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Abstract A spatial representation of number magnitude,

aka the mental number line, is considered one of the basic

numerical representations. One way to assess it is number

line estimation (e.g., positioning 43 on a number line

ranging from 0 to 100). Recently, a new unbounded

version of the number line estimation task was suggested:

without labeled endpoints but a predefined unit, which

was argued to provide a purer measure of spatial

numerical representations. To further investigate the pro-

cesses determining estimation performance in the

unbounded number line task, we used an adapted version

with variable units other than 1 to evaluate influences of

(i) the size of a given unit and (ii) multiples of the units

as target numbers on participants’ estimation pattern. We

observed that estimations got faster and more accurate

with increasing unit sizes. On the other hand, multiples of

a predefined unit were estimated faster, but not more

accurately than non-multiples. These results indicate an

influence of multiplication fact knowledge on spatial

numerical processing.

Introduction

The mental representation of number magnitude is often

described by referring to the metaphor of a mental number

line. On this mental number line integers are supposed to

be represented in ascending order according to their mag-

nitude. A common task to assess the mental number line

representation is the number line estimation task, in which

participants have to estimate the position of a given number

(e.g., 38) on an otherwise empty number line of a certain

length specified by a starting and an endpoint (e.g., 0 to

100; e.g., Berteletti, Lucangeli, Piazza, Dehaene, & Zorzi,

2010; Moeller, Pixner, Kaufmann, & Nuerk, 2009a; Opfer

& Siegler, 2007; Siegler & Opfer, 2003). From the

observed estimation pattern it is then inferred on the nature

of the underlying representation of number magnitude.

Based on an evaluation of children’s estimation patterns it

has been claimed that children’s mental number line rep-

resentation develops from a logarithmically compressed to

linear spacing with age and experience (e.g., Siegler &

Booth, 2004; Siegler & Opfer, 2003; Booth & Siegler,

2006). However, recently the validity of this conclusion

was challenged. On the one hand, there is evidence indi-

cating influences of counting capabilities (Ebersbach, Lu-

wel, Frick, Onghena, & Verschaffel, 2008) or place-value

understanding (Moeller, Pixner, Kaufmann, & Nuerk,

2009a, see also Helmreich, Zuber, Pixner, Kaufmann,

Nuerk, & Moeller, 2011; Moeller & Nuerk, 2011a) to

underlie children’s performance development rather than a

qualitative change in their mental number line

representation.

On the other hand, there is accumulating evidence

suggesting that inferences on the mental number line rep-

resentation based on this commonly used bounded version

of the number line estimation task should be taken with
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care. Instead of representing an isomorphic assessment of

the mental number line representation performance in the

bounded number line estimation task may be (also) deter-

mined by strategic processes (e.g., Barth & Paladino, 2011;

Slusser, Santiago, & Barth, 2013). In particular, it was

observed that participants not necessarily just estimated the

position of a given number on an empty number line (e.g.,

25 as 25 units to the right of 0), but referred to proportion

judgment strategies inferring the position of a number by

considering part-whole relations upon the number line by

the use of external reference points (e.g., 25 is a quarter

from 100 on a bounded number line from 0 to 100). This is

corroborated by recent evaluations of the pattern of esti-

mation errors in bounded number line tasks indicating

estimations to be more accurate around reference points.

For instance, when the two endpoints as well as the middle

of a given number line serve as reference points this leads

to a characteristic M-shaped error pattern with smaller and

less variable estimation errors for target numbers around

the reference points (i.e., 0, 50, and 100). In addition, this is

reflected by estimation patterns described best by inverse

sigmoid functions (e.g., Ashcraft & Moore, 2012; Sullivan,

Juhasz, Slattery & Barth, 2011). Interestingly, such a view

is consistent with predictions of psychophysical models of

proportion judgment (e.g., Hollands & Dyre, 2000; Spence,

1990). In sum, it is important to note that there is currently

a controversial debate on the validity of conclusions on the

nature of the mental number line representation based on

data from the bounded number line estimation task (e.g.,

Barth & Paladino, 2011; Sullivan, Juhasz, Slattery, &

Barth, 2011; Slusser et al., 2013).

Against this background, Cohen & Blanc-Goldhammer

(2011) suggested a new version of the number line esti-

mation task that may overcome the limitations described

above. Different from the bounded number line estimation

task, their version of the number line estimation task had

no labeled endpoint, and was therefore called an unboun-

ded number line task. To allow for estimations of the

position of a given target number on this unbounded

number line, participants were also given the distance

between 0 and 1 as the unit to base their estimations on (see

also Booth & Siegler, 2006 for a similar approach in

children). In this way, participants then had to estimate the

spatial position of target numbers ranging from 2 to 25

upon the given unbounded number line. Importantly, and in

contrast to the characteristic M-shaped error pattern

observed for the bounded number line task Cohen & Blanc-

Goldhammer (2011) found that error variability increased

linearly with the size of the target numbers in their

unbounded number line task. This corresponds nicely with

models suggesting a linear layout of the mental number

line (e.g., Gallistel & Gelman, 1992). However, most

importantly, the study of Cohen & Blanc-Goldhammer

(2011) suggests that this unbounded number line estimation

task reflects a more unbiased measure of the mental num-

ber line representation as compared to the bounded number

line estimation task. Nevertheless, even in the unbounded

number line estimation task participants’ estimations

reflected specific consistencies. In particular, the authors

observed that the participants adopted a ‘‘dead-reckoning’’

strategy to complete the unbounded number line task. The

estimation pattern of this dead-reckoning strategy reflects

repetitive scallops resulting when participants use multi-

ples of a certain quantity, about 10 in the data of Cohen &

Blanc-Goldhammer (2011), as internal orientations for

their estimations. Cohen & Blanc-Goldhammer (2011)

termed this range the participants’ actual ‘‘working win-

dow of numbers’’ (p. 335). The authors suggest that when

participants have to estimate the position of numbers above

their working window they count to the last number in their

working window and then start counting again, which

results in the scalloped estimation pattern observed. For

example, if participants had to indicate the position of 25,

they estimated 20 by counting to the end of their working

window two times followed by counting to the half of the

working window. Interestingly, this indicates that partici-

pants build up and use internal references to come to their

estimations that reflects ‘‘steps’’ upon the number line,

which are considerably larger than the predefined unit. This

seems to suggest that larger steps may facilitate estimation

performance. In fact, 92 % of the participants in Experi-

ment 2 of Cohen & Blanc-Goldhammer (2011) exhibited

an estimation pattern that was fitted best by a scallop

model. However, the results also suggest that the working

windows differed between participants as there was evi-

dence for single-, dual-, and multi-scallop strategies. From

this, at least three questions arise.

First, it would be interesting to evaluate whether it is

indeed the case that larger steps facilitate estimation per-

formance. Based on the results of Cohen & Blanc-Gold-

hammer (2011) one might speculate that the summed

estimation error of, for instance, 2 scallops of about 10 is

smaller and thus the estimation is more accurate as com-

pared to the summed estimation error for 20 steps corre-

sponding to a predefined unit of 1. In the latter case, the

summed estimation error may just be higher because of the

accumulation due to the higher number of individual steps

(each associated with a certain error).

Second, the fact that the working window differed

between participants raises the question in how far the

participants’ working window can be influenced. While

Cohen & Blanc-Goldhammer (2011) used the unit 1 only,

one might think of using different units (e.g., 2, 5, 10). In

line with above hypothesis estimation performance should
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improve with increasing unit size as fewer steps are needed

to reach the target numbers—just like in the case of scal-

loped internal references. However, this might be deter-

mined by either the fact that unit size approaches the

average working window of about 10 or that the working

window is adapted to the respective unit.

Finally, when it is indeed the case that participants

benefit from relatively larger scallops/units one might

hypothesize that multiples of the scallop/unit are estimated

more accurately than non-multiples because no further

localization is needed. A special role for multiples in

numerical cognition is documented by a large body of

research on the representation of multiplication facts. For

instance, Rusconi, Galfano, Speriani, & Umiltà (2004)

observed that a multiplication product (e.g., 15) is auto-

matically activated by the presentation of its two operands

(e.g., 3 and 5). With respect to multiplication fact knowl-

edge and the mental number line, the results of Nuerk,

Geppert, van Herten, & Willmes (2002) for a verification

version of the number bisection task (NBT) are informa-

tive. The authors found that the decision whether or not the

central number of a triplet represents the numerical middle

of the outer two numbers (e.g., 18_21_24 vs. 18_20_24)

was taken faster and more accurately when the triplet was

part of multiplication table (e.g. 18_21_24) than for trip-

lets that were not (e.g. 19_22_25). As each triplet of the

NBT can be interpreted as a segment of the mental number

line these data provide first evidence indicating that mul-

tiples of a number may also be represented prominently

upon the mental number as compared to non-related

numbers (see also Wood, Nuerk, Moeller, Geppert,

Schnitker, Weber, & Willmes, 2008; Moeller, Fischer,

Nuerk, & Willmes, 2009b; Moeller, Klein, Fischer, Nuerk,

& Willmes, 2011b for influences of multiplicativity in the

NBT). With regard to the present study, these findings

imply that multiples of a given unit should also be esti-

mated faster than non-multiples. Yet, as regards estimation

accuracy predictions are less clear. On the one hand, speed

and estimation accuracy may be associated predicting

multiples of the units to be estimated more accurately as

well. On the other hand, current models of multiplication

fact knowledge do not include any spatial aspect at all.

Rather, it is assumed that multiplication fact knowledge is

represented in verbally mediated format (e.g., Dehaene,

Piazza, Pinel, & Cohen, 2003; Lee & Kang, 2002; Moeller,

Klein, Fischer, Nuerk, & Willmes, 2011b). In this case, no

beneficial influence on estimation performance would be

expected.

Taken together, the present study aimed at evaluating

the processes underlying the dead-reckoning strategy in

the unbounded number line estimation task as proposed by

Cohen & Blanc-Goldhammer (2011). Therefore, we used

an adapted version of the unbounded number line esti-

mation task as compared to Cohen & Blanc-Goldhammer

(2011): in accordance with above hypothesis regarding the

influence of the size of the predefined unit on participants’

(scalloped) estimation pattern we varied unit size sys-

tematically from 1 to 10, whereas Cohen & Blanc-Gold-

hammer (2011) only used a unit size of 1. As the scalloped

estimation pattern indicates an estimation strategy refer-

encing multiples of the unit sizes (about 10 times the unit

1 in Cohen & Blanc-Goldhammer, 2011), manipulating

unit size should influence the pattern of estimation errors

significantly. In particular, our hypotheses were as fol-

lows: First, we expected that estimation performance

should improve as the unit size increases. Second, we

expected participants’ working window of numbers to be

influenced by unit size. Finally, we hypothesized target

numbers that are multiples of the unit size to be estimated

at least faster than non-multiples and possibly more

accurately. To be able to evaluate these specific hypoth-

eses, we extended the range of target numbers from 25 to

49 allowing for a systematic evaluation of unit sizes 2–10

on estimation performance with particular interest being

paid to multiples of the respective units.

Method

Participants

Twenty-seven students (7 male) of the University of Tüb-

ingen participated in the study in exchange for course

credit. Mean age was 23.6 years with a standard deviation

(SD) of 4.1 years (range 19–37 years). All participants

reported normal or corrected-to-normal vision.

Stimuli and design

The experiment consisted of an unbounded number line

estimation tasks, in which participants had to mark the

position of a given target number on a number line by

inferring the position of the target number from the length

of a predefined unit. Generally, unbounded number lines

were horizontal lines with lengths of 54, 58, 62 and 66

units randomly varying. Their physical length varied from

930 to 1,276 pixels with physical and numerical length

uncorrelated to distract participants from generating

expectations on the length of the unbounded number line.

The target number was presented above the unit on the left

end of the number line and surrounded by a circle. Both

number line as well as target numbers and the respective

unit were displayed in black color against a white back-

ground (see Fig. 1).
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Importantly, we used an unbounded number line task

with variable units ranging from 1 to 10 to indicate the

reference for participants’ estimations (see Fig. 1). We

manipulated the size of the units to evaluate the dead-

reckoning strategy proposed by Cohen & Blanc-Gold-

hammer (2011). The stimulus set of the unbounded number

line task with variable units included selected two-digit

numbers ranging from 11 to 49 as shown in the ‘‘Appen-

dix’’. Target numbers were chosen to have the same mean

problem size for all units, with regard to both overall

number range as well as numbers within each decade (i.e.,

11–19, 21–29, etc.). In addition, we manipulated whether

target numbers were multiples or non-multiples of their

respective unit size. Mean problem size was matched and it

was aimed at matching the number of multiples and non-

multiples for each unit as far as possible. Twenty target

numbers were presented for each unit reflecting five targets

per decade and summing up to a total of 200 critical trials.

Stimuli were presented as pictures with a resolution of

1,920 9 1,200 pixels on a 26’’ monitor. To prevent par-

ticipants from using external reference points (e.g., the

center of the screen or the position of the left edge of the

screen), the location of the number line on the screen was

chosen randomly for each trial, with the constraint that the

number line did not protrude an area 200 pixels wide at all

four edges of the monitor. In addition, the frame of the

screen was covered by white tape to conceal possible

landmarks used as external reference points.

Procedure

The experiment took place in a dimly lit room where

participants were tested individually. Participants were

seated approximately 60 cm away from the screen.

Instructions focused on speed and accuracy and required

participants to indicate the spatial position of the target

number on the number line by a mouse click at their esti-

mated position. Participants were not informed about the

number range covered by the number line estimation task

prior to completing it. Before each trial, a fixation mark

appeared at the location of the screen where the origin of

the number line was to be presented together with the

mouse cursor. The number line and the to-be-estimated

target number remained on the screen until a response was

given by a mouse click, directly followed by the fixation

mark for the next trial. Items were presented in ten blocks

with unit (i.e., 1–10) held constant within each block and

block order randomized for each participant individually.

In sum, the experiment took approximately 20 min.

Results

Both absolute estimation error as the deviation of estimated

position from the actual position of the respective target

number on the unbounded number line as well as reaction

times (RT) were analyzed. The data of one participant had

to be excluded from the analysis due to individual mean RT

being more than three SD longer as compared to mean RT

over all participants.

Absolute estimation error

In a first step, mean estimates were calculated for each

participant, separate for multiples and non-multiples of all

units from 2 to 10 (unit 1 was excluded from further

analyses as the distinction between multiples and non-

multiples is not possible). Then, we computed the absolute

estimation error for all units (see Fig. 2). To investigate the

influence of a multiplicative between target numbers and

units, a 2 9 9 repeated-measures ANOVA with the factors

multiplicativity (multiples vs. non-multiples) and units (2,

3, 4, 5, 6, 7, 8, 9 vs. 10) was conducted. Evaluating whether

multiplicative targets were localized more accurately than

non-multiplicative revealed that the mean estimation error

was not reliably smaller for multiplicative as compared to

non-multiplicative targets [MMultiples = 5.62 vs. MNon-mul-

tiples = 5.65; F(1, 25) \ 1, g2
p = 0.003]. In contrast, the

main effect of units was significant F(8, 200) = 22.58,

Fig. 1 Unbounded number line with variable unit
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Fig. 2 Absolute estimation error for all units, error bars indicate 1

standard error of the mean (SEM)
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p \ 0.001, g2
p = 0.475, GG = 0.473, indicating that the

absolute estimation errors differed between units. Most

importantly for our hypothesis, however, contrast analyses

indicated a significant linear trend for the estimation error

over the units F(1, 25) = 65.64, p \ 0.001, g2
p = 0.724,

indicating that the estimation error decreased with

increasing unit size: the larger the unit, the more accurate

the estimations of the target number on the number line.

Finally, the interaction of multiplicativity and the units was

not significant F(8, 200) \ 1, g2
p = 0.031]1.

Response latencies

In a second step, RTs were also submitted to an identical

2 9 9 repeated-measures ANOVA discerning the factors

multiplicativity and units (mean RT for all units are shown in

Fig. 3). The main effect of multiplicativity was significant

F(1, 25) = 5.48, p = 0.027, g2
p = 0.180, indicating that

targets that were multiples of a unit were estimated faster

(MMultiples = 4,295 ms) as compared to non-multiples

(MNon-multiples = 4,421 ms). In addition, the main effect of

units was significant F(8, 200) = 3.01, p = 0.013,

g2
p = 0.107, GG = 0.629, meaning that there were reliable

differences in the response latencies between units. Com-

parable to the analysis of estimation errors, we also observed

a significant linear trend F(1, 25) = 12.02, p = 0.002,

g2
p = 0.325 for RT over the units indicating that RT

decreased with increasing unit size. At last, the interaction of

multiplicativity and units was not significant for RT F(8,

200) = 0.97, p = 0.415, g2
p = 0.037, GG = 0.388. How-

ever, inspection of Fig. 3 indicates that the advantage for

multiples is mainly driven by reactions for units larger than

5. This was corroborated by an additional ANOVA dis-

cerning the factors multiplicativity and unit (B5 vs. [5)

revealing a marginally significant interaction of small and

large unit sizes [F(1, 25) = 3.65, p = 0.068, g2
p = 0.127]

with a tendency for an RT advantage of multiples with unit

sizes larger than 5 (247 ms vs. -26 ms).

Working window

Sizes of individual working windows were estimated

applying the multi-scallop model of Cohen & Blanc-

Goldhammer (2011). This model is specified by two free

parameters: the specific exponent and the size of the

working window (see Cohen & Blanc-Goldhammer, 2011,

for a mathematical description of the model). Parameter

estimates for each unit and each participant were obtained

using the trust region-fitting algorithm implemented in

Matlab 7.14 (MathWorks�). Sizes of working windows

were then compared conducting a repeated-measures

ANOVA with the factor units. The main effect of units was

not significant indicating that the size of the working

window was not influenced by the size of the units [overall

M = 9.52, SD = 0.31; range 9.11–10.07, F(8, 200) \ 1,

g2
p = 0.024].

Taken together, in line with our hypotheses we observed

that multiples of the respective units were estimated faster,

but not more accurately than non-multiples and that par-

ticipants’ estimates indeed became more accurate and

faster with increasing unit size. However, in contrast to our

hypothesis, participants’ working windows were not

influenced by unit size.

Discussion

The present study was set up to evaluate the processes

underlying the dead-reckoning strategy in the unbounded

number line task as proposed by Cohen & Blanc-Gold-

hammer (2011) using an adapted version of their task with

variable unit sizes. We hypothesized that (1) estimation

performance should improve with increasing unit size.

Furthermore, (2) we expected that participants’ working

window of numbers would be influenced by unit size, and

that (3) target numbers which are multiples of the unit size

should be estimated at least faster than non-multiples. In

the following, we will discuss these issues in turn.

The number of steps taken on the number line

In line with our first hypothesis, we observed that partici-

pants’ estimates indeed became faster and more accurate
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Fig. 3 Mean reaction times for the estimations of multiples and non-

multiples, error bars indicate 1 SEM

1 Please note that the results did not change substantially when using

the absolute estimation error in pixels (instead of the relative measure

of units) as the dependent variable.
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with increasing unit size. We observed linear trends over

the units for both RT and estimation errors indicating that

the larger the unit the faster and more accurate the esti-

mations of the target number on the number line. As

hypothesized in the introduction such a result pattern may

be driven by the number of steps (in terms of multiples of

the unit) necessary to come to the target number. The more

individual steps are to be taken the higher the overall

estimation error for the sum of these steps accumulates due

to the repeated error for each individual step. Consider, for

instance, the accumulation of estimation error over 24 steps

corresponding to a predefined unit of 2 to come to the

target number 48 as compared to the same target number,

but only 6 steps with a unit size of 8. At the same time,

higher accuracy was associated with shorter RTs as the

participants needed fewer steps on the number line. Thus,

larger unit sizes seemed to facilitate performance regarding

both speed and accuracy. Taken together, these findings

indicate that participants’ performance was influenced

reliably by unit size, and higher unit sizes were associated

with better performance in the unbounded number line

task.

The working window of numbers

Importantly, this is in line with the observation that the

working window of numbers, i.e., the scallops to be taken

by participants seemed to be independent of unit size.

Against our expectations, participants’ working window

was not affected by the varying unit sizes, so that the size

of this working window seemed to be fixed. Consistent

with Cohen & Blanc-Goldhammer (2011) reporting a

working window of 10.6 for the single unit 1, we observed

that the working window did not differ reliably between

units 2 to 10. This finding suggests that participants did not

adapt the size of their working window to the respective

unit, such as using scallops of 4 when they were presented

with the unit size 4. Instead, we observed that they seemed

to use scallops of about 10 for their estimates2. Interest-

ingly, above discussed data for RT and estimation accuracy

provided converging evidence for the use of a working

window of about 10. With unit size approaching the size of

the working window participants’ estimates got faster and

more accurate. More generally, this size of the working

window complies quite nicely with the base-10 place-value

structure of the Arabic number system.

While it has long been argued that the base-10 place-

value structure influences children’s acquisition of count-

ing abilities considerably (e.g., by special names for mul-

tiples of ten in most European languages, etc., cf. Price,

2001, see also Fuson, 1988, for a review), there is more

recent evidence that base-10 place-value characteristics

also influence other numerical tasks such as magnitude

comparison (e.g., Nuerk, Weger, & Willmes, 2001, see

Nuerk, Moeller, Klein, Willmes, & Fischer, 2011 for a

review) and also number line estimation. Moeller, Pixner,

Kaufmann, & Nuerk, (2009a) observed that first graders’

estimates in a bounded number line estimation task indi-

cated initially separate representations of single- and two-

digit numbers with a breakpoint at 10. Moreover, Helmr-

eich et al. (2011) found this to be language invariant at

least for German- and Italian-speaking children. Never-

theless, the authors observed reliable effects of the way the

place-value structure is conveyed in number words (i.e., the

inversion principle in German number words, e.g., 24 –[
vierundzwanzig literally translating to four and twenty) on

children’s number line estimation accuracy. German-

speaking children for whom place-value ordering is

inconsistent between verbal and symbolic Arabic notation

were less accurate in their estimates. Synced with the

present findings of a fixed working window of about 10,

these findings emphasize the important influence of the

place-value structure of the Arabic number system on

numerical cognition in general and number line estimation

in particular.

The representation of multiples on the mental number

line

With respect to the third hypothesis, we observed that

multiplicativity had a significant influence on the perfor-

mance in our unbounded number line estimation task:

multiples of the respective units were estimated faster, but

not more accurately than non-multiples. This indicates that

in terms of steps upon the mental number line (see above),

the location of multiples is reached faster possibly because

there is no need to follow-up the initial estimate of a whole

number of steps (i.e., multiples of the unit) by adjustments

to either the left or right which are needed in the case of

non-multiples of the units. Nevertheless, it is important to

note that these final adjustments did not influence the

estimation accuracy of non-multiples of the units, but only

increased RT. Thus, the final adjustments seem to be an

additional processing step amended at identical accuracy.

Interestingly, the current results further expand the

observation of Nuerk, Geppert, van Herten, & Willmes

2 Please note that the constant working window of about 10 we

observed was not driven by the fact that 10 was the largest unit in the

experiment. As recommended by Marc Brysbaert we conducted a

control experiment in which 46 participants performed an unbounded

number line estimation task with units 7 and 13 in a paper–pencil

version of the task. Importantly, statistical evaluation of the resulting

working windows indicated that it did not differ between unit size 7

and 13 [9.41 vs. 9.76, respectively, t(45) = 1.07, p = 0.32)] as well

as from the mean working window over all unit sizes observed in the

main experiment [unit size 7: t(45) = 0.43, p = 0.67; unit size 13:

t(45) = 0.84, p = 0.41].
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(2002; see also Moeller, Fischer, Nuerk, & Willmes,

2009b; Moeller, Klein, Fischer, Nuerk, & Willmes, 2011b)

who found a facilitating effect of multiplicativity on par-

ticipants’ performance in a number bisection task also

drawing heavily on the mental number line representation.

Additionally, in line with our observation that the RT

advantage for multiples was particularly driven by the

relatively larger units Nuerk, Geppert, van Herten, &

Willmes (2002) found that the beneficial effect of multi-

plicatively related triplets was most pronounced when

those triplets spanned a wide range upon the mental

number line (e.g., 32_40_48 vs. 38_40_42). In sum, this

seems to indicate that the benefits of multiplication fact

knowledge are most prominent in those cases in which the

standard procedure (i.e., magnitude manipulations in the

NBT and number estimation in the current task) become

more difficult, and thus error prone. However, it is

important to note that neither in the NBT nor in the

unbounded number line task intentional access to and/or

active production of multiplication facts is required (cf.

Moeller, Klein, Fischer, Nuerk, & Willmes, 2011b for the

NBT). Thus, as argued by Nuerk, Geppert, van Herten, &

Willmes (2002), for the NBT the observed influence of

multiplication fact knowledge in the unbounded number

line task indicates that it is not only the (spatial) repre-

sentation of number magnitude which is assessed by this

task. Instead, the advantage for multiples of a unit suggests

that the unbounded number line task also recruits multi-

plication fact knowledge, and thus verbal numerical rep-

resentations. However, in line with the assumption that

multiplication fact knowledge is not represented spatially,

we observed a reliable influence of multiplication fact

knowledge on estimation speed but not accuracy—indi-

cating that it may be related to the mental number line only

indirectly.

Importantly, these results are also informative from a

theoretical point of view. The currently most influential

model of number processing—the Triple Code Model

(TCM) by Dehaene and colleagues (Dehaene & Cohen,

1995, 1997; Dehaene, Piazza, Pinel, & Cohen, 2003)

differentiates three representational codes underlying

numerical cognition: (i) a visual-Arabic code allowing for

the identification of digits as informative symbols, (ii) an

analogue magnitude code representing the magnitude

information associated with a specific number, and (iii) an

auditory verbal code associated with number words but

also arithmetic fact knowledge. Interestingly, the TCM

suggests that these representational codes are task-specific

in a sense that specific tasks are specifically associated

with only one particular representational code (e.g.,

magnitude comparison—analogue magnitude code,

multiplication—verbal code). Considering this, the present

data provide additional evidence for the argument that the

three representational codes may not be as task-specific as

originally assumed in the TCM (Dehaene & Cohen, 1995,

1997; Dehaene, Piazza, Pinel, & Cohen, 2003). Instead,

more than one representation seems to be recruited (i.e.,

the analogue magnitude as well as the verbal representa-

tion of a number in the present case; see also Nuerk et al.,

2002; Wood, Nuerk, Moeller, Geppert, Schnitker, Weber,

& Willmes, 2008 for a more detailed discussion of this

point). Finally, it needs to be acknowledged that these

data are the first to indicate a recruitment of verbal

numerical representations in number line estimation in

adults. So far, there are only data on the influence of

verbal representations on children’s number line estima-

tion performance (e.g., Helmreich et al., 2011). Thereby,

there is now growing evidence for the notion that

numerical cognition is an interactive process drawing on

and adaptively integrating different kinds of representa-

tions and operations.

Conclusions

The present study set off to further investigate the influence

of varying unit sizes on participants’ estimation perfor-

mance in a new unbounded number line estimation task

proposed by Cohen & Blanc-Goldhammer (2011). In par-

ticular, we were interested in whether (i) participants’

performance was associated with unit size, (ii) unit size

influences their working window of numbers, and (iii)

multiples of the units were processed faster but not more

accurately. The present results were meaningful on all

these issues: we observed that participants’ estimations

improved with increasing unit size, possibly due to the fact

that fewer steps reduced the accumulation of the estimation

error. In line with this, we found that participants’ working

window was not influenced by unit size but seemed fix at

about 10 for all unit sizes, suggesting that participants

estimations got faster and more accurate as unit size

approached their working window. Finally, extending

previous findings on the effect of multiplication fact

knowledge on processing spatial aspects of number mag-

nitude in a number bisection task (e.g., Nuerk et al., 2002),

we observed that multiples of a given unit benefited from

the multiplication fact knowledge in terms of faster but not

more accurate estimations. Thereby, the current data pro-

vide first evidence of a recruitment of verbal numerical

representations in adults’ number line estimations adding

to similar findings in children and arguing for a task

inclusive recruitment of numerical representations.
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Appendix

Unit 1 2 3 4 5 6 7 8 9 10

Tens 11 12 12 12 11 12 12 12 13 11

12 13 14 13 13 13 13 13 14 13

16 16 16 16 15 14 14 16 15 15

18 18 17 17 18 18 18 17 16 18

19 19 18 18 19 19 19 18 18 19

Twenties 21 20 20 20 20 21 20 21 21 20

23 21 21 23 22 23 21 23 22 23

24 24 25 24 25 24 23 24 23 25

26 27 27 26 26 25 28 26 27 26

27 28 29 28 28 28 29 27 28 27

Thirties 32 30 30 32 30 30 31 32 31 30

34 34 32 33 34 34 33 33 32 33

35 35 36 36 35 36 35 35 36 36

36 37 38 37 38 37 38 37 38 38

39 39 39 38 39 39 39 39 39 39

Forties 41 40 40 40 40 41 41 40 40 40

43 41 42 41 43 42 42 42 42 41

45 45 46 44 45 44 44 43 45 44

46 48 47 48 46 47 46 48 47 48

47 49 48 49 48 48 49 49 48 49

Please note that multiples are indicated in italics
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