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Abstract. Dijkgraaf–Witten theories are quantum field theories based on (form degree 1)
gauge fields valued in finite groups. We describe their generalization based on p-form
gauge fields valued in finite abelian groups, as field theories extended to codimension 2.
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1. Introduction and Summary

Dijkgraaf–Witten (DW) theories [1] are essentially Chern–Simons theories for gauge
fields valued in a finite group �, and can be defined in any dimension. Their fields
are connections on principal �-bundles. Due to the finiteness of �, there is only
one connection on each principal bundle and it is necessarily flat. As a result, the
space of fields is finite, and the path integral reduces to a finite instanton sum,
making their exact quantization straightforward. For this reason, they are interest-
ing toy models of quantum gauge field theories.
Abelian gauge fields have higher degree cousins, described locally by p-forms

and globally by degree p+ 1 differential cohomology classes [2]. When the gauge
group is U (1), they can be thought of as connections on certain “higher circle bun-
dles" that can be defined using higher category theory. We describe in the present
paper generalizations of abelian Dijkgraaf–Witten theories whose fields are higher
gauge fields valued in a finite abelian group �. Just as for ordinary DW theo-
ries, the path integrals are finite sums and we can describe the quantum theories
exactly.
Two subtleties appear in the construction below. The first is about finding a

good model for the higher gauge fields. We do not know a convenient higher gen-
eralization of principal bundles with connection valued in a finite group (but see
[3–6] for the p= 2 case). However, as Dijkgraaf–Witten theory is a gauge theory,
only the set of isomorphism classes of fields matters. On a manifold M , the iso-
morphism classes of higher abelian gauge fields are given by H p(M;�), and we
can take the fields to be cocycles valued in �. Indeed, ordinary Dijkgraaf–Witten
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theories themselves can be reformulated in terms of 1-cocycles valued in �, instead
of principal �-bundles.

The second subtlety is the determination of the measure (4.1) on the space of
fields, which appears in the instanton sum defining the quantum theory. These fac-
tors crucially obey the relation (4.3), which ensures that the field theory functor is
compatible with the gluing of manifolds with boundary, as we show in Section 6.
Our restriction to abelian groups makes the measure constant across the space of
fields, leaving only the dependence on the underlying manifold. The structure of
the measure is nevertheless interesting, being given by an alternating product of
orders of �-valued cohomology groups. It suggests an interpretation in terms of
a tower of ghosts that is not made explicit in our construction. In more mathe-
matical terms, it should coincide with the homotopy cardinality of a p-groupoid
of fields, but we will not attempt to make this higher categorical structure mani-
fest here.
Apart from the above, the proof of Freed and Quinn [7,8] showing that ordinary

Dijkgraaf–Witten theory defines a field theory functor generalizes easily.
We define the higher abelian Dijkgraaf–Witten theories only as field theories

extended to codimension 2, because we do not have a clear picture of the higher
categorical objects assigned by the field theory functor to manifolds of codimen-
sion higher than 2. The heuristic arguments of [8] suggest, however, that there
should be no problem defining these theories as fully extended field theories.
We should mention that closely related field theories have been constructed by

Ševera in [9]. The idea of generalizing Dijkgraaf–Witten theory by replacing B�

by a more general classifying space was mentioned in [10], as well as the sketch
of a general framework for finite path integration.
It would be interesting to construct Dijkgraaf–Witten theories of higher gauge

fields valued in non-abelian finite groups. The quantum theory of non-abelian
higher gauge fields is unknown,1 and the latter appear in several physically inter-
esting theories, such as (2,0) superconformal field theories in six dimensions or
gauged supergravities. One may hope that the simple setting of Dijkgraaf–Witten
theory will provide interesting insights. A possible avenue is to repeat the present
construction in the framework of non-abelian cohomology (see for instance [11–
13]). In the context of state sum models, results have been obtained by Yetter in
[14] (see also [15]) in the case p= 2, and by Porter in [16] for generic p. We will
not discuss further the non-abelian case here.
The paper is organized as follows. In Section 2, we explain that the isomorphism

classes of fields in the higher DW theories are classified by the pth cohomology
group of the underlying manifold with value in �. In Section 3, we describe the
structures on space time manifolds required to define the theory. We describe in
Section 4 the space of fields over a manifold, paying particular attention to the
case where the latter has a boundary. We define there the measure factors crucial

1See, however, [5] for an approach to quantization using the BV formalism.
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for the definition of the theory in Section 5. In Section 6, we show that the field
theory functor is compatible with the gluing of manifolds.

2. Degree p �-Valued Gauge Fields

Let � be a finite abelian group. We would like to construct a version of DW the-
ory in which the fields on which the path integral is performed generalize principal
�-bundles in the same way as p-form gauge fields generalize ordinary (i.e. 1-form)
abelian gauge fields. While the case p=2 is rather well understood [3–6], we do not
have a good picture for such objects for general p. However, we can make sense
of their isomorphism classes as follows, which will turn out to be sufficient to for-
mulate the DW theory.
We remark that the isomorphism classes of principal �-bundles over a manifold

M are classified by H1(M;�), which is ultimately due to the fact that the clas-
sifying space B� is an Eilenberg–MacLane space K (�,1). The usual DW theory
can be reformulated in terms of degree 1 �-valued cocycles instead of principal
�-bundles. The precise model used for the cochains has no influence on what fol-
lows and we take singular cochains for definiteness. Of course, there is no bijec-
tion between principal �-bundles and �-valued 1-cocycles, but there is a bijection
between the isomorphism classes of such objects. As the DW theory relies ulti-
mately only on gauge invariant data, the two formulations are equivalent.2 This is
a concrete illustration of the fact, well known to physicists, that a “gauge symme-
try" is only a redundancy in the description of the theory, and not a property of
the theory itself.
In the cocycle formulation, the generalization to higher degree is obvious. The

fields of the higher abelian DW theories are degree p �-valued cocycles. We declare
that any two such cocycles are isomorphic if they differ by the differential of a
degree p−1 �-valued cochain. The isomorphism classes of fields on a closed man-
ifold M are, therefore, elements of the cohomology group H p(M;�). We will dis-
cuss the case of manifolds with boundary later.
As a further piece of evidence for the claim above, we remark that degree p

Zn-valued gauge fields should be representable by flat degree p + 1 differential
cohomology classes that are also n-torsion, and that the latter are classified by
H p(M;Zn).

3. Structures on Manifolds

We consider manifolds endowed with certain unspecified geometrical/topological
structures, denoted by F (see Appendix A.4 of [17]). We assume that given a man-

2To be more precise, as pointed out by the referee, we need the groupoids of fields to be equiv-
alent as categories, i.e. the spaces of gauge transformations (morphisms) should be in bijection as
well. In the case of interest to us, this condition is trivially satisfied. It is sufficient to check that
in both models, the automorphism group of a field is given by H0(M;�).



1324 SAMUEL MONNIER

ifold M , F(M) includes an orientation on M and a homotopy class of maps [γP ]
from M to K (�, p). [γP ] determines an element P of H p(M;�), hence an isomor-
phism class of gauge fields on M . We will call such manifolds manifolds with F-
structure, or simply F-manifolds. We write F̄ for the structure encoding the same
data as F, minus the homotopy class [γP ]. We also assume that we are given a
cohomology class cU ∈ Hd(K (�, p),U (1)), that plays the role of the exponentiated
action of the theory. The data F(M) then include a cohomology class c :=γ ∗

PcU ∈
Hd(M,U (1)).
As explained in [7,8], there is a sense in which one can integrate c over the d−k-

dimensional manifold M . For k=0, the integration map is the usual integration of
cochains, yielding an element of U (1). For k=1, one obtains a Hermitian line, i.e.
a one-dimensional Hilbert space. For k=2, one obtain a two-Hermitian line, which
is a category equivalent to the category H1 of finite dimensional Hilbert spaces
(see for instance Appendix A.2 of [17]). For higher k, one obtains higher analogues
of Hermitian lines [8]. We will write Ic for the integration map.
Ic is a field theory defined on manifolds with F-structure. It can be seen as a

classical version of the DW theory [7,8]. More precisely, in the terminology of geo-
metric quantization, it is the prequantum version of the DW theory determined by
the exponentiated action cU . The quantum DW theory DWc is defined on mani-
folds with F̄-structure, via a sum of Ic over the space of isomorphism classes of
degree p �-valued gauge fields. This sum should be interpreted as a path integral
over the field space of the theory.
In the following, all the manifolds are assumed to be F̄-manifolds, and we denote

F-manifolds by pairs (M, P), where M is a F̄-manifold and P is the gauge field
isomorphism class encoded in F(M).

4. Fields

Let M be a F̄-manifold, possibly with boundary or corners. The fields on M are
degree p �-valued cocycles, which we write hatted. A cocycle P̂1 is isomorphic to a
cocycle P̂2 if they define the same cohomology class, i.e. if there is a degree p−1
cochain φ̂ such that P̂2 = P̂1 + dφ̂. As they have the same action on cocycles, we
identify isomorphisms differing by the differential of a cochain, i.e. φ̂ ∼ φ̂ + dρ̂.
With these identifications, the automorphism group Aut(P̂) is H p−1(M;�), which
is a finite group. We write P for the cohomology class of P̂ .

We will also need the notion of relative cocycle. Let Q̂ be a degree p �-valued
cocycle over ∂M . A degree p �-valued cocycle on M relative to Q̂ (in short a
relative cocycle), is a pair (P̂, θ̂ ) where P̂ is a degree p �-valued cocycle on M
and θ̂ is a degree p − 1 �-valued cochain on ∂M such that P̂|∂M = Q̂ + d θ̂ . An
isomorphism between two relative cocycles (P̂1, θ̂1) and (P̂2, θ̂2) is an equivalence
class of degree p− 1 �-valued cochain φ̂ on M such that P2 = P1 + dφ̂ and θ2 =
θ1 + φ̂|∂M . Two such cochains are equivalent if they differ by the differential of a
cochain vanishing on the boundary: φ̂ ∼ φ̂ +dρ̂ with ρ̂|∂M =0. The automorphism
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group Aut(P̂, θ̂ ) is H p−1(M,∂M;�), the relative cohomology group with value in
�, which is a finite group. We write (P, θ) for the cohomology class of (P̂, θ̂ ).

We now define measure factors that play a crucial role in the definition of the
theory, and prove a fundamental identity they satisfy. Let

μM =
p−1∏

i=0

|Hi (M,∂M;�)|(−1)p−i
, (4.1)

where |G| denotes the order of the finite group G. Let us furthermore define for
N ⊂M , N ∩∂M =∅,

μ(M,N ) =
p−1∏

i=0

|Hi (M, N ∪∂M;�)|(−1)p−i
. (4.2)

Let K be the kernel of the map H p(M, N ∪∂M;�)→ H p(M,∂M;�).

Lemma 4.1. The following equality holds:

μM =|K |μ(M,N )μN (4.3)

Proof. This is an immediate consequence of the long exact sequence for relative
cohomology:

· · ·→ H p−2(N )→ H p−1(M, N ∪∂M)→ H p−1(M,∂M) (4.4)

→ H p−1(N )→ H p(M, N ∪∂M)→ H p(M,∂M),

where we suppressed the argument � in the cohomology groups.

Remark that in the ordinary Dijkgraaf–Witten theory, μ(M,P) = 1/|Aut(P)|,
where P is a principal �-bundle, and Aut(P) is the group of automorphisms of
P leaving P|∂M fixed. When � is abelian, |Aut(P)| = |H0(M,∂M;�)|, which is
consistent with (4.1).

5. Definition of the Theory

In the following we use the following conventions. A 0-Hilbert space is a complex
number. A 1-Hilbert space is a finite dimensional Hilbert space. The category of
1-Hilbert spaces is denoted by H1. A 2-Hilbert space [18] is a C-linear category
linearly equivalent to the nth Cartesian product of H1 with itself, endowed with
extra structure, see also Appendix A.2 of [17]. In particular, a 2-Hilbert space H
is endowed with a functor (•,•)H : Hop × H →H1, playing the role of the inner
product. The 2-Hilbert spaces form a 2-category H2. H2 admits a dagger structure
given by the complex conjugation and a symmetric monoidal structure described in
Section 4.4 of [18].
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We write Md,p for a generic F̄-manifold of dimension d with corners of dimen-
sion d − p or higher. If X= F, F̄, Bd,p

X is the bordism category consisting of X-
manifolds of dimension d− p, . . . ,d with corners of dimension d− p or higher, see
Appendix A.4 of [17]. The bordism category has a dagger structure given by the
orientation reversal of manifolds, and a symmetric monoidal structure given by the
disjoint union of manifolds.
We will define below the quantum DW theory as a 2-functor

DWc :Bd,2
F̄

→H2 (5.1)

compatible with the dagger and the monoidal structures. We rely on the fact that
the prequantum DW theory

Ic :Bd,2
F →H2 (5.2)

is such a 2-functor [7,8]. (See also Section 4 of [17].)

5.1. CLOSED d − k-DIMENSIONAL MANIFOLDS

Here k = 0,1,2. The prequantum DW theory Ic associates a k-Hilbert space
Ic(Md , P) to a closed d-dimensional F-manifold (Md , P). We define the value of
the quantum DW theory on Md−k by

DWc(M
d−k)=

∑

P∈H p(Md−k ;�)

μMd−kIc(Md−k, P). (5.3)

The sum sign should be understood as an ordinary sum when k = 0, as a direct
sum of Hilbert spaces when k = 1 and as the direct sum of 2-Hilbert spaces for
k = 2 (see Appendix A.2 in [17]). The multiplication by μMd−k also deserves an
explanation. For k = 0 this is the ordinary multiplication of complex numbers by
the rational number μMd−k . For k = 1, μ∈Q+ and H a Hilbert space, μH is the
vector space H , endowed with the inner product of H rescaled by μ: (•,•)μH =
μ(•,•)H . For k = 2, let H be a 2-Hilbert space, endowed with an inner product
(•,•)H valued in H1. Then μH is the 2-vector space H , endowed with an inner
product (•,•)μH defined as follows. For any V1,V2 ∈ H , (V1,V2)μH = μ(V1,V2)H ,
where the multiplication on the right-hand side should be interpreted according to
the k=1 case we described above.

5.2. d − k-DIMENSIONAL MANIFOLDS WITH BOUNDARY

Here k = 0,1. We define the value of the quantum DW theory on Md−k,1 by an
expression formally similar to (5.3):

DWc(M
d−k,1)=

∑

P∈H p(Md−k,1;�)

μMd−k,1Ic(Md−k,1, P). (5.4)
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Consistency requires that

DWc(M
d−k,1)∈DWc(∂M

d−k,1). (5.5)

But this is immediately implied by the corresponding relation for the prequantum
DW theory: Ic(Md−k,1, P)∈Ic(∂Md−k,1, P|∂Md−k,1) [7,8]. Equation (5.5) implies in
particular that given a bordism Bd−k between manifolds Md−k−1

1 and Md−k−1
2 ,

DWc(Bd−k) is a homomorphism (k = 0) or a C-linear functor (k = 1) from DWc

(Md−k−1
1 ) to DWc(M

d−k−1
2 ).

5.3. d-DIMENSIONAL MANIFOLDS WITH CORNERS

Let Md,2 be a d-dimensional manifold with ∂Md,2 =−N1 ∪N2, where ∂N1=∂N2 =
−M1 
M2. We define

DWc(M
d,2)=

∑

P∈H p(Md,2;�)

μMd,2Ic(Md,2, P). (5.6)

The fact that DWc(Md,2) is a 2-morphism between the 1-morphisms DWc(N1) and
DWc(N2) is directly inherited from the corresponding property of the prequantum
DW theory [8].

5.4. HIGHER CODIMENSION

Formulas (5.3), (5.4) and (5.6) clearly have the same structure. Given a concrete
construction of the prequantum DW field theory as a fully extended field theory,
for instance along the lines proposed in [19], the same formulas should define the
higher abelian DW theories as fully extended field theories. We expect the proof of
the gluing law in the next section to be formally identical, see [8] for the case of
ordinary DW theories.

5.5. COMPATIBILITY

The compatibility of DWc with the † and monoidal structures of Bd,2
F̄

and H2

comes from the compatibility of Ic with these structures [7,8,17], and the fact that
μ(M1 ∪M2)=μ(M1)μ(M2) for M1 and M2 disjoint manifolds.

6. Gluing

The compatibility of the prequantum DW theory with gluing (i.e. the compatibility
of the functor Ic with the composition of morphisms in Bd,2

F and H2) is obvious
from the locality of the integral. Because of the sums involved, the compatibility
with gluing is not obvious in the DW theory and we check it here.
Let Md−k,1 be as usual a d − k-dimensional F̄-manifold with boundary and

let N ⊂ Md−k,1 be a codimension 1 submanifold disjoint from the boundary. Let
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Md−k,1
N be the manifold Md−k,1 cut along N , whose boundary is ∂Md−k,1 ∪ N ∪

−N . The compatibility with gluing is equivalent to the following

Theorem 6.1. We have:

DWc(M
d−k,1)=TrDWc(N )(DWc(M

d−k,1
N )), (6.1)

where Tr on the right-hand side denotes the contraction of

DWc(M
d−k,1
N )∈DWc(∂M

d−k,1)⊗DWc(N )⊗ (DWc(N ))† (6.2)

using the canonical pairing between DWc(N ) and its dual.

Remark that the trace involves a scalar multiplication. For k = 1, the pairing
is valued in H1 and the scalar multiplication is a tensor product-like operation
between a Hilbert space and an element of the 2-Hilbert space DWc(∂Md−k,1), see
for instance Appendix A.2 of [17].
Our proof of the gluing relation (6.1) is strongly inspired by the correspond-

ing proof in [7,8], valid for the usual DW theory and its extended version. In the
present proof, we write M for Md−k,1 and MN for Md−k,1

N . We omit the argument
� in all cohomology groups to simplify the notation. All cohomology groups are
understood to be relative with respect to ∂M ⊂ M, MN , and we suppress as well
this information from the notation. Cocycles are always hatted and their cohomol-
ogy classes are denoted by the same letter without a hat. Let us write π :MN →M
for the gluing map that identifies the components N and −N of the boundary
of MN . It induces a map π∗ : H p(M) → H p(MN ). Let H p

N (M) and K (M, N ) be
the image and kernel of the inclusion H p(M, N )→ H p(M). Similarly, let us write
H p
N∪−N (MN ) for the image of the inclusion H p(MN , N ∪−N )→H p(MN ). We can

realize any class in H p
N∪−N (MN ) as a cocycle vanishing on N ∪−N , which we can

push forward to M . We obtain in this way a map π∗ : H p
N∪−N (MN )→ H p

N (M). We
need the following preliminary lemma.

Lemma 6.2. π∗ is surjective and the order of its kernel is |K (M, N )|.

Proof. Let P ∈ H p
N (M). We can pick a representative cocycle P̂ that vanishes

on N ⊂ M . Let R̂ = π∗(P̂) and let R be the corresponding cohomology class in
H p
N∪−N (MN ). Then π∗(R)= P , so π∗ is surjective.
We now describe an action of H p−1(N ) on π−1∗ (S), for S ∈ H p

N (M). We show
that it is transitive and compute its kernel, which allows us to deduce the order of
the kernel of π∗.
The automorphism group of any cocycle on N is H p−1(N ). An element ψ ∈

H p−1(N ) acts on a cocycle representative (P̂, θ̂N , θ̂−N , θ̂∂M ) of a class P in H p(MN ,

N ∪−N ) by

ψ · (P̂, θ̂N , θ̂−N , θ̂∂M )= (P̂, θ̂N + ψ̂, θ̂−N + ψ̂, θ̂∂M ) , (6.3)
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where ψ̂ is a cocycle representative of ψ . This induces an action of H p−1(N ) on
H p(MN , N ∪−N ), which passes to H p

N∪−N (MN ) (and which we still denote with ·).
The kernel of this action at P is the image of the restriction H p−1(M)→H p−1(N ).
The action of H p−1(N ) on H p

N∪−N (MN ) is transitive when restricted to π−1∗ (S),
for S ∈ H p

N (M), as the following argument shows. Let P1, P2 ∈ H p
N∪−N (MN ), with

cocycle representatives P̂1 and P̂2. By definition, we have P̂i |±N =d θ̂i,±N . Assume
now that π∗(P1)=π∗(P2)= S. This means that there is an isomorphism φ such that
P̂2 = P̂1 +dφ̂ and

θ̂1,N − θ̂2,N + φ̂|N = θ̂1,−N − θ̂2,−N + φ̂|−N = ψ̂. (6.4)

We have dψ̂ =0, so ψ̂ is a cocycle on N . Therefore, ψ ∈ H p−1(N ) and ψ · P1 = P2.
From the knowledge of the action kernel and of the fact that the action is tran-

sitive, we deduce that the order of π−1∗ (S) is |H p−1(N )|/|Im(H p−1(M)→H p−1(N )|.
The long exact sequence (4.4) shows that this is equal to |K (M, N )|.

Proof of Theorem 6.1. We use the definition of the left-hand side to write

DWc(M)=μM

∑

P∈H p(M)

Ic(M, P). (6.5)

Let H p
ext(N ) be the image of the restriction map H p(M) → H p(N ), and let Qext

be a choice of preimage for each Q ∈ H p
ext(N ). We decompose the sum over the

classes in H p(M) as a sum over H p
ext(N ) and H p

N (M). The right-hand side of (6.5)
becomes

μM

∑

Q∈H p
ext(N )

∑

P∈H p
N (M)

Ic(M, P + Qext). (6.6)

We use (4.3), the gluing relation for Ic and the linearity of the trace to rewrite
(6.6) as

μNμ(M,N )|K (M, N )|
∑

Q∈H p
ext(N )

TrIc(N ,Q)

⎛

⎜⎝
∑

P∈H p
N (M)

Ic(MN , π∗(P + Qext))

⎞

⎟⎠ . (6.7)

Let H p
ext(N ∪ −N ) be the image of the restriction map H p(MN ) → H p(N ∪ −N )

and let Qext be a choice of preimage for each Q∈H p
ext(N ∪−N ). Because the trace

selects the diagonal component, we can replace the sum over Q ∈ H p
ext(N ) in (6.7)

by a sum over Q ∈ H p
ext(N ∪−N ).

Lemma 6.2 says that the order of the kernel of the gluing map H p
N∪−N (MN )→

H p
N (M) is |K (M, N )|, so we can also replace |K (M, N )|∑P∈H p

N (M) with∑
P∈H p

N∪−N (MN ). We obtain

μNμ(M,N )

∑

Q∈H p
ext(N∪−N )

TrIc(N ,Q)

⎛

⎜⎝
∑

P∈H p
N∪−N (MN )

Ic(MN , P + Qext)

⎞

⎟⎠ . (6.8)
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But now we use again the linearity of the trace, the fact that μ(M,N ) = μMN and
remark that the full sum yields DWc(MN ). Moreover, the trace over DWc(N ) is μN

times the sum of the traces over Ic(N , Q), so we finally obtain (6.1).

This proves that DWc is a 2-functor, hence defines a field theory.
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