods. Section 2.5 presents the out of sample backtesting

performances on four stock price series of classical and robust FHS methods. Section 2.6 concludes

and outlines some directions for future research.

2A potential disadvantage of this approach is due to the separate estimation of the tails distribution, because an

increase in the market risk warned by large positive returns remains undetected by this procedure.
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2.3 The Model

Let Y := (Yt)t∈Z be a stationary time series process on the probability space (R∞,F ,P∗) modelling

daily rate of returns on a financial asset with price Pt at time t, i.e. Yt := Pt/Pt−1 − 1. Assume that

P∗ can be “approximated” by some parametric model P := {Pθ, θ ∈ Θ ⊆ Rp}. Precisely, P∗ ∈ U(Pθ0)

for some θ0 ∈ Θ and U(G) denotes some nonparametric neighborhood of G. Under Pθ0 , Yt satisfies

Yt = µt(θ0) + σt(θ0)Zt, (2.1)

where µt(θ0) and σ2
t (θ0) parameterize the conditional mean and the conditional variance of Yt, given

the information Ft−1 up to time t − 1. Under Pθ0 the innovations Zt’s are a strict white noise, i.e.

Zt ∼ i.i.d.N (0, 1) for all t ∈ Z. Denote by Y m
1 := (Y1, . . . , Ym) the finite random sequence of Y

and by Pm
∗ (Pm

θ0
) the m-dimensional marginal distribution of Y m

1 induced by P∗ (Pθ0). Denote by

Ft,h(·) the conditional returns distribution induced by P∗ over h days Yt+h,h := Pt+h/Pt − 1, given

the information Ft. For 0 < α < 1 and horizon h days, the corresponding quantile of Ft,h(·) is

yα,h
t+h := inf{y ∈ R : Ft,h(y) ≥ α}.

Formally, the required capital or Value at Risk (VaR) at time t for an institution investing in a financial

asset with market price Pt is V aRα,h
t = Pt + Rα,h

t , where Rα,h
t is the reserve amount such that the

probability of a loss over the next h days is “small” and equal3 to some level α

α = P∗(Pt+h + Rα,h
t < 0 |Ft) = P∗(Pt+h − Pt < −V aRα,h

t |Ft). (2.2)

Hence, −V aRα,h
t = Pt yα,h

t+h is the α quantile of the P&L distribution under P∗ over the next h days,

given the available information Ft. From an economic viewpoint, V aRα,h
t is the minimum loss over

the next h days with probability α.

3For simplicity, in equation (2.2) we consider a continuous P&L distribution under P∗.
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An alternative measure of market risk is the expected shortfall,

Sα,h
t+h := E∗[Yt+h,h |Yt+h,h < yα,h

t+h , Ft],

where E∗[·] denotes expectation with respect to P∗; cf. Artzner et al. (1999). When h = 1 the previous

risk measures simplify to

yα,1
t = µt(θ0) + σt(θ0) zα and Sα,1

t = µt(θ0) + σt(θ0)E∗[Z |Z < zα],

where zα is the α quantile of the distribution of Zt, which by assumption does not depend on t.

Our aim is to derive robust inference on such risk measures (for different horizons h and confidence

levels α) when the true underlying distribution P∗ is unknown and belongs to some nonparametric

neighborhood of the parametric reference model Pθ0 . Then, model (2.1) is regarded as an “approxi-

mate” description of the true data generating process P∗.

2.3.1 Estimation Procedures

Typically, model (2.1) is estimated by a Pseudo Maximum Likelihood (PML) approach (cf. Gourieroux,

Monfort and Trognon (1984)), under the nominal assumption of Gaussian innovations. The functional

PML estimator a : P −→ Θ is implicitly defined by the estimating equation

E∗[s(Y m
1 ; a(Pm

θ0
))] = 0,

where

s(Y m
1 ; θ) =

1
σ2

m(θ)
∂µm(θ)

∂θ
εm(θ) +

1
2σ2

m(θ)
∂σ2

m(θ)
∂θ

(
ε2
m(θ)

σ2
m(θ)

− 1
)

(2.3)

and εm(θ) := σm(θ)Zm. Under the model Pm
θ0

the PMLE is the MLE and has an asymptotic normal

distribution with covariance matrix V (s; θ0) = I(θ0)−1, where I(θ) = E∗[s(Y m
1 ; θ) s(Y m

1 ; θ)>] is the

information matrix.
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However, if indeed model (2.1) is slightly different from the true data generating process of Y, PML

estimators can induce biased and inefficient inference results on θ0; cf., for instance, Künsch (1984),

Sakata and White (1998) and Mancini, Ronchetti and Trojani (2004). As one could expect, this will

induce also inaccurate risk measure estimates; cf. Section 2.4.

In the present time series setting, to describe the linearized asymptotic bias of a statistical func-

tional ã in a neighborhood of Pθ0 we introduce the following concept from the theory of robust statistics;

cf. Künsch (1984) and Hampel et al. (1986).

Definition 2.1 The conditional influence function of a statistical functional4 ã is the function IF :

Rm ×Θ −→ Rp such that

i) lim
η↓0

ã((1− η)Pm
θ0

+ ηGm)− ã(Pm
θ0

)
η

=
∫

Rm

IF (y; ã(Pm
θ0

)) dGm(y),

ii) Eθ0 [IF (y; ã(Pθ0))|Fm−1] = 0,

where Eθ0 [·] denotes the expectation with respect to the reference distribution Pm
θ0

, Gm is any stationary

m-dimensional distribution on Rm, and provided the limit exists.

A bounded conditional IF ensures a bounded linearized asymptotic bias of the estimator induced by

any distribution in a neighborhood of Pm
θ0

. Unfortunately, the bias of the PMLE is given by

a(Pm
∗ )− a(Pm

θ0
) ∝

∫

Rm

s(y; θ0) dGm(y),

where the score function s is defined in equation (2.3) and is unbounded at least in εm(θ).

In order to obtain robust estimates for θ0 in the neighborhood of Pm
θ0

, we use the robust estimator

proposed in Mancini et al. (2004).

4In the following we will always assume that the domain of the given statistical functional is an open convex subset

of P containing Pθ0 and all empirical measures.
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Let ψc(Y m
1 ; θ) := A(θ)

(
s(Y m

1 ; θ)− τ(Y m−1
1 ; θ)

)
w(Y m

1 ; θ). We define a robust functional M -estima-

tor a(·) of θ0 implicitly by

E∗[ψc(Y m
1 ; a(Pθ0))] = 0, (2.4)

where w(Y m
1 ; θ) := min(1, c ‖A(θ)

(
s(Y m

1 ; θ)− τ(Y m−1
1 ; θ)

) ‖−1). The non singular matrix A(θ) ∈

Rp × Rp and the Fm−1-measurable random vectors τ(Y m−1
1 ; θ) ∈ Rp are determined by the implicit

equations

Eθ0 [ψc(Y m
1 ; θ0) ψc(Y m

1 ; θ0)>] = I, (2.5)

Eθ0 [ψc(Y m
1 ; θ0)|Fm−1] = 0. (2.6)

The estimating function ψc is a truncated version of the ML score (2.3) and can be interpreted as

a weighted ML score as, by construction, ‖ψc(Y m
1 ; θ)‖ ≤ c. The constant c ≥ √

p is chosen by the

researcher and controls for the degree of robustness of the robust estimator5. When c = ∞, a is the

MLE of θ0 under Pm
θ0

.

The robust estimator defined in (2.4)–(2.6) is the most efficient estimator among all robust estima-

tors a satisfying equation (2.6) and the robustness constraint supz∈Rm ‖V (ψc; θ0)−1/2IF (z; a(Pm
θ0

))‖ ≤

c; cf. Mancini et al. (2004), Proposition 1.

2.3.2 Filtering Historical Simulations

In order to implement an estimation procedure for VaR risk measures, the dynamics for the con-

ditional mean and volatility of asset returns in model (2.1) have to be specified. Many different

models have been proposed in the econometric literature such as GARCH models (cf. Bollerslev et

5See Ronchetti and Trojani (2001) for a choice of c based on the maximal bias in the level and the power of tests

derived by the corresponding robust estimator.
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al. (1992)), HARCH models (Müller et al. (1995)) and stochastic volatility models (cf., for instance,

Shepard (1996)). In this paper we assume an AR(1) model for the conditional mean and a GARCH(1,1)

model for the volatility process; the approach we propose extends easily to more general models. Hence,

the conditional mean and variance of the innovation εt(θ) = Yt − µt(θ) are

µt(θ0) = ρ0 + ρ1Yt−1, (2.7)

σ2
t (θ0) = α0 + α1ε

2
t−1(θ0) + βσ2

t−1(θ0), (2.8)

where α0, α1, β > 0, |ρ1| < 1 and α1 + β < 1.

To compute VaR risk measures, we follow the approach of filtering the historical simulation as

proposed by Barone-Adesi, Bourgoin and Giannopoulos (1998). We briefly review the method which

is in two steps. Given the observed daily rate of returns {y1, y2, . . . , yT } at the end of day T ,

Step 1. Fit the model (2.7)–(2.8) to the sample data to get the parameter estimate θ̂ = (ρ̂0 ρ̂1 α̂0 α̂1 β̂)>.

Then, estimate the scaled residuals (or “filter” the observed returns)

ẑt =
yt − µt(θ̂)

σt(θ̂)
,

for all t = 1, . . . , T , where the conditional mean and standard deviation series (µt(θ̂), σt(θ̂))t=1,...,T are

computed recursively from (2.7)–(2.8) after having substituted sensible starting values.

Step 2. Randomly select one estimated scaled innovation, say z?
1 , from {ẑ1, . . . , ẑT }, and compute

ε?
T+1 := σ̂T+1z

?
1 to simulate

y?
T+1 = ρ̂0 + ρ̂1yT + ε?

T+1 and p?
T+1 = pT (1 + y?

T+1).

Randomly select (with replacement) a second scaled innovation, say z?
2 , and compute ε?

T+2 := σ?
T+2z

?
2 ,

where σ?
T+2 = (α̂0 + α̂1ε

? 2
T+1 + β̂σ2

T+1)
1/2. Simulate

y?
T+2 = ρ̂0 + ρ̂1y

?
T+1 + ε?

T+2 and p?
T+2 = p?

T+1 (1 + y?
T+2)
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and so on up to p?
T+h. Repeat 10,000 times the procedure in Step 2 to estimate the distribution of

YT+h,h|FT . The h-days-ahead VaR forecast at a 1% level is the 1% percentile of such a distribution.

Similarly, the expected shortfall measure is readily computed. The 1-day-ahead VaR forecast can also

be computed using the empirical version of the quantile zα.

The main advantage of this procedure is that it accounts for the heteroscedasticity observed in

most financial time series returns and that it avoids ad hoc assumptions on the error distribution

(such as normality). This procedure is semi parametric as volatilities are modeled by a parametric

GARCH model and the innovation distribution is estimated by a nonparametric resampling method.

The robust methods developed in Mancini et al. (2004) do not apply to situations in which the

conditional variance depends on the entire data history, as for instance in GARCH models. However,

as in Sakata and White (1998), we can heuristically expect our robust estimator to accurately perform

under well behaved GARCH models with sufficient memory decay such that the effects of outliers

distant in time may die out. The robust methods developed in Mancini et al. (2004) do not explicitly

study such a setting. Nevertheless, it seems plausible that the estimator a defined in (2.4)–(2.6) may

be shown to have relatively high robustness even for such GARCH models. Therefore, the robust

estimator a(·) allows to obtain efficient parameter estimates of the model (2.7)–(2.8) under general

local deviations of the true data generating process from such a reference model. Clearly, accurate

parameter estimates are of critical importance as they enter both in the filtering of historical returns

and in the estimation of the distribution YT+h,h|FT . When the model (2.7)–(2.8) is estimated by the

robust estimator (2.4)–(2.6), the procedure is called robust FHS method. When the model (2.7)–(2.8)

is estimated by the PML estimator defined by (2.3), the procedure is called FHS method. In the next

sections we compare the risk measure estimates of the classical and robust FHS methods on simulated

and real data.
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2.4 Monte Carlo Simulations

To compare the performance of the classical and the robust FHS method we compute the out of sample

predictions of the VaR for confidence levels α = 5%, 1% and horizons h = 1 day, 10 days when the

daily returns Yt follow an AR(1)-GARCH(1,1) model. We simulate the following dynamics for Y.

1. Student t5 innovation model. In this experiment, the scaled innovation in (2.1) is given by

Zt = ((ν − 2)/ν)1/2 Tν,t,

where Tν,t has a Student t distribution with ν > 2 degrees of freedom for all t ∈ Z. Hence,

Zt ∼ i.i.d.(0, 1), the model (2.1) is dynamically correctly specified and the estimator defined

by (2.3) is indeed a PMLE. Therefore, there are no theoretical reasons to prefer our robust

estimator to the PML estimator. Notice that the t5 distribution is quite close to the normal

distribution under which the estimator defined by (2.3) is the MLE.

2. Laplace innovation model. The scaled innovation in (2.1) is given by

Zt = 2−1/2 Lt,

where Lt has a Laplace (or Double exponential) distribution for all t ∈ Z. Such a distribution has

a symmetric convex density and displays more heavy tails than the t5. Also in this experiment

Zt ∼ i.i.d.(0, 1) and model (2.1) is dynamically correctly specified.

3. Replace-innovative model. Under such a model the observed process Y := (Yt)t∈Z is generated

according to the data generating process

Yt =





ρ0 + ρ1Yt−1 + εt, 1− q,

Y̌t, q,

where Y̌t ∼ N (0, %2), εt ∼ N (0, σ2
t ) and σ2

t is given by (2.8). Hence, at a time t the observed

Yt is not generated by the GARCH dynamic with probability q. The possible “shock” Y̌t will
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affect future realizations of Y , mainly “inflating” the conditional variance on subsequent days.

In this experiment the model (2.1) is “slightly” misspecified as the dynamic equations (2.7)–(2.8)

are not satisfied. We set % = 10 and q = 0.2%. The choice for % is quite extreme and allows

to compare the performance of the two approaches under very infrequent, dramatic, symmetric

shocks that could occur over short time periods in real data, as for instance in daily equity or

exchange rate returns.

We simulate an AR(1)-GARCH(1,1) model for the following parameter choice6 ρ0 = ρ1 = 0.01,

α0 = 0.03, α1 = 0.1 and β = 0.8 under the above distribution for Yt and for a sample size T = 1,000.

Hence, under the reference model Pθ0 the volatility of Yt is about 10% on an annual base. The tuning

constant of the robust estimator a was set at c = 9. Such a rather large value of the tuning constant c

implies that only a few observations are downweighted and this is motivated by the high quality of

financial data. Each model is simulated 1,000 times. For each simulation we compute yα,h
T+h, i.e. the

out of sample VaR predictions (as a percentage of the simulated price pT ) for confidence levels α =

5%, 1% and horizons h = 1 day, 10 days. We apply the FHS method based on the classical and the

robust estimates of the model (2.7)–(2.8).

Table 2.1 shows bias and mean squared error of the PML and robust parameter estimates for the

AR(1)-GARCH(1,1) model (2.7)–(2.8). The robust estimator largely outperforms the classical PML

estimator in terms of bias and mean squared error in all experiments and for almost all estimated

parameters.

6Similar parameter estimates have been reported by Bollerslev, Engle and Nelson (1994) for the daily rate of returns

of the Deutschemark versus the U.S. Dollar exchange rate from January 2nd, 1981 to July 9th, 1992.
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2.4.1 VaR Violations

Table 2.2 shows for the classical and robust FHS method the number of violations of the VaR estimates

for horizons h = 1 day, 10 days and confidence levels α = 5%, 1%. In the i-th simulation, a violation

occurs when the actual loss is larger then the predicted VaR, i.e. I(i) := 1{yT+h,h(i)<yα,h
T+h(i)} = 1.

Under the null hypothesis that the proposed method correctly estimates the VaR, the test statistic

∑1000
i=1 I(i) is binomially distributed Bin(1000, α); cf. for instance Christoffersen et al. (1998). Hence,

for α = 0.05 and 0.01 the expected number of violations for both methods are 50 and 10 and two-sided

confidence intervals at a 95% level are [37, 64] and [4, 17], respectively. Both methods exhibit numbers

of violations within such intervals.

2.4.2 VaR Predictions

Tables 2.3–2.4 show the performances of the classical and robust FHS method in predicting the VaR

for horizons h = 1 day, 10 days and confidence levels α = 5%, 1% in the different experiments. To

evaluate the overall performances, we compute the bias and the mean squared error (MSE) of the VaR

estimates. Then, we split our simulation results in two subsets. The first subset collects all simulations

where the predicted VaR’s exceed (in absolute value) the true VaR’s and the second subset the opposite

cases. The first subset denoted by VaR+ reflects an “opportunity cost” for a bank associated with an

unduly high reserve amount. The second subset denoted by VaR− reflects an “hidden risk” undetected

by the VaR estimates. Under a given experiment, for each simulation, we compute the true VaR by

simulating 100,000 times the true dynamic for Y over the relevant time horizon [T, T + h] and then

by computing the relevant quantiles of the corresponding empirical distribution of YT+h,h|FT .

In the first two experiments (Student t5 and Laplace innovation model), the classical and the robust

FHS method have similar biases, but the robust FHS method always displays a lower MSE; cf. also the

first two panels in Figures 2.1–2.2. For the horizon h = 1 day the reduction in the MSE’s is (about)
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10% for the Student t5 and 25% for the Laplace innovation model. For the horizon h = 10 days

these reductions tend to decrease (especially at 1% confidence level and for the Laplace innovation

model). The classical FHS method displays a rather low bias in the VaR estimates under the Laplace

innovation model. For the horizon h = 1 day the statistics for VaR+ and VaR− are almost always in

favor of the robust FHS method. For the horizon h = 10 days the robust FHS method still outperforms

the classical ones.

In the third experiment (replace-innovative model), for the horizon h = 1 day, the robust FHS

method largely outperforms the classical one in terms of MSE’s, means and standard deviations of

VaR+ and VaR−. For the horizon h = 10 days the classical FHS method breaks down, while the

robust FHS method still delivers quite reasonable estimates for the VaR at a 5% confidence level. For

the VaR at a 1% confidence level also the robust FHS method breaks down; cf. also the third panel in

Figures 2.1–2.2.

2.4.3 VaR Levels in High Volatility Periods

Since accurate VaR estimates are particularly important in “high volatility” periods, for each ex-

periment we collect VaR predictions where σ2
T , i.e. the conditional variance at the end of the “esti-

mating period”, was in the upper decile of its simulated distribution. Then, given such VaR pre-

dictions for each confidence level and horizon we compute the actual probability of a violation, i.e.

P∗(YT+h,h < ŷα,h
T+h|FT ), which is equal to α under the null hypothesis that the proposed method

correctly estimates the VaR. Figures 2.3–2.4 show the boxplots of such probabilities for horizons h = 1

day, 10 days. In the first two experiments the classical FHS method tends to underestimate the VaR

(being the corresponding, actual probabilities larger than α), especially for the 1% confidence level.

The robust FHS method performs generally well and only under the Laplace innovation model for the

horizon h = 10 days seems to be too conservative. In the last experiment the robust FHS method
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largely outperforms the classical one, even though such differences decrease from horizon h = 1 day to

horizon h = 10 days. Similar boxplots for the “medium” and the “low” volatility cases (not reported

here) show that in such cases the overall performances of the two methods are quite close. As one

could expect, accurate model parameter estimates are more valuable in “high” volatility periods than

in the “low” volatility ones.

2.5 Backtesting

We backtest the method on four historical series of daily rate of returns: the Dow Jones index, the

BMW, Microsoft and Nestle share prices from December 10th, 1993 to December 10th, 2003. The data

were downloaded from Datastream. To backtest the FHS methods on a historical series y1, . . . , yl,

where l À n, we compute yα,h
T+h for T ∈ T = {n, n + 1, . . . , l − h} using a time window of n days for

each estimate. In our implementation we set n = 1,000, hence using about the last four years of data

for each prediction. For each day T ∈ T we estimate an AR(1)-GARCH(1,1) model using the PML

estimator defined by (2.3) and our robust estimator (2.4)–(2.6). Then, using resampling methods we

compute the out of sample VaR and reserve estimates based on classical and robust filtered returns

for the usual horizons and confidence levels.

2.5.1 VaR Violations

Table 2.5 shows the number of violations and the two-sided p-values for the null hypothesis that the

proposed method correctly predicts the VaR’s; cf. also Figures 2.5–2.8. Both methods perform well

with the exception of the classical FHS method in the backtest on Microsoft returns. In this case, the

high number of violations is due to a few large spikes in the data which “inflate” the classical estimates

of the conditional variances, inducing a “thin” tailed distribution for the classical residuals and an
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underestimation of actual VaR’s. By contrast, our robust estimator yields parameter estimates of α0

(which controls the level of volatility) 60% lower on average than the corresponding PML estimates.

Hence, robust residuals have a more heavy tailed distribution.

2.5.2 Reserve Amounts

Tables 2.6–2.7 show summary statistics of the reserve amounts defined by (2.2) and estimated using

the classical and robust FHS methods for horizons h = 1 day and h = 10 days, respectively; cf. again

Figures 2.5–2.8. For comparisons, we compute reserve amounts for portfolios invested in each single

asset and valued 100 units of domestic currency at December 10th, 1993. In the backtestings on the

Dow Jones and BMW returns, for both horizons h = 1 day, 10 days, in terms of standard deviations

and interquartile ranges, the robust FHS method yields more stable reserve estimates (about 20%)

then the classical ones, especially for the reserves at 1% confidence level. For the backtest on the

Nestle returns, the overall performances of the two methods are quite close.

2.6 Conclusions and Future Developments

We proposed an efficient robust method to estimate asset return volatilities. Then, resampling proce-

dures on standardized residuals are applied in order to obtain accurate out of sample VaR predictions.

By means of Monte Carlo simulations we showed that the proposed method performs well compared

to competing approaches based on non robust volatility estimation procedures. Backtesting on four

stock price series showed that our robust approach gives more stable VaR profiles and reserve amounts

than classical (non robust) approaches and similar backtesting performances in terms of number of

violations.

The present work suggests some possible directions for future research. First, it would be interesting
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to develop a robust VaR estimation procedure based on the present robust volatility estimation and

on a robust resampling method or a robust estimation of the tails of innovation distributions. Second,

the backtesting considered in Section 2.5 could be repeated using asymmetric/threshold GARCH

models for stock returns able to account for possible leverage effects in the data. Finally, backtesting

performances of the proposed method could be investigated also for other price series, such as interest

or exchange rates.
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ρ0 = 0.01 ρ1 = 0.01 α0 = 0.03 α1 = 0.1 α1 = 0.8

bias MSE% bias MSE% bias MSE% bias MSE% bias MSE%

cl 0.0000 0.0271 −0.0019 0.1354 0.0016 0.0246 0.0038 0.1933 −0.0076 0.7730

rob 0.0005 0.0133 0.0004 0.0134 −0.0035 0.0162 −0.0024 0.1541 0.0049 0.6162

cl 0.0006 0.0268 −0.0010 0.1367 0.0010 0.0191 0.0018 0.1510 −0.0036 0.6041

rob −0.0001 0.0001 −0.0001 0.0001 −0.0012 0.0012 0.0021 0.0088 −0.0042 0.0351

cl −0.0023 0.1833 −0.0027 0.6162 0.0674 2.0589 0.0356 1.2348 −0.0712 4.9392

rob −0.0003 0.0282 −0.0002 0.0301 0.0116 0.1899 −0.0023 0.1616 0.0046 0.8464

Table 2.1: Bias and MSE of estimated parameters of the AR(1)-GARCH(1,1) model under Student t5

innovation (first panel), Laplace innovation (second panel), replace-innovative model (third panel).

Stud t5 Laplace rep-innov Stud t5 Laplace rep-innov

cl - 5% 59 54 53 45 47 37

rob - 5% 61 51 53 44 49 41

cl - 1% 15 15 12 8 11 8

rob - 1% 15 13 9 7 10 8

Table 2.2: Number of violations for horizons h = 1 day (left panel) and h = 10 days (right panel).

72



bias MSE mean VaR+ std VaR+ mean VaR− std VaR−

cl - 5% −0.0079 0.0052 0.0485 0.0467 −0.0528 0.0546

rob - 5% −0.0067 0.0045 0.0472 0.0460 −0.0488 0.0482

cl - 1% −0.0390 0.0254 0.1063 0.0955 −0.1270 0.1113

rob - 1% −0.0381 0.0234 0.1100 0.0956 −0.1211 0.0996

cl - 5% 0.0005 0.0051 0.0572 0.0510 −0.0520 0.0413

rob - 5% 0.0031 0.0034 0.0498 0.0394 −0.0423 0.0319

cl - 1% −0.0026 0.0215 0.1182 0.1029 −0.1072 0.0854

rob - 1% 0.0048 0.0168 0.1089 0.0906 −0.0950 0.0684

cl - 5% −0.0079 0.0801 0.0823 0.1030 −0.1141 0.3761

rob - 5% −0.0059 0.0117 0.0415 0.0374 −0.0526 0.1324

cl - 1% 0.0163 0.1379 0.1555 0.1832 −0.1565 0.4620

rob - 1% −0.0064 0.0304 0.0778 0.0680 −0.0887 0.2045

Table 2.3: Statistics of VaR estimates for horizon h = 1 day, confidence levels 5% and 1% under

Student t5 innovation (first panel), Laplace innovation (second panel) and replace-innovative model

(third panel). VaR+ denotes cases where the estimated VaR’s exceed the true VaR and VaR− opposite

cases.
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bias MSE mean VaR+ std VaR+ mean VaR− std VaR−

cl - 5% −0.0237 0.0645 0.1946 0.1613 −0.2045 0.1527

rob - 5% −0.0156 0.0541 0.1831 0.1463 −0.1868 0.1363

cl - 1% 0.1341 0.2034 0.3968 0.3086 −0.2813 0.2161

rob - 1% 0.1614 0.2011 0.4027 0.3126 −0.2489 0.1987

cl - 5% 0.0039 0.0682 0.2088 0.1619 −0.2053 0.1568

rob - 5% 0.0154 0.0671 0.2081 0.1731 −0.1951 0.1497

cl - 1% −0.0116 0.1891 0.3492 0.2899 −0.3341 0.2503

rob - 1% 0.0379 0.1861 0.3646 0.3073 −0.2980 0.2350

cl - 5% 0.0296 0.9212 0.4301 0.5081 −0.4249 1.1342

rob - 5% −0.0053 0.1552 0.2570 0.2415 −0.2469 0.3506

cl - 1% 0.6214 6.6174 2.2312 2.6798 −0.7710 1.1158

rob - 1% 0.6032 6.1515 2.3041 2.9306 −0.6261 0.4203

Table 2.4: Statistics of VaR estimates for horizon h = 10 days, confidence levels 5% and 1% under

Student t5 innovation (first panel), Laplace innovation (second panel) and replace-innovative model

(third panel). VaR+ denotes cases where the estimated VaR’s exceed the true VaR and VaR− opposite

cases.
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Expect. 5% cl - 5% rob - 5% Expect. 1% cl - 1% rob - 1%

Dow Jones 80 79 (0.88) 83 (0.76) 16 17 (0.82) 18 (0.63)

BMW 80 77 (0.70) 82 (0.85) 16 20 (0.32) 20 (0.32)

Microsoft 80 104 (0.01) 93 (0.15) 16 13 (0.44) 19 (0.46)

Nestle 80 81 (0.94) 76 (0.62) 16 18 (0.63) 16 (0.99)

Dow Jones 80 83 (0.88) 83 (0.88) 16 26 (0.39) 26 (0.39)

BMW 80 76 (0.84) 76 (0.84) 16 17 (0.90) 17 (0.90)

Microsoft 80 130 (0.06) 109 (0.22) 16 28 (0.27) 18 (0.79)

Nestle 80 84 (0.84) 85 (0.80) 16 21 (0.51) 19 (0.67)

Table 2.5: Backtesting results. Number of violations using classical and robust FHS method for

horizon h = 1 day (first panel) and h = 10 days (second panel); p-values in parenthesis.
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mean median stdv q25 q75 q75 − q25

cl - 5% 243.2 214.0 138.9 150.8 308.3 157.4

rob - 5% 225.7 209.4 112.2 151.5 281.0 129.5

cl - 1% 546.2 499.1 223.3 394.9 642.5 247.6

rob - 1% 519.3 485.8 171.8 406.3 587.7 181.4

cl - 5% 915.7 855.9 284.7 713.5 1079.3 365.8

rob - 5% 893.4 854.5 239.8 730.6 1029.6 299.0

cl - 1% 1643.2 1554.5 456.6 1339.2 1879.0 539.8

rob - 1% 1623.9 1574.0 395.4 1347.2 1855.0 507.8

cl - 5% 3122.3 2959.3 1313.7 2397.9 3644.8 1246.9

rob - 5% 3375.9 3141.1 1479.8 2418.6 4101.0 1682.5

cl - 1% 6888.9 6572.5 2627.9 5352.3 8043.8 2691.6

rob - 1% 6242.9 5972.7 2369.3 4819.9 7371.9 2551.9

cl - 5% 314.0 273.4 173.6 189.1 397.3 208.2

rob - 5% 323.1 271.8 194.5 181.9 416.1 234.2

cl - 1% 702.4 644.5 299.5 492.0 840.2 348.2

rob - 1% 715.0 635.5 331.9 479.3 872.0 392.7

Table 2.6: Summary statistics of the reserve amounts determined by classical and robust FHS method

for horizon h = 1 day, confidence levels 5%, 1% for the Dow Jones index (first panel), the BMW share

price (second panel), the Microsoft share price (third panel) and the Nestle share price (fourth panel).
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mean median stdv q25 q75 q75 − q25

cl - 5% 1330.3 1268.5 416.8 1079.9 1528.8 448.9

rob - 5% 1271.1 1261.2 337.7 1087.4 1453.0 365.6

cl - 1% 2288.8 2203.8 632.9 1897.6 2600.3 702.7

rob - 1% 2142.5 2107.8 492.1 1873.1 2400.7 527.6

cl - 5% 3692.4 3617.3 875.6 3127.8 4145.6 1017.7

rob - 5% 3602.6 3592.4 753.6 3138.9 4012.1 873.2

cl - 1% 5692.9 5619.5 1246.1 4840.2 6355.3 1515.0

rob - 1% 5495.4 5486.5 1059.9 4817.2 6058.0 1240.8

cl - 5% 11536.0 11815.5 3447.6 9953.4 13293.2 3339.8

rob - 5% 12686.4 11924.6 5342.8 9747.4 15083.8 5336.4

cl - 1% 19033.4 19264.8 5748.5 16138.2 22216.2 6078.0

rob - 1% 20155.7 19167.3 8027.3 15285.4 23912.9 8627.5

cl - 5% 1530.8 1484.0 519.2 1140.7 1785.9 645.2

rob - 5% 1507.6 1488.7 497.7 1127.9 1762.0 634.1

cl - 1% 2524.4 2454.1 802.1 1897.5 2961.5 1064.0

rob - 1% 2498.2 2463.7 792.8 1885.3 2941.9 1056.6

Table 2.7: Summary statistics of the reserve amounts determined by classical and robust FHS method

for horizon h = 10 days, confidence levels 5%, 1% for the Dow Jones index (first panel), the BMW

share price (second panel), the Microsoft share price (third panel) and the Nestle share price (fourth

panel).
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Figure 2.1: True VaR’s versus estimated VaR’s for horizon h = 1 day and confidence levels 5%, 1%

under Student t5 innovation (first panel), Laplace innovation (second panel) and replace-innovative

model (third panel).
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Figure 2.2: True VaR’s versus estimated VaR’s for horizon h = 10 days and confidence levels 5%, 1%

under Student t5 innovation (first panel), Laplace innovation (second panel) and replace-innovative

model (third panel).
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Figure 2.3: Actual VaR levels for horizon h = 1 day and nominal confidence levels 5%, 1% for classical

(column 1) and robust (column 2) FHS method under Student t5 innovation (first panel) Laplace

innovation (second panel) and replace-innovative model (third panel) when the volatility is “high”.
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Figure 2.5: Backtesting on the Dow Jones index. Out of sample estimates of VaR’s at 5%, 1%

confidence levels (superimposed on the rate of returns in percentage) and reserve amounts for horizons

h = 1 day (first panel) and h = 10 days (second panel) using the classical and robust FHS method.
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Figure 2.6: Backtesting on the BMW share price. Out of sample estimates of VaR’s at 5%, 1%

confidence levels (superimposed on the rate of returns in percentage) and reserve amounts for horizons

h = 1 day (first panel) and h = 10 days (second panel) using the classical and robust FHS method.
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Figure 2.7: Backtesting on the Microsoft share price. Out of sample estimates of VaR’s at 5%, 1%

confidence levels (superimposed on the rate of returns in percentage) and reserve amounts for horizons

h = 1 day (first panel) and h = 10 days (second panel) using the classical and robust FHS method.
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Figure 2.8: Backtesting on the Nestle share price. Out of sample estimates of VaR’s at 5%, 1%

confidence levels (superimposed on the rate of returns in percentage) and reserve amounts for horizons

h = 1 day (first panel) and h = 10 days (second panel) using the classical and robust FHS method.
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Appendix A

Proofs of Propositions

A.1 Proofs of Proposition 1.1 and Corollary 1.1

The proofs of Proposition 1.1 and Corollary 1.1 follow from Theorem 1 and Corollary 1 in Stefanski,

Carroll and Ruppert (1986).

To prove Proposition 1.1, let ψ be any competitor with ψbif . Without loss of generality assume

that ψ = IF cond
ψ , i.e. ψ is in canonical form in the sense of Hampel (1974). Hence, D(ψ; θ0) = I and

Eθ0 [ψ(ym
1 ; θ0) s(ym

1 ; θ0)>] = I (A.1)

as differentiating (1.17) with respect to θ gives−D(ψ; θ0)+Eθ0 [ψ(ym
1 ; θ0) s(ym

1 ; θ0)>] = 0 assuming that

integration and differentiation can be interchanged. Moreover, V (ψ; θ0) = Eθ0 [ψ(ym
1 ; θ0)ψ(ym

1 ; θ0)>].

Write s for s(ym
1 ; θ0), τ for τ(ym−1

1 ; θ0), ψ for ψ(ym
1 ; θ0), Vψ for V (ψ; θ0), Dbif for D(ψbif ; θ0) and Vbif

for V (ψbif ; θ0).
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Then

min
ψ

tr(Vψ V −1
bif )

= min
ψ

tr(Eθ0 [ψ ψ>] V −1
bif )

= min
ψ

tr(Eθ0 [(D
−1
bif (s− τ)− ψ) (D−1

bif (s− τ)− ψ)>]V −1
bif )

= min
ψ

Eθ0 [(D
−1
bif (s− τ)− ψ)> V −1

bif (D−1
bif (s− τ)− ψ)]

= min
ψ

Eθ0 [(V
−1/2
bif D−1

bif (s− τ)− V
−1/2
bif ψ)> (V −1/2

bif D−1
bif (s− τ)− V

−1/2
bif ψ)], (A.2)

where, using (1.16) and (A.1), the second equality follows from

Eθ0 [(D
−1
bif (s− τ)− ψ) (D−1

bif (s− τ)− ψ)>] = D−1
bifEθ0 [(s− τ) (s− τ)>]D−>

bif −D−1
bif −D−>

bif + Vψ,

and the first three terms in the right hand side are independent of ψ. Under condition (1.23), the

objective function (A.2) is minimized by

ψ∗ = D−1
bif (s− τ) min(1, c ( (s− τ)>D−>

bif V −1
bif D−1

bif (s− τ) )−1/2)

and, as D−>
bif V −1

bif D−1
bif = Eθ0 [ψ

bif ψbif>]−1 = A(θ0)>A(θ0), ψ∗ = D−1
bif ψbif . Condition (A.1) ensures

that ψ∗ is unique almost surely. ¤

To prove Corollary 1.1, again assume that all score functions are in canonical form and satisfy (1.16).

Define

S := {ψ : sup
z∈Rm

ψ>V −1
ψ ψ ≤ c2}, Sbif := {ψ : sup

z∈Rm

ψ> V −1
bif ψ ≤ c2}.

We must show that if there exists ψopt in S such that Vψopt ≤ Vψ (in the strong sense of positive-

definiteness) for all ψ in S, then ψopt is equivalent to D−1
bif ψbif .

Clearly, D−1
bif ψbif is in S; thus by assumption Vψopt ≤ Vbif (and V −1

ψopt ≥ V −1
bif ). From this follows

that

ψopt> V −1
bif ψopt ≤ ψopt> V −1

ψopt ψopt ≤ c2,
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and hence ψopt is in Sbif . Let I = S ∩ Sbif . The set I is nonempty; it contains D−1
bif ψbif and ψopt.

For any ψ in I we know Vψopt ≤ Vψ and hence

tr(Vψopt V −1
bif ) ≤ tr(Vψ V −1

bif )

for all ψ in I. But Proposition 1.1 proves that D−1
bif ψbif , when defined, is the almost everywhere

unique minimizer of tr(Vψ V −1
bif ) among all ψ in I. Hence, the equivalence of ψopt and ψbif follows. ¤

A.2 Proof of Proposition 1.2

This appendix describes the computation of the correction factor τ(ym−1
1 ; θ0) implicitly defined by

equation (1.22).

Recall that, according to (1.26), the Gaussian score function can be written as

s(ym
1 ; θ0) = −k1,m + k2,mum(θ0) + k1,mu2

m(θ0),

where um(θ0) ∼ N (0, 1) under the reference model Pm
θ0

. We write A for A(θ0).

Formally, the problem is to compute τ(ym−1
1 ; θ0) such that

0 = A

∫ +∞

−∞

(−k1,m + k2,m u + k1,m u2 − τ(ym−1
1 ; θ0)

)
w(ym−1

1 , µm(θ0) + σm(θ0) u; θ0) dΦ(u).

As τ(ym−1
1 ; θ0), k1,m and k2,m are Fm−1-measurable,

τ(ym−1
1 ; θ0) :=

τnum(ym−1
1 ; θ0)

τden(ym−1
1 ; θ0)

,

where

τnum(ym−1
1 ; θ0) :=

∫ +∞

−∞

(−k1,m + k2,mu + k1,mu2
)
w(ym−1

1 , µm(θ0) + σm(θ0)u; θ0) dΦ(u) (A.3)

and

τden(ym−1
1 ; θ0) :=

∫ +∞

−∞
w(ym−1

1 , µm(θ0) + σm(θ0) u; θ0) dΦ(u). (A.4)
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Clearly, the difficult part in the computation of these integrals is the weighting function w(ym
1 ; θ0),

defined by (1.20). However, as the weighting function implies that ‖ψc(ym
1 ; θ0)‖2 ≤ c2, we can equiva-

lently express such an inequality in terms of ‘admissible’ values of the standardized innovation um(θ0).

Specifically, we compute τ(ym−1
1 ; θ0) by means of the following two steps procedure.

Step 1

In the first step we compute the real roots in the real variable um(θ0) of the quartic equation (1.26), i.e.

0 = ‖A (s(ym
1 ; θ0)− τ (0))‖2 − c2

:= ‖A (−k1,m + k2,m um(θ0) + k1,m u2
m(θ0)− τ (0))‖2 − c2

:= a4u
4
m(θ0) + a3u

3
m(θ0) + a2u

2
m(θ0) + a1um(θ0) + a0 − c2,

where

a4 := k>1,mA>Ak1,m, a3 := 2k>1,mA>Ak2,m,

a2 := k>2,mA>Ak2,m − 2k>1,mA>Ak1,m − 2k>1,mA>Aτ (0),

a1 := −a3 − 2k>2,mA>Aτ (0),

a0 := a4 + 2k>1,mA>Aτ (0) + τ (0)>A>Aτ (0).

Recall that existence of a solution is guaranteed by Lemma 2.1 in Künsch et al. (1989) when choosing

c ≥ √
p. In general, we have either two or four real roots. As a4 > 0, in the first case

‖A (s(ym
1 ; θ0)− τ (0))‖ ≤ c, um(θ0) ∈ [um, um],

> c, um(θ0) ∈ (−∞, um) ∪ (um, +∞)

denoting by um ≤ um the real roots. In the second case, with real roots u
m
≤ um ≤ um ≤ um,

‖A (s(ym
1 ; θ0)− τ (0))‖ ≤ c, um(θ0) ∈ [u

m
, um] ∪ [um, um]

> c, um(θ0) ∈ (−∞, u
m

) ∪ (um, um) ∪ (um, +∞).
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In almost all simulations and all empirical estimations there were two real roots.

Step 2

In the second step we ‘split’ the integral in equations (A.3) and (A.4) according to the roots determined

in Step 1. Assume first that there are two real roots, then

τnum(ym−1
1 ; θ0)

=
∫ um

−∞

qn(u) :=︷ ︸︸ ︷(−k1,m + k2,mu + k1,mu2
) c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

+
∫ um

um

(−k1,m + k2,mu + k1,mu2
)

dΦ(u)

+
∫ +∞

um

(−k1,m + k2,mu + k1,mu2
) c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

:=
∫ um

−∞
qn(u)

1√
2π

exp(−0.5u2) du− k1,m [Φ(um)− Φ(um)] + k2,mM1,m + k1,mM2,m

+
∫ +∞

um

qn(u)
1√
2π

exp(−0.5u2) du.

Notice that qn : R −→ Rp with the same functional form in each component. We recall that M1,m,

M2,m are defined in Proposition 1.2 and υ := (y1, . . . , ym−1, µm(θ0) + σm(θ0)u).

Notice that M1,· and M2,· are the truncated first and second moment of a standard Gaussian

random variable and integration by parts yields

M1,· :=
∫ b

a

u dΦ(u) = φ(a)− φ(b), M2,· :=
∫ b

a

u2 dΦ(u) = aφ(a)− b φ(b) + Φ(b)− Φ(a).

The remaining univariate integrals are approximated ‘componentwise’ using the Laplace’s method.

Under standard regularity conditions1 on the real function q(·), for α →∞
∫ ∞

0

α exp(−αu) q(u) du = q(0) +
q′(0)

α
+

q′′(0)
α2

+ O

(
1
α3

)

=: L(q, α) + O

(
1
α3

)

1See, for instance, Jensen (1995), p. 58.
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by iterating integration by parts. L(q, α) is the Laplace’s approximation of the integral up to the third

order2. Therefore,

∫ +∞

um

qn(u)
1√
2π

exp(−0.5u2) du

=
1√
2π

exp(−0.5u2
m)

1
um

∫ +∞

0

um exp(−umz) qn(um + z) exp(−0.5z2) dz

=
1√
2π

exp(−0.5u2
m)

1
um

(
L(qn, um) + O

(
1

u3
m

))

=: Ln(um) + O

(
1

u3
m

)
,

where the first equality follows from the substitution z = u−um and qn(z) := qn(um +z) exp(−0.5z2).

Similarly,

∫ um

−∞
qn(u)

1√
2π

exp(−0.5u2) du = − 1√
2π

exp(−0.5u2
m)

1
um

(
L(q

n
, um) + O

(
1

u3
m

))

=: −Ln(um) + O

(
1

u3
m

)
,

where q
n
(z) := qn(um + z) exp(−0.5z2) and using the substitution z = u− um.

The procedure for computing the denominator of τ in (A.4) is completely analogous. Specifically,

τden(ym−1
1 ; θ0)

=
∫ um

−∞

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u) +
∫ um

um

dΦ(u) +
∫ +∞

um

qd(u) :=︷ ︸︸ ︷
c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

=
∫ um

−∞
qd(u)

1√
2π

exp(−0.5u2) du + [Φ(um)− Φ(um)]

+
∫ +∞

um

qd(u)
1√
2π

exp(−0.5u2) du.

The Laplace’s approximations of the remaining integrals are

∫ +∞

um

qd(u)
1√
2π

exp(−0.5u2) du =
1√
2π

exp(−0.5u2
m)

1
um

(
L(qd, um) + O

(
1

u3
m

))

=: Ld(um) + O

(
1

u3
m

)
,

2We use third order Laplace’s approximations as the contribution of higher order terms is negligible.
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where qd(z) := qd(um + z) exp(−0.5z2) and

∫ um

−∞
qd(u)

1√
2π

exp(−0.5u2) du = − 1√
2π

exp(−0.5u2
m)

1
um

(
L(q

d
, um) + O

(
1

u3
m

))

=: −Ld(um) + O

(
1

u3
m

)
,

where q
d
(z) := qd(um + z) exp(−0.5z2). Collecting the terms one yields the expression for τ stated in

Proposition 1.2.

In the general case where the quartic equation (1.26) has four real roots u
m
≤ um ≤ um ≤ um, for

instance the integral in (A.4) can be written as follows

τden(ym−1
1 ; θ0)

=
∫ u

m

−∞

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u) +
∫ um

u
m

dΦ(u) +
∫ um

um

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

+
∫ um

um

dΦ(u) +
∫ +∞

um

c

‖A (s(υ; θ0)− τ (0))‖ dΦ(u)

and Laplace’s approximations hold only for the first and the last integral. However, numerical results

(not reported here) show that the error when neglecting the weighting function in the central integral

is very small. When um and um are close enough and/or ‖A (s(υ; θ0) − τ (0))‖ is not very large, the

error is essentially zero. Finally, the implementation of such a case (which happens very rarely) in the

algorithm would largely increase the computational time, without improving the inference results.

A.3 Proof of Proposition 1.3

We prove the statement of the proposition only for the Wald statistics. The proof is extracted from

Heritier and Ronchetti (1994) and Ronchetti and Trojani (2001). Those for the other tests can be

proved similarly.

Under regularity conditions (cf. Clarke (1986) and Heritier and Ronchetti (1994)), a is Fréchet

differentiable and this implies the Fréchet differentiability of U . Then, using (1.31) and a first order
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von Mises (1947) expansion of U gives, up to terms of order o(ε),

√
n

(
U(Pm

n )− U(Pm
η(ε,n))

)
→ N (0, Ir), n →∞,

in distribution uniformly for allG ∈ dom(U). Hence, the test statistic (1.30) is asymptotically χ2(r;β(ε))

with β(ε) = nU(Pm
η(ε,n))

>U(Pm
η(ε,n)) and up to terms of order O(1/n)

α(Pm
η(ε,n)) = 1−Hr(q1−α0 ;β(ε)).

Let b(ε) := −Hr(q1−α0 ;β(ε)) and µ := −[(∂/∂β)Hr(q1−α0 ; β)]β=0. Then, up to terms of order O(1/n),

α(Pm
η(ε,n))− α0 = b(ε)− b(0) = ε b′(0) +

1
2

ε2b′′(0) + o(ε2). (A.5)

Now,

b′(0) = µ
∂β(ε)

∂ε

∣∣∣∣
ε=0

= 2 µ n

[
∂U(Pm

η(ε,n))
>

∂ε

]

ε=0

U(Pm
θ0

) = 0,

as U(Pm
θ0

) = 0 under the null hypothesis (1.29) and

b′′(0) = µ
∂2β(ε)

∂ε2

∣∣∣∣
ε=0

= 2 µn

[
∂U(Pm

η(ε,n))
>

∂ε

∂U(Pm
η(ε,n))

∂ε

]

ε=0

= 2 µ

∥∥∥∥
∫

Rm

IF (z; U(Pm
θ0

)) dG(z)
∥∥∥∥

2

and substituting in (A.5), equation (1.32) follows. Write IF c for IF cond. To end the proof, it suffices

to compute the IF of the functional U associated to the Wald test.

IF (z;UW ) =
[
∂g(θ)
∂θ>

V (ψc; θ)
∂g(θ)>

∂θ

]−1/2

θ=θ0

∂g(θ0)
∂θ>

IF c(z; a)

≡
[
∂g(θ)
∂θ>

V (ψc; θ)1/2V (ψc; θ)1/2 ∂g(θ)>

∂θ

]−1/2

θ=θ0

∂g(θ0)
∂θ>

V (ψc; θ0)1/2V (ψc; θ0)−1/2IF c(z; a)

=:
[
B>B

]−1/2
B>V (ψc; θ0)−1/2IF c(z; a),

with obvious notations and to note that

‖IF (z; UW )‖2 = IF c(z; a)>V (ψc; θ0)−1/2 B[B>B]−1B> V (ψc; θ0)−1/2IF c(z; a)

≤ IF c(z; a)>V (ψc; θ0)IF c(z; a)

by the orthogonal projection property of the matrix B[B>B]−1B>. ¤
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