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Rational Differential Systems,
Loop Equations, and Application
to the qth Reductions of KP

Michel Bergère, Gaëtan Borot and Bertrand Eynard

Abstract. To any solution of a linear system of differential equations, we
associate a matrix kernel, correlators satisfying a set of loop equations,
and in the presence of isomonodromic parameters, a Tau function. We
then study their semiclassical expansion (WKB type expansion in powers
of the weight � per derivative) of these quantities. When this expansion
is of topological type (TT), the coefficients of expansions are computed
by the topological recursion with initial data given by the semiclassical
spectral curve of the linear system. This provides an efficient algorithm to
compute them at least when the semiclassical spectral curve is of genus 0.
TT is a non-trivial property, and it is an open problem to find a criterion
which guarantees it is satisfied. We prove TT and illustrate our construc-
tion for the linear systems associated to the qth reductions of KP—which
contain the (p, q) models as a specialization.

1. Introduction

Let L(x) be a d × d matrix with entries being rational functions of x, and P
the set of poles of L. We consider matrix Ψ(x) (whose columns form a basis
of solutions) of the differential system:

� ∂xΨ(x) = L(x)Ψ(x), (1.1)
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i.e. Ψ(x) is a d × d invertible matrix solving (1.1). It is well known that Ψ(x)
is locally holomorphic in ̂C\P. The matrix L (and thus Ψ) may depend on
� and on extra parameters tα. The goal of this article is to establish a set of
loop equations satisfied by some quantities built out of Ψ called “correlators”,
and analyze their consequences, especially for small � expansions—whether
at the formal level, or at the level of asymptotics. Very often, if one wishes
to study the asymptotic behavior in some parameter x or tα of a differential
system, one can introduce by hand a parameter � to put the system in the
form (1.1), so that the asymptotic regime of interest corresponds to � → 0.
We think of the loop equations as providing a new point of view on the study
of the regime � → 0. Some aspects of the problem—in particular the possible
connections to enumerative geometry—are hidden when studying merely the
expansion for the solution Ψ itself. In a sense, the study of the correlators via
the loop equations reorganize this expansion with a focus on the singularities
at the turning points, and reveals a rich structure.

1.1. Outline

The paper is organized in three parts.

Notions and Properties. Firstly, in Sect. 2, we associate to any d×d invertible
matrix Ψ(x) solution of a linear differential system:

• a d × d matrix K(x, y), called matrix kernel.
• an infinite family of functions Wn(

a1
x1, . . . ,

an
xn), indexed by a n-tuple of

integers a1, . . . , an ∈ [[1, d]], called n-point correlators, or shortly, correla-
tors.

We show that the n-point correlators satisfy a set of linear equations (The-
orem 2.1) and a set of quadratic equations (Theorem 2.2). We use the name
loop equations to refer collectively to those set of equations. We also intro-
duce a notion of “insertion operator” (Definition 2.5) allowing the derivation
of k-linear loop equations for n ≤ d (the size of the differential system) from
the master ones. These results are of purely algebraic nature and hold for any
system (1.1). When L depends on a set of parameters �t preserving the mon-
odromy of the solutions, we can also associate to Ψ(x,�t) a Tau function T (�t),
defined up to a constant prefactor.

What we call “matrix kernel” can be thought as a parallel transport map
of the connection �∂x − L between the points x and y, in the basis provided
by Ψ. For the Zakharov–Shabat system, it is closely related to the soliton
correlation matrix introduced in [50]. The n-point correlators are sums over
n-cycles of cyclic products of the matrix kernel K, that is the “connected part”
of the n × n determinants built from K. To our knowledge, the definition of
correlators in the context of ODEs originally appeared in earlier work of two
of the authors [8]. Though the definition is very simple, it is not part of classi-
cal textbooks on differential equations or integrable systems. We nevertheless
think that the correlators are interesting objects. The main reason for us is
that they satisfy loop equations in a universal form, and particular instances
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of those loop equations are relevant in random matrix theory and the enumer-
ative geometry of surfaces. When specialized to integrable systems including
a complete (infinite) set of times, the n-point correlators encode the nth order
derivatives of the Tau function with respect to this family of times. In this
regard, the sequence of correlators is a way to repackage information that is
intermediate between the solution Ψ of the linear system and the correspond-
ing Tau function. The relation between the correlators and the solution Ψ is
sometimes called “boson–fermion correspondence”.

Though we sometimes borrow the vocabulary of integrable systems or
matrix models to make the reader feel more familiar, we insist that Theorem 2.2
is valid without any integrable property assumed for the differential system,
and for differential systems which are not necessarily related to matrix models.
Yet, for the differential systems appearing in the 1 and 2 hermitian matrix
models, the matrix kernel and correlators can be realized as observables in the
matrix model, as we review in “Appendix D”. In this context, the insertion
operator corresponds to the infinitesimal addition of a simple pole to the matrix
model potential.

Semiclassical Expansions. In Sect. 3, we study the semiclassical expansion in
powers of � and describe in detail the monodromy of its coefficients (Sects. 3.2–
3.4). We introduce in Definition 3.3 the notion of “expansion of topological
type”—also referred to as the TT property—and show that the expansion
can be computed by the topological recursion of [41] when the TT property
holds. In practice, the main consequence of our theory is Theorem 3.1, and in
the presence of isomonodromic times, this also allows the computation of the
semiclassical expansion of ln T (�t) (Corollary 4.2). In other words, we provide
a method that can be applied—once the assumptions are checked—to estab-
lish a relation between the coefficients of the all-order WKB expansions and
the geometric invariants computed by the topological recursion. Since those
invariants can always be expressed in terms of intersection indices on the mod-
uli space of curves [39], we learn that those WKB expansions have something
to do with the enumerative geometry of surfaces, a fact which would be hid-
den at this level of generality if one did not consider correlators and the loop
equations they satisfy.

Applications. Finally, in Sect. 5, we apply our theory to the linear system
associated to the qth reduction of KP and illustrate it more specifically with
examples of the (p, q) models (Sect. 6). As a motivation, those hierarchies are
believed to describe the algebraic critical edge behavior that can be reached
in the two-hermitian-matrix model, and universality classes of 2d quantum
gravity coupled to conformal field theories [28,30,49,58]. In any qth reduction
of KP, we show (Sects. 5.6–5.8) that the TT property holds, and that our
Theorem 3.1 can be applied.

1.2. Comments

The earlier work [8] described the construction of Sect. 2 for general 2 × 2
rational systems, but implicitly assumed the TT property. It was illustrated
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for (2m + 1, 2) systems in [10] and entails a rigorous proof—modulo check-
ing the TT property, which had not been performed so far—of an equivalence
between the three usual approaches of quantum gravity, namely topological
gravity (in relation with intersection theory on the moduli space of curves),
random maps, and (2m + 1, 2) models (see [28] for a review on those equiva-
lences in physics). Again taking the TT property as an assumption, [25] treated
the models (2m, 1), in relation with the merging of two cuts in random matrix
theory. The TT property was made explicit and checked by integrability argu-
ments in [17] for a 2 × 2 linear system associated to the Painlevé II equation
[44], justifying the computation of asymptotics of the GUE Tracy–Widom law
by the topological recursion. The same approach—with a justification of the
TT property—was applied more recently [11] to the 2 × 2 linear system of
associated to Painlevé V [52], relevant to get the GUE sine kernel law. So far,
this concerned only 2 × 2 systems.

The present work aims at presenting a complete theory for general d × d
rational systems and developing tools to study the TT property. Its application
to the (p, q) models can then be used to establish rigorously the equivalence
between the three quantum gravities for all (p, q) models. For clarity, this will
appear in a separate work [16].

In [18], the two last authors have made a conjecture to construct an
integrable system out of the topological recursion of a given spectral curve. The
present work aims at the converse: showing that the semiclassical expansion
of linear differential systems satisfying the TT property is computed by the
topological recursion of their semiclassical spectral curve.

The TT property is neither expected to hold in general—even among
integrable systems—nor obvious to establish for a given system. Our proof
that it holds for the qth reduction of the KP hierarchy depends in an essential
way on the integrability of the latter, i.e. on the existence of another system
� ∂tΨ(x, t) = M(x, t)Ψ(x, t) with rational coefficients in x, which is compatible
with (1.1), and also on the specific form of M(x, t). This is clear from the
technical results of Sects. 5.7 and 5.8. We can formulate the existence of TT
property as Question 4.1.

Within the TT property, the structure of the asymptotic expansion of
correlators is identified in Theorem 3.1, but when the semiclassical spectral
curve has genus g > 0, it can contain “holomorphic parts” H

(g)
n (z1, . . . , zn),

which form basically the moduli of the space of solutions of loop equations. A
given solution Ψ(x) knows which H

(g)
n (z1, . . . , zn) is chosen. It thus remains

to investigate which conditions have to be added to the loop equations to
determine completely the holomorphic part. They probably should take the
form of period conditions. Actually, for many interesting solutions Ψ(x), we
expect the TT property to breakdown if the semiclassical spectral curve has
genus g > 0.

We stress that, even when the TT property does not hold, the loop equa-
tions of Theorems 2.1 and 2.2 are still satisfied and provide some constraints
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on the asymptotic expansion of Ψ(x). In particular, the existence of a non-
trivial moduli space of solutions of loop equations—which, in the context of
expansion in powers of �, can be parametrized by a “holomorphic part” at
each order in �—can be responsible for the breakdown of expansion in powers
of �, since the moduli may depend on � in a complicated way. This mechanism
explains for instance the oscillatory asymptotics in matrix models which was
first established in [26], and retrieved by other methods heuristically in [38] and
rigorously in [21]. It is also implicit in [18], where the candidate Tau function
is constructed as a sum over a lattice of step � in the moduli space of solutions
of the loop equations: the interferences between the terms of the sum create
in general an oscillatory � → 0, described by Theta functions evaluated at an
argument proportional to 1/�. This suggests that in general when � → 0, the
“fast variables” live in the moduli space of solutions of loop equations, whereas
the dependence in the “adiabatic variables” is captured by the loop equations
themselves.

An important open problem would be to show that the asymptotics of
(bi)orthogonal polynomials are given by certain Baker–Akhiezer functions of
an integrable system, which depend on the universality class. Around a point
where the density of zeroes vanishes like a power p/q, the integrable system
should be related to the (p, q) models. This remains beyond the scope of the
present investigation.

2. Linear Differential Systems and Loop Equations

2.1. Kernel, Determinantal Formulae and Correlators

Definition 2.1. The matrix kernel is a d×d matrix depending on two variables
x1, x2 ∈ ̂C\P, defined by:

K(x1, x2) =
Ψ−1(x1)Ψ(x2)

x1 − x2
,

Since we have the relation:

Ψ(x2) = (x1 − x2)Ψ(x1)K(x1, x2),

K(x1, x2) can be interpreted as the parallel transport of the connection �∂x −
L(x) from x1 to x2. In the context of integrable systems, it is closely related
to the integrable kernel and to Baker–Akhiezer functions. Our matrix kernel
obviously satisfies a replication formula:

K(x1, x2)K(x2, x3) =
x1 − x3

(x1 − x2)(x2 − x3)
K(x1, x3), (2.1)

and it has a simple pole at coinciding points:

K(x1, x2) ∼
x1→x2

1d

x1 − x2
.
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Definition 2.2. The n-point correlators are a family of symmetric functions in
n variables, indexed by a1, . . . , an ∈ [[1, d]], defined as follows:

W1(
a
x) = lim

x′→x

(

Ka,a(x, x′) − 1
x − x′

)

,

∀n ≥ 2, Wn(
a1
x1, . . . ,

an
xn) = (−1)n+1

∑

σ=n-cycles

n
∏

i=1

Kai,aσ(i)(xi, xσ(i)),

and the “non-connected” n-point correlators by:

Wn(
a1
x1, . . . ,

an
xn) = “det”Kai,aj

(xi, xj), (2.2)

where “det” means that each occurrence of Kai,ai
(xi, xi) in the determinant

should be replaced by W1(
ai
xi).

In the context of integrable systems, the entries of K can be interpreted as
fermionic observables—the sandwich of a vertex operator and a group element
between two vacuum states in the infinite wedge formalism—while the corre-
lators correspond to bosonic observables. The two are related by the “boson–
fermion correspondence”, and it is well known that bosonic observables are
obtained from fermionic one by determinantal formulae. Here, we take the
determinantal formula as a definition of the correlators Wn.

For instance, we have for any a, b ∈ [[1, d]], with a �= b:

W1(
a
x) = − �

−1
(

Ψ−1(x)L(x)Ψ(x)
)

a,a
,

W2(
a1
x1,

a2
x2) = − Ka1,a2(x1, x2)Ka2,a1(x2, x1), (2.3)

lim
x1→x

W2(
a
x1,

b
x) = − �

−2
(

Ψ−1(x)L(x)Ψ(x)
)

a,b

(

Ψ−1(x)L(x)Ψ(x)
)

b,a
.

We may give another representation for the correlators, using:

Definition 2.3. We define the projectors on state a:

P(
a
x) = Ψ(x)Ea Ψ−1(x),

where Ea = diag(0, . . . , 0,
a
1, 0, . . . , 0) denotes the diagonal matrix with ath-

entry 1, and zero entries elsewhere.

We observe that P(
a
x) form a basis of rank one projectors:

P(
a
x)P(

b
x) = δa,bP(

a
x), Tr P(

a
x) = 1,

d
∑

a=1

P(
a
x) = 1d, (2.4)

which satisfies a Lax equation

� ∂xP(
a
x) = [L(x),P(

a
x)]. (2.5)



Vol. 16 (2015) Differential Systems and Loop Equations 2719

Proposition 2.1. The correlators can be written:

W1(
a
x) = −�

−1TrP(
a
x)L(x),

W2

(

a1
x1,

a2
x2

)

=
TrP(

a1
x1)P(

a2
x2)

(x1 − x2)2
= −

Tr
(

P(
a1
x1) − P(

a2
x2)

)2

2 (x1 − x2)2
+

1
(x1 − x2)2

,

and for n ≥ 3

Wn(
a1
x1, . . . ,

an
xn)=(−1)n+1

∑

σ=n-cycles

TrP(
a1
x1)P

( aσ(1)
xσ(1)

)

P

(

aσ2(1)
xσ2(1)

)

· · ·P(
aσn−1(1)
xσn−1(1))

∏n
i=1(xi−xσ(i))

.

For instance, we can deduce if a1 �= a2:

lim
x1→x2

W2(
a1
x1,

a2
x2) = −�

−2 TrP(
a1
x2)L(x2)P(

a2
x2)L(x2), (2.6)

W3(
a1
x1,

a2
x2,

a3
x3) =

TrP(
a1
x1)

[

P(
a2
x2),P(

a3
x3)

]

(x1 − x2)(x2 − x3)(x3 − x1)
. (2.7)

Although it is not clear from the definition, the n-point correlators do not have
poles at coinciding points when n ≥ 3. If I = [[1, n]], (xi)i∈I and (ai)i ∈ [[1, d]]I ,
we denote

aI
xI the family (

ai
xi)i∈I .

Proposition 2.2. For any n ≥ 3, any a1, . . . , an ∈ [[1, d]], and 1 ≤ i �= j ≤ n,
Wn(

aI
xI) is regular when xi → xj.

Proof. By symmetry, it is enough to consider i = 1 and j = 2. The definition
of Wk(xaI

I ) implies that it can have at most simple poles when x1 → x2. Let
us compute its residue from Proposition 2.1:

Res
x1→x2

Wn(
aI
xI) = (−1)n+1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

σ=n−cycle
σ(1)=2

TrP(
a1
x2)P(

a2
x2)P

( aσ(2)
xσ(2)

)

· · ·P
(

aσn−3(2)
xσn−3(2)

)

P
(

aσn−2(2)
xσn−2(2)

)

(xσn−2(2) − x2)(x2 − xσ(2)) · · · (xσn−3(2) − xσn−2(2))

−
∑

σ=n−cycle
σ−1(1)=2

TrP(
a2
x2)P(

a1
x2)P

(

aσ2(2)
xσ2(2)

)

· · ·P
(

aσn−2(2)
xσn−2(2)

)

P
(

aσn−1(2)
xσn−1(2)

)

(xσn−1(2) − x2)(x2 − xσ2(2)) · · · (xσn−2(2) − xσn−1(2))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.
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Using the relation P(
a1
x2)P(

a2
x2) = δa1,a2P(

a2
x2), we can rewrite:

Res
x1→x2

Wn(
aI
xI) = (−1)n+1δa1,a2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

σ=n-cycle
σ(1)=2

TrP(
a2
x2)P

( aσ(2)
xσ(2)

)

· · ·P
(

aσn−3(2)
xσn−3(2)

)

P
(

aσn−2(2)
xσn−2(2)

)

(xσn−2(2) − x2)(x2 − xσ(2)) · · · (xσn−3(2) − xσn−2(2))

−
∑

σ=n-cycles
σ−1(1)=2

TrP(
a2
x2)P

(

aσ2(2)
xσ2(2)

)

· · ·P
(

aσn−2(2)
xσn−2(2)

)

P
(

aσn−1(2)
xσn−1(2)

)

(xσn−1(2) − x2)(x2 − xσ2(2)) · · · (xσn−2(2) − xσn−1(2))

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

The two sums range over the set of (n − 1)-cycles and are actually equal. We
conclude that Wk(

aI
xI) is regular when x1 → x2. �

2.2. Loop Equations

We show that correlators satisfy loop equations given in Theorems 2.1 and 2.2
below, and this is our main motivation to introduce correlators. These results
are elementary algebraic consequences of the definitions of Sect. 2.1, but they
are central to this article. Non-trivial consequences of loop equations will be
obtained in Sect. 3.

Theorem 2.1 (Linear loop equation). For any n ≥ 1, any c2, . . . , cn ∈ [[1, d]],
we have:

d
∑

a=1

Wn(
a
x,

c2
y2, . . . ,

cn
yn) = −δn,1�

−1 TrL(x) +
δn,2

(x − y2)2
.

Proof. We first address the cases n = 1, 2 by direct computation starting from
Proposition 2.1, and use the properties (2.4) of the projectors:

d
∑

a=1

W1(
a
x) = − �

−1 Tr

(

d
∑

a=1

P(
a
x)

)

L(x) = −�
−1 TrL(x),

d
∑

a=1

W2(
a
x,

c
y) =

Tr
(

∑d
a=1 P(

a
x)
)

P(
c
y)

(x − y)2
=

TrP(
c
y)

(x − y)2
=

1
(x − y)2

.

(2.8)

For n ≥ 3, combining the representation of Proposition 2.1 and the fact that
∑d

a=1 P(
a
x) = 1d, we find that:

d
∑

a=1

Wn(
a
x,

cI
yI)

= (−1)n+1
∑

σ=n-cycle

1
(x − yσ(1))(yσ−1(1) − x)

TrP
( cσ(1)
yσ(1)

)

· · ·P
(

cσn−1(1)
yσn−1(1)

)

∏n−2
i=1

(

yσi(1) − yσi+1(1)

)
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is a rational function of x, which vanishes in the limit x → ∞. Singularities can
only arise as simple poles at x = yi for i ∈ I, but their residue is 0 according
to Proposition 2.2. Hence, the left-hand side vanishes identically. �

Theorem 2.2 (Quadratic loop equations). For any n ≥ 1, any c2, . . . , cn ∈
[[1, d]],

∑

1≤a<b≤d

⎛

⎝Wn+1

(

a
x,

b
x,

cI
yI

)

+
∑

J⊆I

W|J|+1

(

a
x,

cJ
yJ

)

Wn−|J|

(

b
x,

cI\J

yI\J

)

⎞

⎠

= Pn

(

x;
cI
yI

)

is a rational function of x, with possible poles at x = xi for i ∈ I and poles of
L.

As illustration, we give the formulae for Pn up to n = 3:

P1(x) =
1

2�2

(

− TrL2(x) + [TrL(x)]2
)

,

P2(x;
c
y) =

1
�

TrL(x)[P(
c
y) − 1d]

(x − y)2
,

P3(x;
c1
y1,

c2
y2) = −1

�

Tr [P(
c1
y1)P(

c2
y2) + P(

c2
y2)P(

c1
y1)]L(x)

(x − y1)(x − y2)

+
(y1 − y2)2W2(

c1
y1,

c2
y2) + 1

(x − y1)2(x − y2)2
.

Proof. Notice that the left-hand side makes sense even if n = 1, because the

function W2

(

a
x,

b
x

)

= limy→x W2(
a
y,

b
x) is well defined when a �= b, and given

by (2.3). When a �= b, Wn

(

a
x,

b
x,

cI
yI

)

can be computed from Definition 2.2,

using Ka,b(x, x) = −�
−1

(

Ψ−1LΨ
)

a,b
(x). We introduce a new quantity ˜Wn

(

a
x,

b
x,

cI
yI

)

, as follows:

• when a = b, it is computed from Definition 2.2 where each occurrence
of Ka,a(x, x) is replaced by −�

−1(Ψ−1LΨ)a,b(x) (which is also equal to
W1(

a
x)),

• when a �= b, it is equal to Wn

(

a
x,

b
x,

cI
yI

)

.

We claim:

Lemma 2.1. For all n ≥ 1 and a ∈ [[1, d]]:

˜Wn+1

(

a
x,

a
x,

cI
yI

)

+
∑

J⊆I

W|J|+1

(

a
x,

cJ
yJ

)

Wn−|J|
(

a
x,

cI\J

yI\J

)

= 0.
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The proof of the lemma will be given below. We deduce that:

Pk

(

x;
cI
yI

)

=
1
2

d
∑

a,b=1

˜Wn+1

(

a
x,

b
x,

cI
yI

)

+
∑

J⊆I

1
2

(

d
∑

a=1

W|J|+1(
a
x,

cJ
yJ)

)(

d
∑

b=1

Wn−|J|(
b
x,

cI\J

yI\J)

)

.

The last term is given by the linear loop equations (Theorem 2.1): it vanishes
when n ≥ 5 and is a rational function of x with poles at x = xi for some i ∈ I,
or at poles of L. We now focus on the first term, which is by definition:

Qk :=
1
2

d
∑

a,b=1

˜Wn+1

(

a
x,

b
x,

cI
yI

)

=
(−1)n

2

d
∑

a,b=1

Q̂a,b
k (2.9)

Q̂a,b
k = −�

−1(Ψ−1LΨ)a,b(x)

{

∑

σ=(n+1)-cycle
σ(1)=2

Kcσ−1(1),a
(yσ−1(1), x)Kb,cσ(2)(x, yσ(2))

×
n−2
∏

i=1

Kcσi(2),cσi+1(2)
(yσi(2), yσi+1(2))

}

−�
−1(Ψ−1LΨ)b,a(x)

{

∑

σ=(n+1)-cycle
σ(2)=1

Ka,cσ(1)(x, yσ(1))Kcσ−1(2),b
(yσ−1(2), x)

×
n−2
∏

i=1

Kcσi(1),cσi+1(1)
(yσi(1), yσi+1(1))

}

+

{

∑

σ=(n+1)-cycle
σ(1) �=2, σ(2) �=1

Ka,cσ(1)(x, yσ(1)) · · ·Kcσ−1(2),b
(yσ−1(2), x)

× Kb,cσ(2)(x, yσ(2)) · · ·Kcσ−1(1),a
(yσ−1(1), x)

}

.

The two first lines are equal by symmetry. Performing the sum over a and b,
and replacing the matrix kernels involving the variable x by their definition,
we find:
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Qn(x;
cI
yI) =(−1)n+1

{

∑

σ=(n+1)-cycle
σ(1)=2

(

−
[Ψ−1(xσ−1(1))L(x)Ψ(xσ(2))]cσ−1(1),cσ(2)

�

×
n−3
∏

i=1

Kcσi(2),cσi+1(2)
(yσi(2), yσi+1(2))

)

+
∑

σ=(n+1)-cycle
σ(1) �=2, σ(2) �=1

(

∏

j=1,2

(yσ−1(j) − yσ(j))Kcσ−1(j),cσ(j)(yσ−1(j), yσ(j))

2(x − yσ−1(j))(x − yσ(j))

×
n−2
∏

i=1
σi+1(1) �=1,2

Kcσi(1),cσi+1(1)
(xσi(1), xσi+1(1))

)}

.

This expression is a rational function of x which can have poles only at xi

for i ∈ I, and at poles of L. Therefore, we proved that Pn(x;
cI
yI) is a rational

function of x which can have poles only at those very points.
Proof of Lemma 2.1. We have the analog of (2.9) for a = b:

˜Wn+1(
a
x,

a
x,

cI
yI)g = (−1)n

{

− 2�
−1(Ψ−1LΨ)a,a(x)

×
(

∑

σ=(n+1)-cycles
σ(1)=2

Ka,cσ(2)(x, yσ(2))

[

n−1
∏

i=1

Kcσi(2),cσi+1(2)

(

yσi(2), yσi+1(2)

)

]

× Kcσn−1(2),a
(yσn−1(2), x)

)

+
∑

1≤j,k≤n
j+k=n

∑

σ=(n+1)-cycles

σj+1(1)=2

Ka,cσ(1)(x, yσ(1))

×
[

j−1
∏

i=1

Kcσj(1),cσi+1(1)

(

yσi(1), yσi+1(1)

)

]

Kcσj(1),a
(yσj(1), x)Ka,cσ(2)(x, yσ(2))

×
[

k−1
∏

i=1

Kcσi(2),cσi+1(2)
(yσi(2), yσi+1(2))

]

Kc
σk(2),a

(yσk(2), x)

}

.

We recognize in the first line −2W1(
a
x)Wn(

a
x,

cI
yI). Besides, the two last lines

amount to a sum over two disjoint cycles of length (j + 1) and (k + 1), and we
recognize each term correlators up to a sign factor. Namely:

˜Wn+1(
a
x,

a
x,

aI
xI) = −2W1(

a
x)Wn(

a
x,

cI
yI) −

∑

∅⊂J⊂I

W|J|+1(
a
x,

cJ
yJ)Wn−|J|(

a
x,

cI\J

yI\J).

The first term completes the sum with the terms J = ∅ and J = I, hence the
result.
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Detailed Example. Let us redo the computation in the case n = 1 to illustrate
the method of the proof. We have:

�
2 P1(x) =

∑

1≤a<b≤d

−
(

Ψ−1LΨ
)

a,b
(x)

(

Ψ−1LΨ
)

b,a
(x)

+
(

Ψ−1LΨ
)

a,a

(

Ψ−1LΨ
)

b,b
(x).

Notice that the summand vanish if a = b. We can thus write:

�
2 P1(x) =

d
∑

a,b=1

−
(

Ψ−1LΨ
)

a,b
(x)

(

Ψ−1LΨ
)

b,a
(x)

+
(

Ψ−1LΨ
)

a,a
(x)

(

Ψ−1LΨ
)

b,b
(x)

=
1
2
(

− TrL2(x) + [TrL(x)]2
)

.

2.3. Spectral Curve

Definition 2.4. The spectral curve is the plane curve S of equation det(y −
L(x)) = 0.

The eigenvalues of L(x) are algebraic functions.

Proposition 2.3. The spectral curve can be expressed in terms of correlators:

det(y − L(x)) =
d
∑

k=0

yd−k
∑

1≤a1<···<ak≤d

Wk(
a1
x, . . . ,

ak
x ).

Proof. We first write the coefficients of a characteristic polynomial as a sum
over minors:

det(y − L(x)) = det(y − Ψ−1(x)L(x)Ψ(x))

=
d
∑

k=0

yd−k
∑

1≤a1<···<ak≤d

det
1≤i,j≤k

[−Ψ−1LΨ]ai,aj
(x)

=
d
∑

k=0

yd−k
�

k
∑

1≤a1<···<ak≤d

det
1≤i,j≤k

˜Kai,aj
(x, x),

where we have defined ˜Ka,b(x, x) = −�
−1(Ψ−1LΨ)a,b(x). Notice that

˜Ka,b(x, x) = Ka,b(x, x)

when a �= b, whereas ˜Ka,a(x, x) = W1(
a
x). And, the specialization of the defini-

tion of non-connected correlators (2.2) to xi ≡ x for i ∈ [[1, d]] and a1 < · · · < ak

yields:

Wk(
a1
x, . . . ,

ak
x ) = det

1≤i,j≤k

˜Kai,aj
(x, x), (2.10)

whence the announced formula. �

We remark that the coefficient of yd−2 was already identified in Theorem 2.2.
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2.4. Gauge Transformations

If Ψ is a solution of (1.1), and G is a matrix depending on x, ˜Ψ = GΨ will
also be solution of similar equation, with:

˜L = (� ∂xG)G−1 + GLG−1.

Any two arbitrary d × d matrices Ψ(x) and ˜Ψ(x) can be related by a gauge
transformation G(x) = ˜Ψ(x)Ψ(x)−1. Therefore, the concept of gauge transfor-
mations is only meaningful if we impose some restriction on the form of G(x).
Here, the natural restriction to impose is that G is such that the new matrix
˜L has the same poles and same pole degrees than L. Gauge transformations
in general completely change the matrix kernel and the correlators. However,
there are two special gauge transformations under which the correlators do
not change. If G is independent of x:

˜L = GLG−1, ˜P = GPG−1, ˜K = K, ˜Wn = Wn.

If G depends on x but is scalar G = G1d:

˜L = L + � ∂x ln G, ˜P = P, ˜K(x, y) =
G(y)
G(x)

K(x, y), ˜Wn = Wn.

2.5. Insertion Operator

In this paragraph, we introduce a notion of “insertion operator”. At the level
of algebra, it enables passing from the n-point correlator to the (n + 1)-point
correlator, i.e. it “inserts” a new point. In practice, it is very useful to con-
struct insertion operator with nice properties. For instance, in the application
described in Sect. 5, proving a statement about Wn for all n ≥ 1 can be
reduced to checking it for n = 1 by means of a suitable insertion operator.
Here, it also allows us to obtain higher-order loop equations from the linear
and quadratic ones. In the context of integrable systems with a complete set
of times (tj)j≥0, the formal differential operator

∑

j≥0 x−(j+1) ∂/∂tj is a pro-
totype of “insertion operator”. This is also the case in the context of (may be
non-integrable) matrix models, where the tj corresponds to a perturbation of
the matrix potential by a monomial of degree j, cf. Sect. D.1.3.

Before getting to the definition, we need to expose some notions of dif-
ferential algebra. Let (C(x), ∂x) be the differential ring generated by ratio-
nal functions. We consider a Picard–Vessiot ring B of the differential system
� ∂xΨ(x) = L(x)Ψ(x) [27]. It is a simple extension of (C(x), ∂x) by the matrix
elements of Ψ(x) and

(

detΨ(x)
)−1. Let Bn the n-variable analog of B, i.e.

the differential ring generated by rational functions in n variables x1, . . . , xn

and by the matrix elements of Ψ(xi) and
(

detΨ(xi)
)−1. We denote the pro-

jective limit B∞ = limn→∞ Bn. By construction, the matrix elements of P(
a
x)

or of L(x) are in B, those of K(x1, x2) are in B2, and the n-point correlators
Wn(

a1
x1, . . . ,

an
xn) are in Bn.

Definition 2.5. An insertion operator is a collection of derivations (δa
y )1≤a≤d

over B∞, commuting with ∂xi
, with the following properties:
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• δa
y(Bn) ⊆ Bn+1.

• δa
y(C(xi)) = 0.

• there exist matrices U(
a
y) with entries in B, so that:

δa
yΨ(x) =

(

P(
a
y)

x − y
+ U(

a
y)

)

Ψ(x), (2.11)

and such that U satisfies

δa
xU(

b
y) − δb

yU(
a
x) = [U(

a
x),U(

b
y)]. (2.12)

Since the matrix elements of Ψ and Ψ−1 generate B and δya annihilates
the constant matrix that gives the only algebraic relation ΨΨ−1 = 1, Eq. 2.11
uniquely defines the insertion operator by requiring that the Leibniz rule holds.
The condition (2.12) on U ensures that [δa

x, δb
y] = 0. We included (2.12) in

our definition because it is convenient not to worry about order of insertion
operators, though it is not essential. For instance, in the application to the
qth reduction of KP in Sect. 5.7.3, we construct a suitable insertion operator
including the check of (2.12) in Proposition 5.6, but we do not really make
use of this property. As a matter of fact, the key property we want insertion
operators to satisfy is the last equation of the following:

Lemma 2.2. If δa
y is an insertion operator, for any n ≥ 1, any a, b, a1, . . . , an ∈

[[1, d]],

δa
yK(x1, x2) = −K(x1, y)EaK(y, x2),

δa
yP(

b
x) =

[P(
a
y)

x − y
+ U(

a
y),P(

b
x)
]

,

δa
yL(x) =

[P(
a
y)

x − y
+ U(

a
y),L(x)

]

− P(
a
y)

(x − y)2
,

δa
yTrL(x) = − 1

(x − y)2
,

δa
y ln detΨ(x) =

1
x − y

+ TrU(
a
y),

δa
y ln

(

detΨ(x)
detΨ(z)

)

=
1

x − y
− 1

z − y
,

δa
yWn(

a1
x1, . . . ,

an
xn) = Wn+1(

a
y,

a1
x1, . . . ,

an
xn).

Proof. These results are proved by direct computations done in “Appendix
A”. They are a good illustration on how to manipulate insertion operators,
and of the fact that giving (2.11) is enough to characterize them. �

We remark that the first and the last equations are independent of U. We also
remark that, because of the fifth relation, detΨ is not constant regarding the
action of the insertion operator. Notice that in general, up to a scalar gauge
transformation, one can always choose detΨ(x) to be a constant. What this
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means here is that the insertion operator δa
y does not commute with gauge

transformations.
We are now in position to establish higher-order loop equations. Let us

define the semi-connected correlators:

Wk;n(
a1
x1,

a2
x2, . . . ,

ak
xk ;

b1
y1, . . . ,

bn
yn)

=
∑

I�[[1,k]]

∑

J1∪̇···∪̇J�(μ)=[[1,n]]

�(I)
∏

j=1

W|Ij |+|Jj |(
aIj

xIj
,

bJj

yJj
).

Here, I is a partition of [[1, k]], i.e. a set of �(I) non-empty, pairwise disjoint
subsets Ii ⊆ [[1, k]] whose union is [[1, k]], whereas the subsets Ji ⊆ [[1, n]] could
be empty.

Proposition 2.4 (Most general loop equations). For every k ≤ d and every

{b1
y1, . . . ,

bn
yn},

Pk,n(x;
b1
y1, . . . ,

bn
yn) =

∑

1≤a1<a2<···<ak≤d

Wk;n(
a1
x, . . . ,

ak
x ;

b1
y1, . . . ,

bn
yn)

is a rational function of x, with poles at x = yj for some j and at poles of L.

Proof. The case n = 0 is Proposition 2.3. The cases n ≥ 1 are obtained by
recursively applying δ

bj
yj , for any insertion operator δ. �

3. Asymptotics and Topological Expansion

Loop equations form an infinite system of equations, in general difficult to
solve. In many applications, correlators have an asymptotic expansion (or are
formal series) in powers of �, and if this expansion is of “topological type”
(Definition 3.3 below), loop equations can be solved recursively in powers of
�, by the topological recursion of [41]. This claim is justified in this section
and turns the loop equation into an effective tool to study all-order WKB
expansions.

We assume that L(x) has an asymptotic expansion in powers of �, of the
form:

L(x) =
∑

k≥0

�
k L[k](x),

which is uniform for x in some domain of the complex plane, or alternatively,
L(x) ∈ C[[�]] is defined as a formal power series in �. Let us denote

Λ(x) = diag(λ1(x), . . . , λd(x))

the diagonal matrix of eigenvalues of L(x) counted with multiplicities and
ordered arbitrarily. Λ(x) also has an expansion in powers of �:

Λ(x) =
∑

k≥0

�
k Λ[k](x).
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Our first task, completed in Sects. 3.1–3.2, is to describe the singularities and
monodromies of the coefficients of expansion of Ψ(x) when � → 0. We arrive at
the classical and elementary result that they can be realized as the pushforward
of meromorphic functions on the semiclassical spectral curve (Proposition 3.2).
This fact is however crucial, since we will use later complex analysis on the
closure of the semiclassical spectral curve—which is here a compact Riemann
surface—to characterize those meromorphic functions.

3.1. The Semiclassical Spectral Curve

The semiclassical spectral curve is the locus of leading-order eigenvalues:

Definition 3.1. The semiclassical spectral curve is defined as:

S [0] =
{

(x, y) ∈ C2 | det(y 1d − L[0](x)) = 0
}

.

It can be seen as the immersion of a compact Riemann surface S [0] into
C × C, through the maps x : S [0] → C and y : S [0] → C. If x is of degree
d (the degree in y of the algebraic equation defining S [0], i.e. the size of the
matrix L[0](x)), then the preimage of x0 ∈ C is denoted:

x−1({x0}) = {z0(x0), . . . , zd−1(x0)} ⊆ S [0].

In other words, S [0] is realized as a branch covering of C of degree d by the
projection x : S [0] → C. The zeroes of dx in S [0] are the ramification points,
and their x-coordinate is the branchpoints. Branchpoints βi ∈ C occur when
za(βi) = zb(βi) for at least two distinct indices a and b, and we then denote
ri = za(βi) = zb(βi). Let us call r the set of ramification points.

λ
[0]
a (x) are the eigenvalues of L[0](x), i.e. by definition they are the y

coordinate of some za(x) ∈ S [0]:
{

y(za(x)) a ∈ [[1, d]]
}

=
{

λ[0]
a (x) a ∈ [[1, d]]

}

. (3.1)

Double points αi ∈ C occur where two or more eigenvalues collide, i.e.

y(za(αi)) = λ[0]
a (αi) = λ

[0]
b (αi) = y(zb(αi))

for at least two distinct indices a �= b, but dx(za(αi)) �= 0 and dx(zb(αi)) �= 0—
a fortiori, za(αi) and zb(αi) must be distinct points in S [0].

The space H1(S [0]) of holomorphic 1-forms on S [0] is a complex vector
space of dimension g, where g is the genus of S [0]. In particular, if g = 0,
H1(S [0]) = {0} and a meromorphic form on C is completely determined by the
singular behavior at its poles.

Definition 3.2. Let B(S [0]) the set of fundamental bidifferentials of the second
kind, i.e. B(z1, z2) which are symmetric 2-form in (S [0])2, with no residues,
and a double pole at z1 = z2 with behavior in any local coordinate ξ:

B(z1, z2) =
z1→z2

dξ(z1) dξ(z2)
(

ξ(z1) − ξ(z2)
)2 + O(1).

Since one can add to B any symmetric bilinear combination of holo-
morphic forms, B(S [0]) is an affine space, whose underlying vector space is
Sym2[H1(S [0])], so it has complex dimension g(g + 1)/2.
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3.2. Expansions in Powers of �

We now assume that S [0] is a regular plane curve, i.e. dx and dy do not have
common zeroes. Therefore, L[0](x) has simple eigenvalues for any x which is
not a branchpoint or double point, hence is diagonalizable. So L(x) must be
diagonalizable with simple eigenvalues at least when � is small and x stays
away from the branchpoints or double points. We can thus find a matrix of
eigenvectors V(x):

L(x) = V(x)Λ(x)V−1(x),

which admits an expansion in powers of �:

V(x) =
∑

k≥0

�
k V[k](x). (3.2)

Such a matrix is defined up to transformations V(x) → V(x)D(x)Σ, where
D(x) is a diagonal matrix and Σ a permutation matrix. We can use the first
freedom to impose:

∀a ∈ [[1, d]],
(

V−1(x) ∂xV(x)
)

a,a
= 0, (3.3)

and we then say that V(x) is a normalized matrix of eigenvectors. Any two
such matrices are related by a transformation V(x) → V(x)DΣ, where D is
a constant diagonal matrix and Σ a permutation matrix.

We would like to study solutions of (1.1) which have an expansion in
powers of �. For this purpose, we fix a base point o, an invertible matrix of
constants C, and introduce a matrix ̂Ψ(x) such that:

Ψ(x) = V(x) ̂Ψ(x) exp

(

1
�

∫ x

o

Λ(x′)dx′
)

C. (3.4)

Ψ(x) is a solution of (1.1) if and only if:

� ∂x
̂Ψ(x) = −�T(x) ̂Ψ(x) + [Λ(x), ̂Ψ(x)], (3.5)

where T(x) = V(x)−1∂xV(x) also has an expansion in powers of � derived
from (3.2):

T(x) =
∑

k≥0

�
k T[k](x).

We start by proving a classical result:

Proposition 3.1. Equation 3.5 has a unique solution which is a formal power
series in � of the form:

̂Ψ(x) = 1d +
∑

k≥1

�
k
̂Ψ[k](x) (3.6)

up to transformations ̂Ψ[k](x) → ̂Ψ[k](x) + ̂C[k], where ̂C[k] is a diagonal
matrix of constants. A priori, the entries of ̂Ψ[k](x) are multivalued functions
of x with monodromies around branchpoints, double points and poles at the
poles of (L[j](x))j≥0.



2730 M. Bergère et al. Ann. Henri Poincaré

Proof. Inserting the ansatz (3.6) in (3.5) and collecting the terms of order �
k+1

yield, for any a, b ∈ [[1, d]]:

∂x
̂Ψ[k]

a,b = −
k
∑

j=0

(

T[k−j]
̂Ψ[j]

)

a,b
+
(

λ[0]
a − λ

[0]
b

)

̂Ψ[k+1]
a,b

+
k
∑

j=0

(

λ[k−j]
a − λ

[k−j]
b

)

̂Ψ[j]
a,b. (3.7)

Since we assume that S [0] is regular and x is away from a branchpoint or a
double point, we have λ

[0]
a (x) �= λ

[0]
b (x) when a �= b, which allows to write:

̂Ψ[k+1]
a,b =

1

λ
[0]
a − λ

[0]
b

(

∂x
̂Ψ[k]

a,b +
k
∑

j=0

(

T[k−j]
̂Ψ[j]

)

a,b
−
(

λ[k−j]
a − λ

[k−j]
b

)

̂Ψ[j]
a,b

)

.

(3.8)

This equation determines the off-diagonal part of ̂Ψ[k+1] in terms of ̂Ψ[j] for
j ∈ [[0, k]]. For a = b in (3.7), we rather find:

∂x
̂Ψ[k+1]

a,a =
∑

c=1
c �=a

T[0]
a,c

̂Ψ[k+1]
c,a +

k
∑

j=0

(T[k+1−j]
̂Ψ[j])a,a. (3.9)

We took into account the normalization1 (3.3), so that the right-hand side
involves only off-diagonal entries of ̂Ψ[k+1] or the entries of ̂Ψ[j] for j ∈ [[0, k]].

We proceed by recursion starting from the initial condition ̂Ψ[0] = 1d.
Assuming that ̂Ψ[j] are completely known for j ∈ [[0, k]], we obtain the off-
diagonal part of ̂Ψ[k+1] from (3.8), and solving the first-order differential
equation (3.9) we then obtain the diagonal part of ̂Ψ[k+1] up to a diagonal
matrix of integration constants ̂C[k+1]. It is clear that the singularities of ̂Ψ[k]

can only occur at singularities of λ
[j]
a (x) and T[j](x), i.e. either at semiclassical

branchpoints or poles of (L[j](x))j≥0, or at double points where λ
[0]
a = λ

[0]
b . �

Proposition 3.2 (Analytic continuation). The matrices V(x), Λ(x) and
˜Ψ(x) = V(x) ̂Ψ(x),

all have a power series expansion in �, whose coefficients are such that their
ath column vector is the evaluation of meromorphic function on S [0] at za(x).
In particular, there exists a vector ψ̃[k](z) such that:

˜Ψi,a(x) =
(

V(x) ̂Ψ(x)
)

i,a
=
∑

k≥0

�
k ψ̃

[k]
i (za(x)). (3.10)

Proof. For the diagonal matrix Λ, we have already seen in (3.1) that λ
[0]
a (x) =

y(za(x)). Solving det(λa(x)1d − L(x)) = 0 with L(x) =
∑

k≥0 �
k L[k](x) and

λa(x) =
∑

k≥0 �
k λ

[k]
a (x), by recursion on k, shows easily that each λ

[k]
a (x) is

1 Notice that we only need (3.3) at leading order here.
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a meromorphic function λ[k](za(x)) for all k. Similarly, Cramer’s formula for
computing the eigenvectors of L(x) shows that up to a normalization factor,
the eigenvector corresponding to the ath eigenvalue λa(x) has also a power
series expansion in � whose coefficients are meromorphic functions of za(x) at
each order. In other words, one can choose a matrix ̂V(x) of eigenvectors of
L(x) satisfying

L(x) = ̂V(x)Λ(x)̂V−1(x)

of the form
̂V(x) =

∑

k≥0

�
k
̂V[k](x), ̂V[k](x)i,a = v̂

[k]
i (za(x)).

Then, notice that any symmetric meromorphic function of (z1(x), . . . , zd(x))
is a meromorphic function of x, and thus a meromorphic function of any
za(x). And, any symmetric meromorphic function of (z1(x), . . . , zd(x))â (i.e.
all zj(x)’s except za(x)) is a meromorphic function of x and of za(x), and
thus is a meromorphic function of za(x). In particular, this implies that the
determinant of ̂V(x) is a power series of � whose coefficients are meromorphic
function of za(x), and the inverse matrix ̂V−1(x) takes the form:

̂V−1
a,i (x) =

∑

k≥0

�
k v̂

[k]
i (za(x)).

This implies that
(

̂V−1(x) ∂x
̂V(x)

)

a,a
=
∑

k≥0

�
k t̂[k](za(x)),

where each t̂[k](z) is a meromorphic function on the semiclassical spectral curve
S [0].

We chose to normalize our basis of eigenvectors V(x) = ̂V(x)D(x) where
D(x) is some diagonal matrix, so that (3.3) is satisfied, i.e. we have to choose
D(x) satisfying:

D−1
a,a(x) ∂xDa,a(x) = −

(

̂V−1(x) ∂x
̂V(x)

)

a,a
= −

∑

k≥0

�
k t̂[k](za(x)).

This shows that Da,a(x) also has a power series expansion in � whose coeffi-
cients are meromorphic functions of za(x). Finally, this shows that V(x) has
the form:

Vi,a(x) =
∑

k≥0

�
k v

[k]
i (za(x)),

where each v
[k]
i (z) is a meromorphic function on the semiclassical spectral

curve.
If we choose C to be diagonal, we see that:

˜Ψ(x) = V(x) ̂Ψ(x) = Ψ(x)C−1 exp

(

− 1
�

∫ x

α

Λ(x′) dx′
)
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obeys:

� ∂x
˜Ψ(x) = L(x) ˜Ψ(x) − ˜Ψ(x)Λ(x).

The equation for the ath column of ˜Ψ(x) involves only Λa,a(x), and thus is
order by order in � analytical in za(x), and since we know that ˜Ψ(x) has
only meromorphic singularities, we see again that the column vectors of ˜Ψ(x)
have an � expansion such that the coefficients are meromorphic functions of
za(x). �

Corollary 3.1. The coefficients ψ̃
[k]
i (z) appearing in the expansion of ˜Ψi,a(x)

are meromorphic functions of z ∈ S [0] whose poles occur only at values of z
such that ∃a �= b and x ∈ C with z = za(x) = zb(x), or at poles of L[l](x)
for l ≤ k. In other words, ψ̃

[k]
i (z) can be singular only at ramification points,

at preimages in S [0] of double points, or at poles of L[l] on the semiclassical
spectral curve S [0].

Proof. ˜Ψ(x) was constructed so that it has at most meromorphic singularities
at poles of L(x). Then, one can see in (3.8) that singularities can occur only
when λ

[0]
a (x) = λ

[0]
b (x) for some a �= b, i.e. at branchpoints or double points. �

3.3. Expansion of the Correlators

In this section, we consider the projectors, the correlators, etc. (see Sect. 2.1)
associated to the solution Ψ(x) deduced from Proposition 3.1 via (3.4).

Lemma 3.1. Assume that the constant matrix C in (3.4) is diagonal. Then,
the projectors have an expansion in powers of � of the form:

P(
a
x) =

∑

k≥0

�
k P[k](

a
x),

and there exists a sequence of matrices p[k](z) of meromorphic functions in
z ∈ S [0], with poles at ramification points, at preimages in S [0] of double points,
and at poles of (L[j](x))j≥0, such that p[k](za(x)) = P[k](

a
x).

Proof. Since we assume C to be diagonal, the exponentials—which might have
prevented the existence of an expansion in powers of �—disappear:

P(
a
x) = V(x) ̂Ψ(x) exp

(

1
�

∫ x

o

Λ(x′)dx′
)

CEaC−1

× exp

(

− 1
�

∫ x

0

Λ(x′)dx′
)

̂Ψ−1(x)V−1(x)

= V(x) ̂Ψ(x)Ea
̂Ψ−1(x)V−1(x)

= ˜Ψ(x)Ea
˜Ψ−1(x).

From Proposition 3.2, ˜Ψ(x) has an expansion in �, so P(
a
x) has an expansion

in �. Moreover, ˜Ψ(x)Ea
˜Ψ−1(x) involves only the ath column of ˜Ψ(x) and

the ath line of ˜Ψ−1(x), i.e. the coefficients of the expansion are meromorphic
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functions of za(x). From Corollary 3.1, those meromorphic functions can be
singular only at ramification points, at preimages in S [0] of double points, or
at poles of L(x) in S [0]. �

Notice that to leading order, ˜Ψ(x) = 1d + O(�), and

P[0](
a
x) = (V[0](x))−1EaV[0](x) (3.11)

is the projection on the ath eigenspace of L[0](x). From the expression of the
correlators in terms of the projectors, we deduce:

Corollary 3.2. For any a ∈ [[1, d]], W1(
a
x) has an expansion in powers of �, of

the form:

W1(
a
x) =

∑

k≥−1

�
k W [k]

1 (
a
x),

and there exist meromorphic functions w
[k]
1 (z) in z ∈ S [0], with poles at the

ramification points, or at preimages in S [0] of double points, or at poles of
(L[j](x))j≥0, so that w

[k]
1 (za(x)) = W [k]

1 (
a
x).

For example we have:

W [0]
1 (

a
x) = −λ[0]

a (x),

Corollary 3.3. For any n ≥ 2, any a1, . . . , an ∈ [[1, d]], the correlators have an
expansion in powers of �:

Wn(
a1
x1, . . . ,

an
xn) =

∑

k≥0

�
k W [k]

n (
a1
x1, . . . ,

an
xn)

and there exist symmetric meromorphic functions w
[k]
n (z1, . . . , zn) in variables

zi(S [0]), with poles when zi is at a ramification point or at a double pole or at
a pole of (L[j](x))j≥0, and so that

w[k]
n (za1(x1), . . . , zan(xn)) = W [k]

n (
a1
x1, . . . ,

an
xn).

On top of that, w
[0]
2 (z1, z2) has a double pole at z1 = z2 and behaves as:

w
[0]
2 (z1, z2) =

z1→z2

x′(z1)x′(z2)
(

x(z1) − x(z2)
)2 + O(1).

3.4. Expansion in � with Poles Assumptions

Many interesting systems have the property that their leading asymptotic
behavior at the poles of L(x) is governed by the � → 0 limit, i.e. in some sense
that L[j](x) for j > 0 is somewhat “smaller” than L[0](x). When this holds,
only W [0]

1 (
a
x) can have poles at the poles of L(x), all other W [g]

n have no poles
at the poles of L(x). Let us make it precise.
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Assumption 3.1. Let us assume that L(x) =
∑

j≥0 �
j L[j](x) has the property

that for any j > 0 the poles of L[j](x) are a subset of the poles of L[0](x), and
the expansion of its eigenvalues

λa(x) =
∑

j≥0

�
j λ[j]

a (x)

is such that, for any j > 0, λ
[j]
a (x) → 0 when x approaches a pole of L(x).

Equivalently, this means that the characteristic polynomial of L(x) satisfies

Q(x, y) = det
(

y 1d − L(x)
)

=
∑

j≥0

�
j Q[j](x, y),

where the coefficients, for j > 0, are such that:

D[0](x)Q[j](x, y) =
∑

(m,n)∈interior(N )

Q̂
[j]
m,n−1 xm yn−1,

where D[0](x) is the common denominator of all coefficients of Q[0](x, y) and
N is the envelope of the Newton’s polytope of D[0](x)Q[0](x, y).

Corollary 3.4. When assumption 3.1 is satisfied, only W [0]
1 (

a
x) can have poles

at the poles of L(x), all other W [k]
n are regular at the poles of L(x).

Corollary 3.5. ω
(0)
2 (z1, z2) = w

[0]
2 (z1, z2)dx(z1)dx(z2) defines an element of

B(S [0]) (see Definition 3.2).

For instance, we have from Proposition 2.1 and (3.11):

W [0]
2 (

a1
x1,

a2
x2) =

[

(V[0])−1(x1)V[0](x2

]

a1,a2

[

(V[0])−1(x2)V[0](x1)
]

a2,a1

(x1 − x2)2
.

3.5. Expansion of Topological Type and Topological Recursion

Definition 3.3 (TT property). We say that the correlators have an expansion
of topological type (or have the TT property) when they have:

• the � ↔ −� symmetry: (Wn)−� = (−1)n(Wn)�.
• the �

n−2 property: for any n ≥ 2, Wn ∈ O(�n−2). When these two
properties are satisfied, the � expansion of the correlators looks like:

∀n ≥ 1, Wn =
∑

g≥0

�
2g−2+n W(g)

n . (3.12)

• the pole property: when (g, n) �= (0, 1), (0, 2), the ω
(g)
n have poles only at

the ramification points. In particular they must have no pole at the preim-
ages in S [0] of double points, or at the poles of L[k](x). And ω

(0)
2 (z1, z2)

has a double pole at z1 = z2, and no other pole.
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In the Sect. 4, we shall study some sufficient conditions (related to inte-
grable systems) to have the TT property, and in Sect. 5, we shall show that
qth reductions of the KP hierarchy have the TT property. We believe that
the TT property is closely related to integrability (see Question 4.1), but we
do not have a proof of such a statement. Let us just mention that the �

n−2

property is a highly non-trivial one. For example large random matrices, it is
related to the “concentration” property [20].

When the TT property is satisfied, one can plug the � expansion (3.12)
into the loop equations to obtain a set of equations satisfied by W(g)

n . The
key point is that those equations can be solved recursively on 2g − 2 + n. The
prototype of such a result is known since [3–5]. The solution is given by the
topological recursion developed in [43]. The topological recursion associates to
a plane curve (S [0], x, y) (algebraic in our case) and ω

(0)
2 ∈ B(S [0]), a sequence

of symmetric meromorphic n-forms ω
(g)
n on (S [0])n, defined by a recursion on

2g − 2 + n in terms of the geometry of the curve S [0]. It was first presented
under the assumption that ramification points are simple [41] and extended to
arbitrary ramification points in [23]. Then, it was shown [22] that the general
formula of [23] is a limiting case of the formula of [41] for simple ramification
points. For instance, the semiclassical spectral curve of r-KdV has one ram-
ification point of order r. For readability, we present now the case of simple
ramification points and refer to [22] for the case of arbitrary ramifications.

Theorem 3.1. If the correlators have an expansion of topological type, and dx
has only simple zeroes on the semiclassical spectral curve S [0] : det(y 1d −
L[0](x)) = 0, then the coefficients of (3.12) are given by:

W(g)
n (

a1
x1, . . . ,

an
xn)dx1 · · · dxn = ω(g)

n (za1(x1), . . . , zan(xn))

and ω
(g)
n satisfy:

ω(g)
n (z1, z2, . . . , zn) =

∑

r∈r

Res
z→r

Kr(z1, z)

[

ω
(g−1)
n+1 (z, σr(z), z2, . . . , zn)

+
′

∑

h+h′=g
I∪̇I′=[[2,n]]

ω
(h)
1+|I|(z, zI)ω

(h′)
1+|I′|(σr(z), zI′)

]

+H(g)
n (z1, . . . , zn) (3.13)

where Hg
n(z1, . . . , zn) is some symmetric holomorphic n-form on (S [0])n,

∑′

means that we exclude (h, I) = (0, ∅) and (h′, I ′) = (0, ∅), r are the ramifica-
tion points (i.e. the zeroes of dx), σr is the local Galois involution near the
ramification point r, i.e. the holomorphic map defined in the vicinity of r, such
that x ◦ σr = x and σr �= id. And, the recursion kernel is:

Kr(z1, z) =
1
2

∫ z

σr(z)
ω

(0)
2 (z1, ·)

ω
(0)
1 (z) − ω

(0)
1 (σr(z))

(3.14)

where ω
(0)
1 = −ydx on S [0].
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Corollary 3.6. If furthermore S [0] has genus 0, H
(g)
n ≡ 0 (since there are

no holomorphic 1-forms on S [0]) and ω
(g)
n are exactly given by the topological

recursion of [41] applied to the initial data ω
(0)
1 = −ydx and ω

(0)
2 (see Corollary

3.5).

Proof. The proof is essentially done in [19,41]. To be self-contained, we redo
it in “Appendix B”. �

3.6. Symmetry � ↔ −�

Here, we give a sufficient condition for the existence of an � ↔ −� symmetry.
We do not know whether this criterion is also a necessary condition.

Proposition 3.3. Assume there exists an invertible matrix Γ, independent of
x, such that:

ΓLT
�
(x)Γ−1 = L−�(x). (3.15)

Then, if Ψ+ is a solution of (1.1), Ψ− = Γ(Ψ−1
+ )T is a solution of (1.1)

with � → −�. The projector associated to the two solutions are related by
P+ = ΓPT

−Γ−1, and the correlators by (Wn)+ = (−1)n (Wn)− for any n ≥ 1.

Proof. The relation between the projectors is an easy computation, and given
Proposition 2.1 for the n-point correlators, we deduce (Wn)+ = (−1)n(Wn)−
for any n ≥ 2. For n = 1, we check it directly:

(W1)−(
a
x) = � [Ψ−1

− (x)L−�(x)Ψ−(x)]a,a

= � TrΨ−1
− (x)L−�(x)Ψ−(x)Ea = TrP−(

a
x)L−�(x)

= � TrΓPT
+(

a
x)Γ−1L�(x) = TrPT

+(
a
x)LT

�
(x)

= � TrP(
a
x)L�(x) = −(W1)+(

a
x). �

4. Case of Isomonodromic Integrable Systems

We believe that integrable systems is the good setting to have the TT property
satisfied. We give some arguments here, and then show in Sect. 5 that the
special case of qth reduction of KP fits in our framework.

4.1. Behavior at the Poles and Isomonodromic Times

In this paragraph, we review classical results from the theory of linear dif-
ferential systems. A d × d invertible matrix Ψ(x) which is the solution of
� ∂xΨ(x) = L(x)Ψ(x) that can have singularities only at poles of L(x). For
any p ∈ P, it can be put locally around x = p in the form:2

2 When p = ∞, the factors (x − p) should be replaced by 1/x.
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Ψ(x) = ˜Ψp(x) exp
(

Bp ln(x − p) + Ap(x)
)

Cp (4.1)

Ap(x) =
mp
∑

k=1

Ap;k

(x − p)k
(4.2)

˜Ψp(x) ∼
x→p

1d, (4.3)

where Ap(x) and Bp are Jordanized matrices. Such asymptotics can only be
valid in an angular sector near x = p, and the constant matrix Cp depends
on the sector. Bp describes the monodromy around p of the right-hand side of
(4.1).

Imagine that L(x) depends smoothly on parameters �t = (tα)α, generically
called “times”. One can always define a matrix

Mα(x) = � ∂tα
Ψ(x)Ψ(x)−1,

such that Ψ(x) satisfy on top of (1.1) the compatible systems:

∀α, � ∂tα
Ψ(x) = Mα(x)Ψ(x).

Requiring that Mα(x) be rational is equivalent to requiring that the global
monodromy data Bp and the Stokes matrices3 do not depend on �t. If ∂tα

Bp ≡ 0
for any p ∈ P, we say that tα is an isomonodromic time. Integrable systems
in Lax form provide examples of such rational compatible differential systems.
A second realization of this setting in the realm of formal series in �t can be
achieved by deformation of any given L(x) and solution Ψ(x) (independent
of parameters) [6, Chapt. 5]. The latter might not be the restriction of an
integrable system in Lax form (for Ψ(x,�t) might not be defined as a function
of �t). Our formalism applies equally well to the two cases.

One can try, for any given ODE (1.1), to embed it in a family of isomon-
odromic deformations depending on some times �t, and consider family of solu-
tions Ψ�(x,�t). The question about the TT property can then be reformulated
as follows:

Question 4.1. Characterize the monodromy data of (1.1) for which the TT
property is satisfied.

4.2. Isomonodromic Tau Function

In this section, we assume that L(x) depends on a family of isomonodromic
times �t = (tα)α. If there is more than one time, we first need a remark. Let us
define:

3 The Stokes matrices are the sequences of matrices Cp(C′
p)−1 with Cp being C′

p, the

constant (in x) matrices appearing in (4.1) for two adjacent sectors.
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Υα(�t) = −
∑

p∈P
Res
x→p

dxTr
[

Ψ−1(x)(∂xΨ(x)) e−Ap(x)(∂tα
eAp(x))

]

= −
∑

p∈P
Res
x→p

dxTr
[

˜Ψ−1
p (x)(∂x

˜Ψp(x)) e−Ap(x)(∂tα
eAp(x))

]

= −
∑

p∈P
Res
x→p

d
∑

a=1

[

W1(
a
x)
(

e−Ap(x)∂tα
eAp(x)

)

a,a

]

. (4.4)

Lemma 4.1.

∀α, β, ∂tβ
Υα(�t) = ∂tα

Υβ(�t). (4.5)

Proof. The definition of Υα and this result is due to Jimbo, Miwa and Ueno
for integrable systems in Lax form and diagonal Ap,k (see also [6]). It was
generalized to non-diagonal Ap,k in [12]. The proof is essentially the same. �

Definition 4.1. We define the isomonodromic Tau function as a function T (�t)
(or as a power series in �t), such that:

∂tα
ln T (�t) = Υα(�t). (4.6)

It is defined up to a constant independent of �t.

Tau functions play an important role in the theory of integrable systems
and its applications, and have been extensively studied; we refer to [6] and
references therein.

4.3. Case of an Integrable System: Expansion of the Tau Function

If L depends on isomonodromic times �t, an isomonodromic Tau function T (�t)
has been defined in Definition (4.1). It is a consequence of Corollary 3.2 and
the formula (4.4) for the isomonodromic Tau function that:

Corollary 4.1. If Ap = �
−1 A[0]

p is diagonal for any pole p, we have an expan-
sion of the form:

ln T (�t) =
∑

k≥−2

�
k F [k](�t), (4.7)

where

∂tα
F [k](�t) = −

∑

p∈P
Res
x→p

d
∑

a=1

[

dxW [k+1]
1 (

a
x) ∂tα

(A[0]
p (x))a,a

]

. (4.8)

Corollary 4.2. In particular, if the TT property holds, then only even powers
of � appear:

ln T (�t) =
∑

g≥0

�
2g−2 F (g)(�t), (4.9)

where

∂tα
F (g)(�t) = −

∑

p∈P
Res
z→p

[

ω
(g)
1 (z) fα(z)

]

, (4.10)
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with

dfα(z)
dx(z)

= ∂tα
y(z)

∣

∣

x(z)
. (4.11)

Proof. Indeed, when there is an expansion of topological type, we have

W [2g−1]
1 (

a
x) dx = ω

(g)
1 (za(x)).

�

4.4. Compatibility of the Insertion Operator with Isomonodromic
Deformations

The definition of Picard–Vessiot rings is easily generalized to a family of com-
patible differential systems

�∂xΨ(x) = L(x)Ψ(x), �∂tα
Ψ(x) = Mα(x)Ψ(x).

We amend Definition 2.5 of insertion operators:

Definition 4.2. We say that an insertion operator δ is compatible if it commutes
with all ∂tα

, i.e. if it satisfies:

�∂tα
U(

a
y) = δa

yMα(x) + [Mα(x),U(
a
y)] +

[

Mα(x) − Mα(y)
x − y

,P(
a
y)
]

.

(4.12)

The existence of an insertion operator compatible with all times is not
something obvious, but if it exists it is quite useful. For the qth reduction
of KP, we construct in Sect. 5.7.3 a compatible differential operator, which
enables to prove the O(�n−2) axiom of the TT property.

5. Application to Finite Reductions of KP

In this section, we show an important application of the former formalism,
namely to the qth reductions of the KP hierarchy. They are related to the
Drinfeld–Sokolov hierarchies [31] and contain as a more special case the (p, q)
models exemplified in Sect. 6. They appear in one of the formulations of 2d
quantum gravity [30] and conjecturally describe the algebraic critical points
which can arise in hermitian multi-matrix models. In physics, the (p, q) models
are expected to describe thermodynamic observables in the coupling of Liou-
ville theory to the (p, q) minimal models of conformal field theory [28], the
latter corresponding to the classification of finite representations of the con-
formal Virasoro symmetry of central charge c = 1− 6(p− q)2/pq [29]. The qth
reduction of KP is related to perturbations of this coupled theory by primary
operators.
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5.1. Pseudo-Differential Approach to the qth Reduction of KP

Let t be a 1-dimensional variable, and C∞ denote an algebra of smooth func-
tions of t. Let D = C∞[�∂t, �

−1∂−1
t ] be the graded algebra of pseudodifferen-

tial operators. Let D+ = C∞(R)[� ∂t] its subalgebra of differential operators,
graded by the degree. We say that D ∈ D is monic of degree r ≥ 0 if

D = �
r∂r

t +
r−1
∑

k=−∞
ak(t)(� ∂t)k.

We then recall that there exists a unique pseudodifferential operator denoted
D1/r, which is monic of degree 1 and satisfies (D1/r)r = D. We denote D+,
the projection of any D ∈ D to D+.

The string equation is a relationship

[P,Q] = � (5.1)

between differential operators P and Q. It can be written as the compatibility
condition of two differential equations for a function ψ(x, t):

xψ(x, t) = Qψ(x, t), −� ∂xψ(x, t) = Pψ(x, t). (5.2)

We call (5.2) the associated linear system.
Let (p, q) be a couple of positive integers distinct from (1, 1). The (p, q)

model is a hierarchy of 1-dimensional nonlinear differential equations for a
sequence of functions u(t), uk(t) for k ∈ [[1, p − 3]], and vl(t) for l ∈ [[1, q − 3]],
ensuing by looking4 for a solution of a string equation of the form:

P =
p
∑

k=0

vk(t) (� ∂t)k, vp ≡ 1, vp−1 = 0, vp−2 = −pu, (5.3)

Q =
q
∑

l=0

ul(t) (� ∂t)l, uq ≡ 1, uq−1 = 0, uq−2 = −qu. (5.4)

We thus have:
{

P = (� ∂t)p − pu(t) (� ∂t)p−2 +
∑p−3

l=0 vl(t) (� ∂t)l

Q = (� ∂t)q − qu(t) (� ∂t)q−2 +
∑q−3

k=0 uk(t) (� ∂t)l
(5.5)

When P and Q assume the form (5.3), it is well known that:

Proposition 5.1. [28,31] The most general solution of (5.1) is of the form:

P =
p
∑

l=0

tl (Ql/q)+, Q =
q
∑

k=0

˜tk (P k/p)+.

for some constants tl and ˜tk (with tp = 1 and ˜tq = 1).

4 The choice uq−1 = vp−1 = 0 can always be achieved by a redefinition of the variable t.
And then uq−2/q = vp−2/p follows from the string equation, and we denote u = −uq−2/q =

−vp−2/p.
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For coprime (p, q), the (p, q) model is defined by the choice P = (Qp/q)+.
The string equation [P,Q] = � usually implies a non-linear equation for u(t).

Example of PDEs for the (p, q) = (3, 2) model. Let us denote u̇(t) = ∂tu(t).
We have

P = (�∂t)3 − 3u�∂t + v Q = (�∂t)2 − 2u

and the string equation implies

v = −3
2

� u̇ + t1

for some constant t1, and the Painlevé I equation for u(t):

− 1
2

�
2 ü + 3u2 = t.

5.2. Constructing the Lax Pair by “Folding”

In this paragraph, we show that the associated linear system is an integrable
system in Lax form, i.e. it can be written:

� ∂xΨ(x, t) = L(x, t)Ψ(x, t), � ∂tΨ(x, t) = M(x, t)Ψ(x, t), (5.6)

for a matrix

Ψ(x, t) =

⎛

⎜

⎜

⎜

⎝

ψ1(x, t) · · · ψq(x, t)
(� ∂t)ψ1(x, t) · · · (� ∂t)ψq(x, t)
...

...
(� ∂t)q−1ψ1(x, t) · · · (� ∂t)q−1ψq(x, t)

⎞

⎟

⎟

⎟

⎠

. (5.7)

where the ψj(x) are independent solutions of the associated linear system (5.2).
It is easy to achieve the second equation with the companion matrix:

M(x, t) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
1

. . .

1
x − u0(t) −u1(t) · · · −uq−2(t) −uq−1(t)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(5.8)

where we recall that uq−2 = −qu, and up to a redefinition of time t we can
choose uq−1 ≡ 0. We now construct the matrix L(x, t) to realize the first
equation. Naively, ∂x∂k

t ψ can be expressed by the action of a differential oper-
ator of order (p + k) on ψ. But, if we want to write an equation like (5.6)
with L(x, t) having coefficients which are functions of x—and not differential
operators—only derivatives of order smaller than (q−1) are allowed. To bypass
this restriction, we can use the first member of (5.2) to express any qth order
derivative of ψ in terms of derivatives of lower order. This can be systematized
with the notion of folding operators. The folding procedure is a classical trick,
which has been used earlier, e.g. in [51] and [58].

Definition 5.1. We define for any integer l the folding operators:

Fl(x, t) =
∑

j≥0

Fl,j(x, t) (� ∂t)j ∈ D+[x],
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by the following recursion:

F0(x, t) = 1, Fl+1(x, t) = (� ∂t)Fl(x, t) + Fl,q−1(x, t)(x − Q).

They have the property that for every solution ψl of (5.2)

∀ i ∈ Z+, ∀ l = 1, . . . , q, (�∂t)i ψl(x, t) =
q−1
∑

j=0

Fi,j(x, t) (�∂t)j ψl(x, t)

in other words, they express any time derivative in terms of only up to order
q − 1 derivatives.

Notice that Fl(x, t) = (� ∂t)l for l ∈ [[0, q − 1]], but:

Fq(x, t) = (� ∂t)q + x − Q = x − qu(t) (� ∂t)q−2 −
q−3
∑

k=0

uk(t) (� ∂t)k.

Lemma 5.1. For any integer l, Fl,j(x, t) ≡ 0 whenever j ≥ q. Besides, for
every solution ψ of (5.2)

− � ∂xψ(x, t) = Pψ(x, t) =
(

p
∑

l=0

vl(t)Fl(x, t)
)

ψ(x, t) (5.9)

Proof. Since Q is monic of degree q, the last term in (5.9) prevents Fl(x, t)
to have terms of degree higher than (q − 1), as one can show by recursion.
Then, recall that (x−Q)ψ(x, t) = 0, so these operators satisfy (� ∂t)lψ(x, t) =
Fl(x, t)ψ(x, t), hence (5.9). �

Definition 5.2. For any integer k, we define the operators:

Lk(x, t) =
∑

j≥0

Lk,j(x, t) (� ∂t)j ∈ D+[x]

by the following recursion:

L0(x, t) = −
p
∑

l=0

vl(t)Fl(x, t)

Lk+1(x, t) = (� ∂t)Lk(x, t) + Lk,q−1(x, t)(x − Q).

We have similarly:

Lemma 5.2. For any integer k, Lk,j(x, t) ≡ 0 whenever j ≥ q.

We are now in position to conclude:

Proposition 5.2. The first equation of (5.6) is achieved with

L(x, t) = (Lk,j(x, t))0≤k,j≤q−1.

In particular, the string equation is equivalent to the compatibility condition
of this system:

[M(x, t),L(x, t)] = � ∂tL(x, t) − � ∂xM(x, t). (5.10)
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By a gauge transformation, one can choose uq−1(t) ≡ 0, i.e. M(x, t) traceless
and therefore detΨ(x, t) independent of t. If an initial condition Ψ(x, t0) is
invertible, Ψ(x, t) remains invertible for all t.

Example of folding for the (3, 2) model. We have:

P = (�∂t)3 − 3u �∂t − 3
2

� u̇ + t1, Q = (�∂t)2 − 2u. (5.11)

for which the string equation [P,Q] = � implies the Painlevé I equation for
u(t): − 1

2 �
2ü + 3u2 = t. The first folding operators are

F1 = �∂t

F2 = x + 2u

F3 = x �∂t + 2u�∂t + 2�u̇

F4 = x2 + 4ux + 4u2 + 4�
2u̇ ∂ + 2�

2ü.

This gives

L0 = −F3 + 3uF1 +
(3

2
�u̇ − t1

)

F0,

L1 = −F4 + 3uF2 + 3�u̇F1 +
(3

2
�u̇ − t1

)

F1 +
3
2

�
2üF0,

and consequently

L(x, t) =
(

− 1
2�u̇ − t1 −x + u

−(x − u)(x + 2u) − 1
2�

2ü 1
2�u̇ − t1

)

and

M(x, t) =
(

0 1
x + 2u 0

)

.

5.3. Semiclassical Spectral Curve and Formal � Expansion

We consider formal solutions of the string equation, i.e. uk and vl which have
a formal series expansion in �. Let us denote:

uk(t) =
∑

m≥0

�
m u

[m]
k (t), vl(t) =

∑

m≥0

�
m v

[m]
l (t). (5.12)

Lemma 5.3. u
[0]
k (t) and v

[0]
l (t) can be obtained by replacing � ∂t by a variable

z ∈ ̂C. Namely, one defines
⎧

⎨

⎩

X(z) :=
∑q

k=0 u
[0]
k (t) zk

Y (z) :=
∑p

l=0 v
[0]
l (t) zl,

(5.13)

(which are the � → 0 semiclassical limit of Q and P ). The leading order in �

of the string equation becomes a Poisson bracket:

∂zY (z)∂tX(z) − ∂zX(z)∂tY (z) = 1, (5.14)

which gives an algebraic constraint on u
[0]
k and v

[0]
l .
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Proof. The leading order of [P,Q] is:

� = [P,Q] =
∑

k,l

� l v
[0]
l u̇

[0]
k ∂k+l−1

t −
∑

k,l

� k u
[0]
k v̇

[0]
l ∂k+l−1

t + O(�2),

i.e. this means that

Y ′(z)Ẋ(z) − X ′(z)Ẏ (z) = 1.

�

Lemma 5.4. A solution of (5.14) is obtained as follows

X(z) = (u[0])q/2 f
(

z (u[0])−1/2
)

, Y (z) = (u[0])p/2 g
(

z (u[0])−1/2
)

, (5.15)

where u[0] = (t/ρ)
2

p+q−1 , and the functions f and g satisfy:

qf(ζ)g′(ζ) − pg(ζ)f ′(ζ) = (p + q − 1)ρ, (5.16)

and ρ is chosen such that at large ζ the solution of (5.16) behaves as f(ζ) =
ζq(1 − qu[0]ζ−2 + O(ζ−3)) and g(ζ) = ζp

(

1 − pu[0]ζ−2 + O(ζ−3)
)

. We call it
the homogeneous solution.

Proof. The result is claimed in [28]. Let us prove it directly. If we assume the
form (5.15), and write ζ = z (u[0])−1/2, then we have

∂zX = (u[0])(q−1)/2 f ′(ζ),

∂tX =
1
2

∂tu
[0]

(

q (u[0])(q−2)/2 f(ζ) − (u[0])(q−3)/2 f ′(ζ)
)

,

∂zY = (u[0])(p−1)/2 g′(ζ),

∂tY =
1
2

∂tu
[0]

(

p (u[0])(p−2)/2 g(ζ) − (u[0])(p−3)/2 g′(ζ)
)

.

It follows:

1 = ∂tX ∂zY − ∂tY ∂zX =
1
2

∂tu
[0] (u[0])(p+q−3)/2 (qfg′ − pgf ′),

which is satisfied if u[0] = (t/ρ)
2

p+q−1 and qfg′ − pgf ′ = (p + q − 1)ρ. �

Lemma 5.5. If p + q ≥ 4, this implies when ζ → ∞ that:

f(ζ) = g(ζ)q/p − ρ

p
ζ1−p

(

1 + u[0]

(

p − 2 +
2

p + q + 1

)

ζ−2 + O(ζ−3)
)

,

g(ζ) = f(ζ)p/q − ρ

q
ζ1−q

(

1 + u[0]

(

q − 2 +
2

p + q + 1

)

ζ−2 + O(ζ−3)
)

.

In particular:

f = (gq/p)+, g = (fp/q)+.

Proof. Write f = gq/p h, the equation then gives:

− p
h′

h
=

(p + q − 1) ρ

fg
=

(p + q − 1)ρ
ζp+q

(

1 + (p + q)u[0]ζ−2 + O(ζ−3)
)

,
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and upon integration:

ln h =
ρ

p
ζ1−p−q

(

1 +
(p + q)(p + q − 1)u[0]

p + q + 1
ζ−2 + O(ζ−3)

)

.

Then, using p+q ≥ 4 to ensure that 2(p+q−1) > p+q+1, we can exponentiate:

h = 1 +
ρ

p
ζ1−p−q

(

1 +
(p + q)(p + q − 1)u[0]

p + q + 1
ζ−2 + O(ζ−3)

)

.

We then multiply by gq/p = ζq

(

1 − qu[0]ζ−2 + O(ζ−3)

)

and get

f = gq/p +
ρ

p
ζ1−p

(

1 + (p − 2 +
2

p + q + 1
)u[0] ζ−2 + O(ζ−3)

)

.

We have the same proof for g. �

Special Solutions. In the (p, q) model, we have P = (Qp/q)+ and similarly
Q = (P q/p)+. Therefore, at the semiclassical limit, we find Y (z) = (Xp/q(z))+
and X(z) = (Y q/p(z))+. The relation (5.14) can be solved explicitly in the
case p = (2m + 1)q ± 1 for some integer m [28]:

{

f(ζ) =
∑m

n=0
Γ(n+1)

Γ(p/q+1)Γ(n−p/q+1) Tp−2nq(ζ)
g(ζ) = Tq(ζ)

, ρ = 2p.

where Tl(2 cos θ) = 2 cos(lθ) are the Chebyshev polynomials of the first kind.
In particular, for the so-called “unitary” models p = q + 1, we find:

{

f(ζ) = Tq+1(ζ)
g(ζ) = Tq(ζ) , ρ = 2(q + 1).

5.4. Semiclassical Spectral Curve

Proposition 5.3. In the semiclassical limit � → 0, the eigenvalues of M(x, t)
and L(x, t) are given by the functions X(z) and Y (z) defined in (5.13), by:

z = eigenvalue of M[0](x, t) ⇐⇒ x = X(z) =
q
∑

k=0

u
[0]
k (t) zk.

y = eigenvalue of L[0](X(z), t) ⇐⇒ y = Y (z) =
p
∑

l=0

v
[0]
l (t) zk.

The leading-order spectral curve, i.e. the locus of eigenvalues of L[0](x(z), t) is
a genus 0 algebraic plane curve.

Proof. Since M(x, t) is a companion matrix, its characteristic polynomial is

0 = det (z 1q − M(x, t)) = x −
q
∑

k=0

uk(t) zk;
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therefore in the limit � → 0, the eigenvalues of M[0](x, t) are z such that
X(z) = x:

q
∑

k=0

u
[0]
k (t) zk = x = X(z),

where X(z) is the function introduced in (5.13). It follows that in the limit
� → 0, �∂tψ(x, t) ∼ z ψ(x, t) (1 + O(�)). The eigenvalues y of L(x, t), by
definition, are such that

y ψ(x, t) = −� ∂xψ(x, t) =
p
∑

l=0

vl(t) (�∂t)l ψ(x, t), (5.17)

and thus in the � → 0 limit, the eigenvalues of L[0](x, t) are such that

y = Y (z) =
p
∑

l=0

v
[0]
l (t) zl.

The spectral curve P (x, y) = det(y 1q − L[0](x, t)) is a polynomial of x and
y, monic of degree q in y, which vanishes if and only if y is an eigenvalue of
L[0](x), i.e. if and only if there exists some z such that x = X(z) and y = Y (z).
Therefore, P (x, y) is proportional to the resultant of the polynomials X(z)−x
and Y (z) − y:

(−1)q P(x, y) = Resultant(X(z) − x, Y (z) − y)

= det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 u
[0]
q−1 u

[0]
q−2 . . . u

[0]
1 u

[0]
0 −x

1 u
[0]
q−1 u

[0]
q−2 . . . u

[0]
1 u

[0]
0 −x

. . .
. . .

1 u
[0]
q−1 u

[0]
q−2 . . . u

[0]
1 u

[0]
0 −x

1 v
[0]
p−1 . . . v

[0]
1 v

[0]
0 −y

1 v
[0]
p−1 . . . v

[0]
1 v

[0]
0 −y

. . .
. . .

. . .
. . .

1 v
[0]
p−1 . . . v

[0]
1 v

[0]
0 −y

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

As mentioned above, it admits a parametric solution:

P(X(z), Y (z)) = 0

with X and Y polynomials of z. This means that there is a holomorphic map
z �→ (X(z), Y (z)) from the Riemann sphere ̂C to the spectral curve (the locus
of P(x, y) = 0 in C × C). In particular, this implies that the spectral curve is
an algebraic plane curve of genus g = 0. �
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5.5. Asymptotic Expansion and TT Property

As in Sect. 3.2, we look for asymptotics of the form:

Ψ(x, t) ∼ V(x, t) ̂Ψ(x, t) e
1
�
S(x,t),

where:

• S(x, t) = diag(S(za))1≤a≤q is such that ∂tSa(z)|X(z)=x = zi are the eigen-
values of M[0](x, t), where z = za is related to x by

x = X(z) = zq − qu[0](t) zq−2 +
q−2
∑

k=0

u
[0]
k (t) zk.

Thanks to (5.14), it also satisfies:

∂xSa(z) = Y (za)

where Y (za) are the eigenvalues of L[0](x, t).
• V(x, t) is a matrix whose columns are eigenvectors of both M[0](x, t)

and L[0](x, t), normalized such that V−1 ∂xV(x, t) has a vanishing diag-
onal. Since M[0](x, t) is a companion matrix, V(x, t) can be found rather
explicitly, as a Vandermonde matrix, with columns normalized by a factor
1/
√

X ′(za):

Va,b(x, t) =
(zb(x))a−1

√

X ′(za)
where x = X(zb) =

q
∑

k=0

u
[0]
k (t) zk

b .

Its inverse is

(V−1)a,b =
(X(za(x))za(x)−b)+

√

X ′(za(x))
=

∑q
k=b u

[0]
k (t) za(x)k−b

√

X ′(za(x))
.

It satisfies:

if a �= b (V−1 ∂xV)a,b =

√

X ′(zb)
√

X ′(za)
1

za − zb
= O(x−1/q),

if a = b (V−1 ∂xV)a,a = 0,

if a �= b (V−1 ∂tV)a,b =
∂tX(zb)

√

X ′(za)X ′(zb)
1

za − zb
= O(x−2/q),

if a = b (V−1 ∂tV)a,a = − 1
2

Ẋ ′(za)
X ′(za)

= O(x−2/q).

• The matrix ̂Ψ(x, t) = 1q +O(�) has a formal asymptotic series as � → 0.
From �∂tΨ ·Ψ−1 = M = M[0] −eq(u−u[0])T , where eq = (0, 0, . . . , 0, 1)
and u = (u0, . . . , uq−1), we get the equation for ̂Ψ involving the diagonal
matrix Z = diag(z1, . . . , zq) of eigenvalues of M[0]:

[Z, ̂Ψ] = V−1 eq (u − u[0])t V ̂Ψ + V−1
�∂tV ̂Ψ + �∂t

̂Ψ, (5.18)
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i.e.

(za − zb) ̂Ψa,b =
q
∑

l=1

∑q−2
k=0(uk − u

[0]
k ) zk

l
√

X ′(za)X ′(zb)
̂Ψl,b

+ �

q
∑

l=1

(V−1∂tV)a,l
̂Ψl,b + �∂t

̂Ψa,b. (5.19)

This equation uniquely determines ̂Ψ = 1q + O(�) as its asymptotic
expansion in powers of �. In fact, it also uniquely determines ̂Ψ = 1q +
O(x−1/q) as an asymptotic series at large x, in powers of x1/q. From
�∂xΨ · Ψ−1 = L we also get an ODE for ̂Ψ:

V−1LV ̂Ψ − ̂ΨΛ[0] = �V−1∂xV ̂Ψ + �∂x
̂Ψ. (5.20)

We observe that the semiclassical spectral curve has genus 0. Therefore, we
will be able to apply Theorem 3.1 if we can show:
• the existence of a � ↔ −� symmetry. This is a technical but simple check

done in Sect. 5.6.
• that the n-point correlators Wn(x1, . . . , xn) are O(�n−2) after a suitable

gauge transformation. This is a non-trivial property of (p, q) models, that
we establish in Sect. 5.7 by constructing an insertion operator δa

x which
is compatible with ∂t.

• the pole property, i.e. that ω
(g)
n have poles only at ramification points,

established in Sect. 5.8.
The consequences of Theorem 3.1 for the (p, q) models are gathered in
Sect. 5.10.

5.6. � ↔ −� Symmetry

The goal of this subsection is that the (p, q) models admit conjugated solutions
in the terminology of Sect. 3.6:

Proposition 5.4. For any invertible solution Ψ(x, t) of (5.6) with coupling con-
stant �, there exists a solution Φ(x, t) of (5.6) with coupling constant −�, such
that γ(x, t) = Φ(x, t)ΨT (x, t) is independent of x.

This proposition is proved below, but to do so, we need some intermediate
results and definitions. We first introduce a conjugation operator:

Definition 5.3. We define the conjugation † : D → D such that, for any
f0, . . . , fN ∈ C∞,
(

N
∑

k=0

fk (�∂t)k

)†
:=

N
∑

k=0

(−�∂t)kfk =
N
∑

k=0

(−1)k

{

k
∑

l=0

(

k

l

)

[

(�∂t)lfk

]

(�∂t)k−l

}

It is an antilinear operator that satisfies:
• for any f ∈ C∞ ⊆ D, f† = f .
• (�∂t)† = −(�∂t)†.
• for any D1,D2 ∈ D, (D1D2)† = D†

2D
†
1.
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In particular, if P,Q ∈ D+ satisfy [P,Q] = �, then [P †, Q†] = −�. Moreover,
if P and Q are differential operators of the form (5.5), so are P † and Q†. To
summarize, † puts in correspondence the models with coupling constant � and
−�. The linear system associated to (P †, Q†) is:

xφ(x, t) = Q†φ(x, t), � ∂xφ(x, t) = P †φ(x, t). (5.21)

If φ1(x, t), . . . , φq(x, t) denotes a family of solutions of (5.21), we can define a
matrix:

Φ(x, t) =

⎛

⎜

⎜

⎜

⎝

φ1(x, t) · · · φq(x, t)
(� ∂t)φ1(x, t) · · · (� ∂t)φq(x, t)
...

...
(� ∂t)q−1φ1(x, t) · · · (� ∂t)q−1φq(x, t)

⎞

⎟

⎟

⎟

⎠

,

As before, we can represent (5.21) in Lax form, and we denote L−�(x, t) and
M−�(x, t) the corresponding Lax matrices:

− � ∂xΦ(x, t) = L−�(x, t)Φ(x, t), −� ∂tΦ(x, t) = M−�(x, t)Φ(x, t).

The following result gives a correspondence between solutions of the associated
linear systems of (P,Q) and (P †, Q†).

Proposition 5.5. Let ψ1, . . . , ψq be a basis of solutions of (5.2), Ψ(x, t) as
defined in (5.7), and define:

Δ(x) = detΨ(x, t),

Δi0−1,j0(x, t) = det
[

(� ∂t)i−1ψj(x, t)
]i�=i0, j �=j0

1≤i,j≤q
,

˜φj(x, t) = Δq−1,j(x, t).

then (˜φj(x, t))1≤j≤q is a basis of solutions of (5.21).

The proof of this proposition relies on a technical result:

Lemma 5.6. Let j ∈ [[1, q]]. With the convention Δ−1,j ≡ 0, we have for any
i ∈ [[0, q − 1]],

� ∂tΔi,j(x, t) = Δi−1,j(x, t) + (−1)q−j(ui(t) − δi,0x)Δq−1,j(x, t), (5.22)

and for any k ∈ [[1, q + 1]],

� ∂tΔq−k,j(x, t) =

(

k
∑

l=1

(−1)l+1(� ∂t)k−l[uq−l+1(t)Δq−1,j(x, t)]

)

+δk,q+1(−1)qxΔq−1,j(x, t). (5.23)
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Proof. By multilinearity, we can differentiate the minors Δi,j line by line:

� ∂tΔi,j

= det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ψm

...
(� ∂t)i−2ψm

(� ∂t)iψm

(� ∂t)i+1ψm

...
(� ∂t)q−1ψm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m �=j

+det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ψm

...
(� ∂t)i−1ψm

(� ∂t)i+1ψm

...
(� ∂t)q−2ψm

(� ∂t)qψm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m �=j

+
q−2
∑

k=0
k �=i

det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ψm

...
(� ∂t)k−2ψm

(� ∂t)kψm

(� ∂t)kψm

...

...
(� ∂t)q−1ψm

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

m �=j

.

The non-zero contributions arise only from the terms where:
• the ith line is differentiated: we recognize the definition of Di−1,j(x, t).
• the (q − 1)th line is differentiated. Since ψ1, . . . , ψq are solutions of (5.2),

we can replace (�∂t)qψm by a xψm −
∑q−2

l=0 ul(t) (� ∂t)k. By subtraction
of the other lines, we may keep in the latter only the term involving a
derivative of order ith, which was absent from the minor. We thus recreate
a minor Dq−1,j(x, t), with a prefactor (xδi,0 − ui(t)), and up to a sign
(−1)q−i taking into account the ordering of the lines.

We therefore arrive to (5.22), and (5.23) follows by recursion. In particular,
we obtain at the last step of the recursion (k = q + 1):

0 = Δ−1,j(x, t) =
(

q+1
∑

l=1

(−1)l+1(� ∂t)k−luq−l+1(t) + (−1)qx
)

Δq−1,j(x, t)

= (−1)q(x − Q†)Δq−1,j(x, t).

Accordingly, ˜φj(x, t) ≡ Δq−1,j(x, t) provides a solution of (5.21) for any
j ∈ [[1, q]]. To show that (˜φj)j is a basis, we define the matrix Φ(x, t) =
[(� ∂)i−1

˜φj ]1≤i,j≤q and compute its determinant. Thanks to (5.22), we may
write:

det ˜Φ = det

⎛

⎜

⎜

⎜

⎝

Δq−1,m

� ∂tΔq−1,m

...
(� ∂t)q−1Δq−1,m

⎞

⎟

⎟

⎟

⎠

1≤m≤j

= det

⎛

⎜

⎜

⎜

⎝

Δq−1,m

Δq−2,m + (uq−1(t) − xδq,1)Δq−1,m

...
(� ∂t)q−1Δq−1,m

⎞

⎟

⎟

⎟

⎠

1≤m≤j

,

and upon subtracting the first line in the second line, we can replace the second
line by [Δq−2,m]1≤m≤q. We find recursively that the ith line can be replaced
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by Δq−i,m, and thus:

det ˜Φ = det[Δq−k,j ]1≤j,k≤q = (det Ψ)q det
[

(−1)j−1 Δk−1,j

det Ψ

]

1≤j,k≤q

= (det Ψ)q−1.

So, (˜φj)j is a basis of solutions of (5.21) if and only if (ψj)j is a basis of
solutions of (5.2). �

To obtain Proposition 5.4, we exploit the freedom to choose a normaliza-
tion of φj(x, t) depending on x. As we shall see, an appropriate choice is:

φj(x, t) = (−1)j
˜φj(x, t)

detΨ(x)
= (−1)j Δq−1,j(x, t)

Δ(x)
= (−1)q−1Ψ−1

j,q−1(x, t),

and we define the matrix:

Φ(x, t) =

⎛

⎜

⎜

⎜

⎝

φ1(x, t) · · · φq(x, t)
−� ∂tφ1(x, t) · · · −� ∂tφq(x, t)
...

...
(−� ∂t)qφ1(x, t) · · · (−�∂t)qφq(x, t)

⎞

⎟

⎟

⎟

⎠

.

It remains to show that:

Ci,j(x, t) =
q
∑

k=1

[(� ∂t)i−1φk(x, t)] [(� ∂t)j−1ψk(x, t)], i, j ∈ [[1, q]] (5.24)

does not depend on x. For this purpose, we first observe:

∀j ∈ [[1, q]], C1,j =
q
∑

k=1

(−1)qΨ−1
k,q−1Ψi−1,k = (−1)q−1δi,q. (5.25)

Besides, from the very structure of (5.24), we observe:

∀i, j ∈ [[1, q − 1]], � ∂tCi,j = Ci,j+1 − Ci+1,j ,

and when j = q, we use the fact that ψj is solution to the system (5.2) to
write:

∀i ∈ [[1, q − 1]], � ∂tCi,q−1 = −Ci+1,q−1 −
q−2
∑

l=0

(ul(t) − δl,0x)Ci,l+1.

(5.26)

Considering (5.25) as an initial condition for (5.26), we obtain by recursion
that Ci,j = 0 whenever i + j ≤ q. Hence,

∑q−2
l=0 δl,0Ci,l+1 always vanish.

This implies that the recursion relation (5.26) does not depend on x. Since
Ci,j is determined uniquely from (5.26) with the constant initial condition
(5.25), we conclude that C does not depend on x, which completes the proof
of Proposition 5.4.
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5.7. The �
n−2 Property

We are going to construct a suitable insertion operator allowing to prove the
�

n−2 property. Unfortunately, this construction is rather technical, and we
have not found an easier route.

5.7.1. A Useful Decomposition. The very special form (5.8) of the matrix
M(x, t) in (p, q) models allows a decomposition:

Lemma 5.7. P(
a
x) = A(

a
x) + xB(

a
x) + �C(

a
x) where A and B do not depend

on � and have the properties:

[A(
a
x, t),A(

b
y, t)] = 0 (5.27)

[B(
a
x, t),B(

b
y, t)] = 0, (5.28)

[A(
a
x, t),B(

b
y, t)] = [A(

b
y, t),B(

a
x, t)], (5.29)

and C depends on �, is O(1), and is expressible in terms of matrix elements
of P(x, t) and their time derivatives.

Proof. The projectors P satisfy the evolution equation:

� ∂tP(
a
x, t) = [M(x, t),P(

a
x, t)]. (5.30)

We have:

Ml,m(x, t) = δm,l+1 + δl,q

(

x δm,1 − um−1(t)
)

,

hence:

(

M(x, t)P(
a
x, t)

)

l,n
= Pl+1,n(

a
x, t) + δl,q

(

xP1,n(
a
x, t) −

q
∑

m=1

um−1 Pm,n(
a
x, t)

)

,

(

P(
a
x, t)M(x, t)

)

l,n
= Pl,n−1(

a
x, t) +

(

x δn,1 − un−1(t)
)

Pl,q(
a
x, t).

Omitting to precise the variables, (5.30) implies the relations:

1 ≤ l < d � ∂tPl,1 = Pl+1,1 − (x − u0)Pl,q,

1 ≤ l < d, 1 < n ≤ d � ∂tPq,n = Pl+1,n − Pl,n−1 + un−1 Pl,q,

1 ≤ n ≤ d � ∂tPq,n = xP1,n −
d
∑

l=1

ul−1 Pl,n − Pq,n−1

− (x δn,1 − un−1)Pq,q.

These relations give an expression of the elements Pl,n in terms of the elements
Pk,q of the last column and their time derivatives. If we introduce:

Γ1 = Γq = 0, Γk = Pk,q if k ∈ [[2, q − 1]],

we find for elements above and on the diagonal:

1 ≤ l ≤ n ≤ d, Pl,n = Γq+l−n +
q−1
∑

m=n

um Γm+l−n −
q−n−1
∑

m=0

� ∂tPl+m,n+m+1,
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and for elements below the diagonal:

1 ≤ n < l ≤ q, Pl,n = xΓl−n −
n−1
∑

m=0

um Γm+l−n +
n−1
∑

m=0

� ∂tPl−m−1,n−m.

Consequently, we may write:

P = A + xB − �C,

with:

Al,n = Γq+l−n +
q−1
∑

m=n

um Γm+l−n, 1 ≤ l ≤ n ≤ q

Al,n = −
n−1
∑

m=0

um Γm+l−n, 1 ≤ n < l ≤ q

Bl,n = Γl−n, 1 ≤ l, n ≤ d (5.31)

Cl,n = −
q−n−1
∑

m=0

∂tPl+m,n+m+1, 1 ≤ l ≤ n ≤ d

Cl,n =
n−1
∑

m=0

∂tPl−m−1,n−m 1 ≤ n < l ≤ d.

We now prove the commutation relations. We claim that, for any θ ∈ C generic,
the matrix

Gθ(
a
x, t) = A(

a
x, t) + θ B(

a
x, t)

has a basis of eigenvectors which is independent of x and a. This will imply:

[Gθ(
a
x, t),Gθ(

b
y, t)] = 0,

from which the relations (5.27)–(5.29) can be deduced by identification of the
coefficients of θ. Let (ζi)1≤i≤q be the roots of:

Xq +
q−1
∑

m=0

um Xm = θ.

For generic θ, the roots are simple, so that the column vectors vi(z) =
(ζj

i )0≤j≤q−1 form a basis of C
q. Let us set:

λi = (Gθvi)1 =
q
∑

m=1

A1,m ζm
i .

Considering the second line:

(Gθvi − λi vi)2 = θ B2,1 +
q
∑

m=1

A2,m ζm−1
i −

q
∑

m=1

A1,m ζm
i ,
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but since B2,1 = Γ1, A2,1 = −u0Γ1 and A1,d = Γ1, using the polynomial
equation (5.32) for ζi, it must vanish. If we proceed to the kth line, we have:

(Gθvi − λi vi)k

= θ

k−1
∑

m=1

Bk,m ζm−1
i +

q
∑

m=1

Ak,m ζm−1
i −

q
∑

m=q−k+2

A1,m ζm+k−2
i

=
k−1
∑

m=1

(θ Bk,m + Ak,m)ζm−1
i +

q
∑

m=k

(Ak,m − A1,m−k+1)zm−1

−
q
∑

m=q−k+2

A1,m ζm+k−2
i .

Using:

1 ≤ m < k ≤ q θ Bk,m + Ak,m = θ Γk−m −
m−1
∑

n=0

un Γk−m+n,

1 ≤ k ≤ m ≤ q Ak,m − A1,m−k+1 = −
k−1
∑

n=1

um+n−k Γn,

1 ≤ m ≤ q A1,m = Γd−m+1 +
q−m
∑

n=1

um+n−1 Γn,

we may collect the terms relative to a given Γm and we obtain:

(Gθvi − λi vi)k =

(

k−1
∑

n=1

Γn ζk−n−1
i

)(

θ −
q−1
∑

m=0

um ζm
i − ζq

i

)

= 0.

This concludes the proof. �

5.7.2. Main Argument of the Proof. Thanks to the decomposition of Lemma
5.7, we can prove:

Corollary 5.1. If we choose U(
a
y) = B(

a
y, t) + �V(

a
y, t) to define an insertion

operator, then

δa
yP(

b
x, t) ∈ O(�),

and is expressible in terms of V(
a
y, t), matrix elements of P(x, t) and their

time derivatives.

Proof. From the second equation in Lemma 2.2, we have:

δa
yP(

a
x) =

1
x − y

[

A(
a
y, t) + xB(

a
y, t) + �C(

a
y, t), A(

b
x, t) + xB(

b
x, t) + �C(

b
x, t)

]

+ � [V(
a
y, t),P(

b
x, t)],
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and using the commutation relations (5.27)–(5.29), we obtain:

δa
yP(

a
x, t) =

�

x − y

{

− [P(
b
x, t),C(

a
y, t)] + [P(

a
y, t),C(

b
x, t)]

}

+ � [B(
a
y, t),C(

b
x, t)]

+
�

2

(x − y)2
[C(

b
x, t),C(

a
y, t)] + � [V(

a
y, t),P(

a
x, t)].

�

Corollary 5.2. If δa
y is a compatible insertion operator such that U(

a
y, t) =

B(
a
y, t) + �V(

a
y) and V depends on �, is of order 1 and is expressible in terms

of matrix elements of P(
a
x) and their time derivatives, then:

δa1
y1

. . . δak
yk

P(
a
x) ∈ O(�k),

and:

Wn(
a1
x1, . . . ,

an
xn) ∈ O(�n−2).

Proof. If δa
y commutes with ∂t, we also have for any k ≥ 0:

δa
y∂k

t P(
b
x) ∈ O(�). (5.32)

Since δa
y itself is expressible in terms of elements of the matrices P and their

time derivatives, we can apply repeatedly (5.32) to show that each application
of the insertion operator to P(

a
x) increases at least by one the order in �. Now,

starting from the expression given in Proposition 2.1 for W2 and by successive
applications of the insertion operator to compute Wn according to the last
equation of Lemma 2.2, we obtain that Wn ∈ O(�n−2). �

5.7.3. Existence of a Compatible Insertion Operator. It is possible to con-
struct explicitly an insertion operator which commutes with ∂t:

Proposition 5.6. The choices:

U(
a
x, t)k,m =

k−m−1
∑

l=0

(

m + l − 1
l

)

(� ∂t)lPk−m−l,q(
a
x, t) = Bk,m(

a
x, t) + O(�),

δa
yuk(t) = P1,k(

a
y, t) − δk,1Pq,q(

a
y, t) +

q
∑

m=k

um(t)Um+1,k(
a
y, t),

where we used the convention uq(t) = −1, define the unique insertion operator
which commutes with ∂t.

We remark in this case that, since we have a second differential system
∂t − M, we also need to specify how the insertion operator acts on the matrix
elements5 of M, i.e. on uk(t). As a matter of fact, the second formula in
Lemma 5.6 is actually a consequence of the first formula and the commutativity
of the insertion operator with ∂t.

5 The action of vl is already given since we know from Lemma 2.2 how δa
y act on L.
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Proof. The commutativity of δa
y and ∂t is equivalent to:

δa
y∂tΨ(x, t) = ∂tδ

a
yΨ(x, t),

that is:

δa
yM(x, t) = [U(

a
y, t),M(x, t)] + � ∂tU(

a
y, t) +

[

P(
a
y, t),

M(x, t) − M(y, t)
x − y

]

.

(5.33)

With the expression (5.8) of M(x, t) for (p, q) models, we compute:
M(x, t) − M(y, t)

x − y
= Eq,1

δa
yMk,m(x, t) = − δk,q δa

yum−1(t).

The equation (5.33) gives a strong constraints upon the matrix U(
a
y, t). For

instance, it cannot be zero since:

[Eq,1,P(
a
y, t)]k,m = δk,qP1,m(

a
y, t) − δm,1Pk,q(

a
y, t).

We compute:

[U(
a
y, t),M(x, t)]k,m = Uk,m−1(

a
y, t) +

(

x δm,1 − um−1(t)
)

Uk,q(
a
y, t)

− Uk+1,m(
a
y, t) + δm,q

(

xU1,m(
a
y, t) −

q
∑

l=1

ul−1(t)Ul,m(
a
y, t)

)

.

The condition (5.33) is an affine function of x. With the choice Uk,q = U1,m = 0
for any k,m ∈ [[1, q]], the coefficient of x vanishes. The remaining constraint
reads:

−δk,qδ
a
yum−1(t) = Uk,m−1(

a
y, t) − Uk+1,m(

a
y, t) − δk,q

q
∑

l=1

ul−1(t)Ul,m(
a
y, t)

+ � ∂tUk,m(
a
y, t) − δk,qP1,m(

a
y, t) + δm,1Pk,q(

a
y, t).

Omitting the dependence in y, a and t, we have for k �= q:

Uk+1,m = Uk,m−1 + δm,1Pk,q − � ∂tUk,m. (5.34)

The solution at leading order in � is:

Uk,m =
{

Pk−m,q + O(�) m > k
O(�) m ≤ k

,

which coincides with the definition of the matrix B in (5.31). Equation (5.34)
can be solved recursively, and we find that its unique solution is given by the
first equation of Proposition 5.6. To define completely an insertion operator,
it remains to specify how it acts on the functions uk(t). The commutativity
condition prescribes the second equation of Proposition 5.6. Finally, we have
to check the last condition in our definition of an insertion operator:

Lemma 5.8. For any a, b ∈ [[1, q]], we have [δa
x, δb

y] = 0. This is equivalent to:

δa
xU(

b
y, t) − δb

yU(
a
x, t) + [U(

a
x, t),U(

b
y, t)] = 0. (5.35)
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This can be established by direct but long computations, that we give in

“Appendix C”. Remark that since U(
a
x, t) = B(

a
x, t)+O(�) and δa

xU(
b
y) ∈ O(�)

owing to Lemma 5.2, the commutation relation (5.28) implies (5.35) at leading
order. �

5.8. The Pole Property

We need to prove that ωg
n has poles only at ramification points, in particular,

no pole at ∞ or at double zeroes. For this purpose, we will use the observations
of Sect. 5.5.

5.8.1. Double Points.

Lemma 5.9. In the qth reduction of KP, for any n, g, ωg
n are regular at preim-

ages in S [0] of double points.

Proof. We remind that this property is not obvious because equations (3.8)
and (3.9), which allow the computation of the WKB expansion of Ψ(x, t) =
V ̂Ψ eS/� C, may have a pole 1/(λ[0]

a (x, t)−λ
[0]
b (x, t)), i.e. at the double points.

However, this analysis was performed for the differential equation with respect
to x. But now, we have a second differential equation

� ∂tΨ(x, t) = M(x, t)Ψ(x, t), (5.36)

from which we can perform a similar WKB analysis. One notices that solving
(5.19) for ̂Ψ(x, t) = 1q +

∑

k≥1 �
k
̂Ψ[k](x, t) recursively, the only denominators

are of the form 1/(za−zb), and thus the only poles that are produced are when
x → α such that za(α) = zb(α) for a �= b, i.e. when z goes to a ramification
point. The conclusion is that poles at double points in x (and thus at preimages
of double points in z ∈ S [0]) do not occur. �

5.8.2. Behavior at z → ∞.

Lemma 5.10. The qth reduction of KP satisfies Assumption 3.1.

Proof. We now expand Ψ at large x as

Ψ = V ̂Ψ eS/� C,

where:

∂xSi = Λ[0]
i (x) = Y (zi), V−1∂xV = O(x−1/q), ̂Ψ = 1q + O(x−1/q).

Moreover, as in Sect. 3.2, the equation � ∂xΨ = LΨ implies that there is also
a large x expansion of the form:

Ψ = ˜V ˜Ψ e˜S/� C,

where ∂x
˜S = Diag(Λi(x)), and ˜V−1∂x

˜V = O(x−1/q) and ˜Ψ = 1q + O(x−1/q).
This implies that:

Λ = Λ[0] + O(x−1/q),

and thus the pole property of Assumption 3.1 is satisfied. This implies that,
for any g, n �= (1, 0), the ω

(g)
n (z1, . . . , zn) are regular when zi = ∞. �
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5.9. Tau Function

It is well known that for (p, q) model we have [28]:

Theorem 5.1.

�
2 ∂2

t ln T (t) = u(t). (5.37)

5.10. Application of the Topological Recursion

Theorem 3.1, and in particular Corollary 3.6 (since our spectral curve has
genus 0), implies that the correlators have the expansion:

Wn(
a1
x1, . . . ,

an
xn)dx1, . . . dxn =

∑

g≥0

�
2g−2+n ω(g)

n (za1(x1), . . . , zan(xn)),

where the ω
(g)
n (z1, . . . , zn) are computed by the topological recursion. The

initial data are:

ω
(0)
1 = −Y (z)dX(z), ω

(0)
2 (z1, z2) =

dz1dz2

(z1 − z2)2
.

To justify the second equation, we know from Corollary 3.5 that ω
(0)
2 ∈ B(S [0])

and there is a unique such object on a genus 0 curve, which can be written as
in the second equation in any uniformization variable z.

In particular, we can retrieve the expansion of the Tau function with
Corollary 4.2.

ln T =
∑

g≥0

�
2g−2 F (g),

Since Y ′Ẋ − X ′Ẏ = 1, we find that ∂tY |X(z) = −dz/dX, hence:

∂tF
(g) = Res

z→∞ z ω
(g)
1 (z). (5.38)

Remember that T is defined up to a multiplicative constant, so the constant of
integration to get F (g) from (5.38) is irrelevant here. A direct integration can
be done explicitly for F (0) [32] and F (1) [40], but the formulae are complicated
to state. In simple examples, it is more efficient to rely on (5.38).

Case of the Homogeneous Solution. For the homogeneous solution, we have

X(z) = (u[0])q/2 f(ζ), Y (z) = (u[0])p/2 g(ζ), ζ = z (u[0])−1/2, (5.39)

and where u[0](t) = (t/ρ)
2

p+q−1 . By homogeneity of the topological recursion
(see [41,43]) this implies:

ω(g)
n (z1, . . . , zn) = (u[0])(2−2g−n)(p+q)/2 ω̌(g)

n (ζ1, . . . , ζn)

= (t/ρ)(2−2g−n)(p+q)/(p+q−1) ω̌(g)
n (ζ1, . . . , ζn).

where ω̌
(g)
n is computed as if u[0] was equal to 1. In particular for n = 0

∀g �= 1, F (g)(t) = t(2−2g)(p+q)/(p+q−1) F (g)(1).
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For F (1), we have:

∂tF
(1) = Res

z→∞ z ω
(g)
1 (ζ)

= (u[0])−(p+q−1)/2
{

Res
ζ→∞

ζ ω
(1)
1 (ζ)

}

=
ρ

t

{

Res
ζ→∞

ζ ω
(1)
1 (ζ)

}

,

therefore:

F (1)(t) = c ln t, c = ρ Res
ζ→∞

ζ ω
(1)
1 (ζ).

where the arbitrary integration constant was set to 0 for t = 1.
For the homogeneous solution, we observe that the � → 0 expansion

coincides with a t → ∞ expansion:

T = exp

(

∑

g≥0

�
2g−2F (g)(t)

)

= tc exp

(

∑

g≥0

(� t−(p+q)/(p+q−1))2g−2 Fg(1)

)

.

We see that � can be absorbed in a redefinition of the variable t. We also have:

u(t) = �
2 ∂2

t ln T = t
2

p+q−1
∑

g≥0

(� t−(p+q)/(p+q−1))2g u{g}(1),

where

u{g}(1) =
(p + q)(2 − 2g)

(

(p + q)(2 − 2g) − 1
)

(p + q − 1)2
Fg(1).

In particular, we see that

u{0}(1) = ρ−2/(p+q−1), F (0)(1) =
1
2

(p + q − 1)2

(p + q)(p + q + 1)
ρ−2/(p+q−1).

6. Examples

The qth reductions of KP, and in particular the (p, q) models describe univer-
sal behavior—provably or conjecturally—in statistical physics, random matrix
theory, and integrable systems. For those reasons, many of them have received
names referring to the problems where they appear. The (1, 2) model is known
to appear when studying the double scaling limit of random matrices at a
generic edge of the spectral density, and is related to the Airy process [59].
The (3, 2) model was shown, first in physics [30,58], then rigorously [51], to
describe generating series of random maps with generic critical weights, and
thus was called “pure gravity”. The (4, 3) (resp. the (6, 5) model) is expected to
describe the generating series of random maps carrying an Ising model (resp.
3-Potts model) with non-generic critical weights, and in fact, the theory we
developed allows a proof of those conjectures [16].

All the (p, q) models are conjectured to describe the double-scaling limit
in random matrices around an edge a where the spectral density behaves like
|x−a|p/q. This is also relevant for systems of vicious walkers via Dyson Brown-
ian motion [34], and this is related to 2d quantum gravity for reasons dating
back to [24]. This has been proven so far in a handful of cases (see e.g. [55]
and references therein), but mainly for q = 2 cases—which correspond to the
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Gelfand–Dikii hierarchies [46]. This conjecture is based on an ansatz [58] for the
convergence of operators P̂ and Q̂—interpreted as differentiation and multipli-
cation in the vector space generating by orthogonal polynomials—which has
not been justified rigorously so far. Our methods do not provide a proof that
double-scaling limits exist. However, once this existence is granted and it is
characterized in terms of a Lax pair, it can actually prove that the semiclassical
expansion of the limit laws is computed by the topological recursion. Moreover,
if the semiclassical spectral curve of the Lax pair can be identified with a blow-
up of the large N spectral curve of the matrix model when parameters become
critical, it shows—combining the results of [41] and [20]—that the semiclassical
expansion of the double-scaling limit does coincide with a limit of coefficients
in an off-critical 1/N expansion when approaching criticality. This crossover
is expected and we are able to justify it only relying on loop equations, i.e.
by algebraic methods. We refer to [11,17] for applications relying on those
ideas.

In the remaining of the text, we illustrate some (p, q) models, by describ-
ing the non-linear PDEs they generate, the spectral curves and the first
few coefficients in the � → 0 expansion of the correlators and of the Tau
function.

6.1. (p, q) = (3, 2): Pure Gravity

Here, we chose q = 2 and p = 3

Q = (�∂t)2 − 2u, P = (�∂t)3 − 3u �∂t − 3
2

�u̇ + v.

The string equation [P,Q] = � implies that v̇ = 0 and the Painlevé I equation
for u(t):

− 1
2

�
2 ü + 3u2 = t, v = t1.

It has the � expansion:

u =

√

t

3
− �

2

48
t−2 − 49 �

4

2933/2
t−9/2 − 52 72

�
6

21132
t−7 + O(�8). (6.1)

The Lax pair is given by

M(x, t) =
(

0 1
x + 2u 0

)

,

and

L(x, t) =
(

1
2� u̇(t) − t1 x − u

(x − u)(x + 2u) + 1
2 �

2ü − 1
2� u̇ − t1

)

.

The spectral curve is:

det(y 12 − L(x, t)) = (y + t1)2 − (x + 2u)(x − u)2 − 1
2

�
2 ü (x − u) − 1

4
�

2u̇2.

To leading order in �, the eigenvalues of L[0](x, t) are thus:

y = −t1 ± (x − u[0])
√

x + 2u[0], (6.2)
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and are parametrized by:
{

X(z) = z2 − 2u[0]

Y (z) = z3 − 3u[0] z − t1
with u[0] =

√

t

3
.

Notice that with ζ = (u[0])−1/2z, we recover the Chebyshev polynomials:
{

X(z) = u[0] (ζ2 − 2) = u[0] T2(ζ)
Y (z) = (u[0])3/2 (ζ3 − 3ζ) − t1 = (u[0])3/2 T3(ζ) − t1

.

Applying the topological recursion gives the coefficients of expansion of the
correlators:

ω
(0)
1 (z) = − Y (z)dX(z) = −2 (z4 − 3u[0] z2 − t1z) dz,

ω
(0)
2 (z1, z2) =

dz1 dz2

(z1 − z2)2
,

ω
(0)
3 (z1, z2, z3) =

−1
6u[0]

dz1 dz2 dz3

z2
1 z2

2 z2
3

,

ω
(0)
4 (z1, . . . , z4) =

1
36 (u[0])3

dz1 dz2 dz3 dz4

z2
1 z2

2 z2
3 z2

4

(

1 +
4
∑

i=1

3u[0]

z2
i

)

,

ω
(0)
5 (z1, . . . , z5) =

−1
72 (u[0])5

[

5
∏

i=1

dzi

z2
i

]

×
(

1 +
5
∑

i=1

3u[0]

z2
i

+
5
∑

i=1

5 (u[0])2

z4
i

+
∑

i<j

6(u[0])2

z2
i z2

j

)

,

ω
(1)
1 (z) = − 1

144 (u[0])2
dz

z4
(z2 + 3u[0]),

ω
(1)
2 (z1, z2) =

1
864 (u[0])4

dz1 dz2

z2
1 z2

2

(

2 + 6u[0](z−2
1 + z−2

2 ) + 9(u[0])2 z−2
1 z−2

2

+ 15(u[0])2(z−4
1 + z−4

2 )

)

,

ω
(2)
1 (z) = − 7

21035 (u[0])7
dz

z10

(

4z8 + 12u[0] z6

+ 36 (u[0])2 z4 + 87 (u[0])3 z2 + 135 (u[0])4
)

,

ω
(3)
1 (z) = − 7

21539 (u[0])12
dz

z16

(

1400z14 + 4200u[0]z12 + 12600(u[0])2z10

+ 34740(u[0])3z8 + 85860(u[0])4z6 + 181764(u[0])5z4

+ 297297(u[0])6z2 + 289575(u[0])7
)

.
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The expansion of the Tau function ln T =
∑

g≥0 �
2g−2F (g) is obtained from:

∂tF
(g) = Res

z→∞ z ω
(g)
1 (z) = 6u[0]u̇[0] Res

z→∞ ω
(g)
1 (z)

and the solution u = u[0] +
∑

g≥1 �
2g u{g} from u{g} = ∂2

t F (g). We emphasized
that 1 = 6u[0]u̇[0] to facilitate the integration. That gives:

∂tF
(1) =

6u[0]u̇[0]

144 (u[0])2
=

u̇[0]

24u[0]
,

⇒ F (1) =
ln u[0]

24
=

1
48

ln(t/3)

⇒ u{1} =
−1

48 t2

∂tF
(2) =

7 · 6u[0]u̇[0]

2835(u[0])7
=

7 u̇[0]

2734(u[0])6
,

⇒ F (2) =
−7

27345 (u[0])5
=

−7
2733/25t5/2

⇒ u{2} =
−49

2933/2t9/2
.

∂tF
(3) =

7 · 1400 · 6u[0]u̇[0]

21539(u[0])12
=

5272u̇[0]

21138(u[0])11
,

⇒ F (3) =
−5 · 72

21238(u[0])10
=

−5 · 72

21233t5

⇒ u{3} =
−5272

21132t7
.

These results agree with the direct � expansion of the solution of the Painlevé
I equation (6.1).

6.2. (p, q) = (2, 3)
Here, we consider pure gravity again, but exchange the role of P and Q, namely
we choose p = 2 and q = 3. This gives the 3 × 3 Lax pair:

M(x, t) =

⎛

⎝

0 1 0
0 0 1

x + 3
2�u̇ − t1 3u 0

⎞

⎠ ,

L(x, t) =

⎛

⎝

2u 0 −1
t1 − x + 1

2 �u̇ −u 0
1
2 �

2ü t1 − x − 1
2 �u̇ −u

⎞

⎠ .

The spectral curve is:

det
(

y 13 − L(x, t)
)

= y3 − 2u2y − 2u3 + (x − t1)2 +
1
2

�
2

(

yü − 1
2

u̇2 + uü

)

.

To leading order the spectral curve is thus:

y3 − 2(u[0])2y + (x − t1)2 − 2(u[0])3 = 0,
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which admits the parametrization:
{

X(z) = (u[0])3/2 T3(ζ) = z3 − 3u[0]z
Y (z) = −u[0] T2(ζ) = 2u[0] − z2 u[0] = (t/3)1/2.

The ramification points are at ζ = a± = ±1 and correspond to X(a±) =
∓2 (u[0])3/2. The local Galois conjugate near a = ±1 is:

σa(ζ) =
−1
2

(

ζ − a
√

12 − 3ζ2
)

.

The topological recursion gives (we denote ζ = (u[0])−1/2z) for the expansion
of the correlators:

ω
(0)
1 (z) = − Y (z)dX(z) = 3 (u[0])5/2 (ζ2 − 2)(ζ2 − 1) dζ,

ω
(0)
2 (z1, z2) =

dζ1 dζ2

(ζ1 − ζ2)2
,

ω
(0)
3 (z1, z2, z3) =

−dζ1 dζ2 dζ3

12 (u[0])5/2

(

∑

ε=±1

1
(ζ1 + ε)2(ζ2 + ε)2(ζ3 + ε)2

)

,

ω
(1)
1 (z) =

−dζ

288 (u[0])5/2

(

∑

ε=±1

5 + 3εζ + ζ2

(ζ + ε)4

)

,

ω
(2)
1 (z) =

−dζ

21935 (u[0])15/2

∑

ε=±1

1
(ζ + ε)10

(

7168ζ8 + 246834ζ6

+ 1016572ζ4 + 1218226ζ2 + 369664

+ ε
(

61957ζ7 + 602251ζ5 + 1271499ζ3 + 862277ζ
)

)

It is necessary to compute ω
(1)
2 to obtain ω

(2)
1 , but we omitted its expression

for conciseness. Then, for the expansion of the Tau function T and of u, we
may use 6u[0]u̇[0] = 1 and get:

∂tF
(1) =

6 (u[0])3/2u̇[0]

144 (u[0])5/2
=

u̇[0]

24u[0]
,

⇒ F (1) =
ln u[0]

24
=

1
48

ln(t/3),

⇒ u{1} =
−1

48 t2
.

∂tF
(2) =

6 (u[0])3/2u̇[0] 7168
21835 (u[0])15/2

=
7 u̇[0]

2734 (u[0])6
,

⇒ F (2) =
−7

27345 (u[0])5
=

−7
2733/25 t5/2

,

⇒ u{2} =
−49

2933/2 t9/2
.

This again perfectly agrees with the direct � expansion of the solution of
the Painlevé I equation (6.1), and this agrees with the (3, 2) model, as an
illustration of the (p, q) → (q, p) duality.
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6.3. (p, q) = (4, 3): Ising Model

The model is defined by:

Q = (�∂t)3 − 3u �∂t + u0, P = (�∂t)4 − 4u (�∂t)2 + v1 �∂t + v0.

where u, u0, v1, v0 are functions of t. The string equation implies

u0 = −3
2

� u̇ − 3w + t1,

where w is a function of t, and:

v1 = −4w − 4 � u̇, v0 = 2u2 − 5
3

�
2 ü − 2� ẇ + t2,

where w satisfies

12uw − 2�
2 ẅ = t3,

and then u(t) satisfies
1
6

�
4 ....

u − 3 �
2uü − 3

2
�

2u̇2 + 4u3 + 6w2 = t,

where t1, t2, t3 are integration constants. A particular choice is t1 = t2 = t3 = 0
and w = 0, in which case we have

1
6

�
4 ....

u − 3�
2uü − 3

2
�

2u̇2 + 4u3 = t.

The first few orders of expansion are:

u =
1
2

(2t)1/3 − 1
24

�
2

t2
− 1925

1458
�

4

(2t)13/3
− 509575

13122
�

4

(2t)20/3
+ O(�8), (6.3)

Up to rescalings of u and t, this equation can be identified with the second
member of the Painlevé I hierarchy studied, e.g. in [53]. In that context, t is
considered as a “space variable”. In Dubrovin universality conjecture [33], the
solution (6.3) describes the shape—the variable of the generic solution of a
hamiltonian perturbation hyperbolic PDE exactly at the catastrophe time.

From the relation �
2∂2

t ln Z = u:

ln Z =
9

224
(2t)7/3

�2
+

1
24

ln t − 55
1296

�
2

(2t)7/3
− 29975

81648
�

4

(2t)14/3
+ O(�6).

The Lax pair is:

M(x, t) =

⎛

⎝

0 1 0
0 0 1

x + 3
2 � u̇ + 3w − t1 3u 0

⎞

⎠

L(x, t)

=

⎛

⎝

2u2 + t2 x − t1 − w −u
(t1 − x − 3w)u −u2 + t2 x − t1 − w

(x − t1)2 + 2(x − t1)w − 3w2 −2(t1 − x + 3w)u −u2 + t2

⎞

⎠

+ �

⎛

⎜

⎜

⎝

ẇ − 1
6 �ü 1

2 u̇ 0

5
2 uu̇ + �

2 ẅ − 1
6 �

3...
u 1

3 � ü − 1
2 u̇

9uẇ + �
( 7
4 u̇2 + 5

2 uü
)

+ � ẅ − 1
6 �

2 ....
u −uu̇ + �ẅ − 1

6 �
2...
u −ẇ − 1

6 � ü

⎞

⎟

⎟

⎠

.
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In the particular case where t1 = t2 = t3 = w = 0, we have:

L(x, t)

=

⎛

⎜

⎝

2u2 − 1
6 �

2ü x + 1
2 � u̇ −u

−ux + 5
2 � uu̇ − 1

6 �
3 ...

u −u2 + 1
3 �

2 ü x − 1
2 � u̇

x2 + �
2
(

7
4 u̇2 + 5

2 uü
)

− 1
6 �

4 ....
u 2ux − � uu̇ + 1

6 �
3 ...

u −u2 − 1
6 �

2 ü

⎞

⎟

⎠.

The spectral curve is:
det(y 13 − L(x, t)) = y3 −

(

3u4 − 1

6
� u̇u3 − 3�

2 u2ü +
1

12
�
2(ü2 + 2u

....
u )

)

y − x4

+tx2 + 2u6 + �
2(u3u̇2 − 3u4ü) + �

4
(

− 7

16
u̇4 +

1

4
uu̇ü +

3

4
u2ü2 − 1

2
u2u̇

...
u +

1

6
u3....u

)

+�
6
( 1

108
ü3 +

1

36
(−u̇ü

...
u + u

...
u2) +

1

24
u̇2....u − 1

18
uü

....
u
)

.

To leading order the spectral curve is thus:

y3 − 3(u[0])4y = x4 − 4(u[0])3x2 + 2(u[0])6,

i.e. in terms of Chebyshev polynomials:

T3

(

y/(u[0])2
)

= T4

(

x/(u[0])3/2
)

,

which admits the parametrization:
{

X(z) = (u[0])3/2 T3(ζ) = z3 − 3u[0]z
Y (z) = (u[0])2 T4(ζ) = z4 − 4u[0]z2 + 2(u[0])2

u[0] = (t/4)1/3.

The ramification points are at ζ = a± = ±1 and correspond to X(a±) = ∓2.
The local Galois conjugate near a = ±1 is:

σa(ζ) =
−1
2

(

ζ − a
√

12 − 3ζ2
)

.

The topological recursion gives (we denote ζ = z/
√

u[0]) for the expansion of
the correlators:

ω
(0)
1 (z) = −Y (z)dX(z) = −3 (u[0])7/2 (ζ4 − 4ζ2 + 2)(ζ2 − 1) dζ,

ω
(0)
2 (z1, z2) =

dζ1 dζ2

(ζ1 − ζ2)2
,

ω
(0)
3 (z1, z2, z3) =

−dζ1 dζ2 dζ3

24 (u[0])7/2

(

∑

ε=±1

1
(ζ1 + ε)2(ζ2 + ε)2(ζ3 + ε)2

)

,

ω
(1)
1 (z) =

−dζ

576 (u[0])7/2

∑

ε=±1

7 + 7εζ + 3ζ2

(ζ + ε)4
,

ω
(2)
1 (z) =

−5dζ

21335 (u[0])21/2

1
(ζ2 − 1)10

(

791 + 10831ζ2 + 5642ζ4 + 8010ζ6

−5060ζ8 + 6556ζ10 − 4098ζ12 + 1982ζ14 − 539ζ16 + 77ζ18
)

,

ω
(3)
1 (z) =

−5dζ

21939 (u[0])35/2

1
(ζ2 − 1)16

(

1534020 + 51852480ζ2

+139051115ζ4 + 126732801ζ6 + 14026336ζ8 + 136206860ζ10
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−165273597ζ12 + 227618305ζ14 − 221591820ζ16

+175823400ζ18 − 107773575ζ20 + 51069755ζ22

−17959320ζ24 + 4465420ζ26 − 701415ζ28 + 53955ζ30
)

.

The computation of ω
(2)
1 (resp. ω

(3)
1 ) required the knowledge of ω

(1)
2 (resp. the

knowledge of ω
(0)
4 , ω

(1)
3 and ω

(2)
2 ), but since their expression is lengthy we do

not copy them here. We now come to the expansion of the Tau function T ,
and the solution u. We can use 12(u[0])2u̇[0] = 1 to perform the integration
that gives:

∂tF
(1) = 12 (u[0])5/2u̇[0] 1

253 (u[0])7/2
=

u̇[0]

8u[0]

⇒ F (1) =
ln u0

8
=

ln (t/4)
24

.

⇒ u{1} = − 1
24t2

,

∂tF
(2) = 12 (u[0])5/2u̇[0] 5 · 7 · 11

21335 (u[0])21/2
=

5 · 7 · 11
21134 (u[0])8

⇒ F (2) = − 5 · 11
21134 (u[0])7

= − 55
1296 (2t)7/3

.

⇒ u{2} = − 1925
1458 (2t)13/3

,

∂tF
(3) = 12 (u[0])5/2u̇[0] 5211 · 109

21937 (u[0])35/2
=

5211 · 109 u̇[0]

21736 (u[0])15

⇒ F (3) = − 5211 · 109
218367 (u[0])14

= − 29975
81648 (2t)14/3

⇒ u{3} = − 509575
13122 (2t)20/3

.

This matches (6.3).

Appendix A. Proof of Lemma 2.2

If δa
y is an insertion operator, we now prove the following formulae. For any

n ≥ 1, any a, b, a1, . . . , an ∈ [[1, d]],

δa
yK(x1, x2) = − K(x1, y)EaK(y, x2),

δa
yP(

b
x) =

[P(
a
y)

x − y
+ U(

a
y),P(

b
x)
]

,

δa
yL(x) =

[P(
a
y)

x − y
+ U(

a
y),L(x)

]

− P(
a
y)

(x − y)2
,

δa
yTrL(x) = − 1

(x − y)2
,
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δa
y ln detΨ(x) =

1
x − y

+ TrU(
a
y),

δa
y ln

(

detΨ(x)
detΨ(z)

)

=
1

x − y
− 1

z − y
,

δa
yWn(

a1
x1, . . . ,

an
xn) = Wn+1(

a
y,

a1
x1, . . . ,

an
xn).

First we have by the Leibniz rule δb
y(Ψ−1(x)Ψ(x)) = 0, which leads to:

δa
yΨ

−1(x) = −Ψ−1(x)(δa
yΨ(x))Ψ−1(x) =

Ψ−1(x)P(
a
y)

y − x
− Ψ−1(x)U(

a
y).

Then, we compute

δa
yK(x1, x2) =

1
x1 − x2

δb
y[Ψ−1(x1)Ψ(x2)]

=
1

x1 − x2

(Ψ−1(x1)P(
a
y)Ψ(x2)

y − x1
+

Ψ−1(x1)P(
a
y)Ψ(x2)

x2 − y

+ Ψ−1(x1)U(
a
y)Ψ(x2) − Ψ−1(x1)U(

a
y)Ψ(x2)

)

= − Ψ−1(x1)Ψ(y)
x1 − y

Ea
Ψ−1(y)Ψ(x2)

y − x2
= −K(x1, y)EaK(y, x2),

and notice that U disappears in this computation. Similarly,

δa
yP(

b
x) = (δa

yΨ(x))EbΨ−1(x) + Ψ(x)Eb(δa
yΨ

−1(x))

=
P(

a
y)Ψ(x)EbΨ−1(x)

x − y
− Ψ(x)EbΨ−1(x)P(

a
y)

x − y

= + U(
a
y)Ψ(x)EbΨ−1(x) − Ψ(x)EbΨ−1(x)U(

a
y)

=
[P(

a
y),P(

b
x)]

x − y
+ [U(

a
y),P(

b
x)].

Then we have

δa
yL(x) = δa

y

(

� ∂xΨ(x) Ψ−1(x)
)

= � ∂x

(

δa
yΨ(x)

)

Ψ−1(x) − � ∂x Ψ(x) δa
y

(

Ψ−1(x)
)

= � ∂x

((

P(
a
y)

x − y
+ U(

a
y)

)

Ψ(x)

)

Ψ−1(x) − L(x) δa
y

(

Ψ−1(x)
)

= − �

(x − y)2
P(

a
y) +

[

P(
a
y)

x − y
+ U(

a
y),L(x)

]

.
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To compute the action of δa
y on the correlators, we consider n = 1 separately:

δb
yW1(

b
x) = δb

y

(

lim
z→x

Ka,a(x, z) − 1
x − z

)

= lim
z→x

δb
yKa,a(x, z)

= − lim
z→x

Ka,b(x, y)Kb,a(y, z)

= − Ka,b(x, y)Kb,a(y, x) = W2(x, y).

Then, for n ≥ 2, we can use Definition 2.2:

δa
yWn(x1, . . . , xn)

= (−1)n+1
∑

σ=n-cycle

δa
y

[

n
∏

i=1

Kai,aσ(i)(xi, xσ(i))

]

= (−1)n+2
∑

σ=n-cycle

n
∑

j=1

Kaj ,a(xj , y)Ka,aσ(j)(y, xσ(j))
∏

i�=j

Kai,aσ(i)(xi, xσ(i))

= (−1)n+2
∑

σ=(n+1)-cycle
y=xn+1, an+1=a

n
∏

i=1

Kai,aσ(i)(xi, xσ(i))

= Wn+1(
a
y,

a1
x1, . . . ,

an
xn).

�

Appendix B. Proof of Theorem 3.1

We assume that all ramification points are simple (see [22] for the case or higher
ramifications), the embedding of the curve S [0] → C

2 by the functions (x, y) is
regular, and that TT is satisfied. We shall prove the topological recursion using
the linear (Proposition 2.1) and quadratic (Proposition 2.2) loop equations
only. This is already done in [19,41], but we present here a self-contained
proof. Contrarily to [19] which is more general, we take advantage here that
the semiclassical spectral curve S [0] is a compact Riemann surface of genus g,
to identify more precisely the possible holomorphic term in (3.13).

From the TT hypothesis, we have that every ω
(g)
n with (g, n) �= (0, 1) or

(0, 2) has poles only at the ramification points. We have called r = {r1, . . . , rm}
the set of ramification points. Let r ∈ r be a ramification point, by definition
and assumption there are exactly two indices a �= b such that za(r) = zb(r),
and we define the local Galois involution σr in a vicinity of r, as the map
za(x) �→ zb(x). Let J = {2, . . . , n} and zJ = (zj)j∈J , and define:

Q̃(g)
n (z, z′; zJ ) := ω

(g−1)
n+2 (z, z′, zJ ) +

′
∑

h+h′=g, I∪̇I′=J

ω
(h)
1+|I|(z, zI)ω

(h′)
1+|I′|(z

′, zI′)
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and

Q(g)
n (z, z′; zJ ) := ω

(g−1)
n+2 (z, z′, zJ ) +

∑

h+h′=g, I∪̇I′=J

ω
(h)
1+|I|(z, zI)ω

(h′)
1+|I′|(z

′, zI′),

where
∑′ means that we exclude the cases (h, I) = (0, ∅) and (h, I) = (g, J),

i.e.

Q(g)
n (z, z′; zJ) = Q̃(g)

n (z, z′; zJ ) + ω
(0)
1 (z)ω

(g)
n+1(z

′, zJ ) + ω
(g)
n+1(z, zJ )ω

(0)
1 (z′).

Lemma B.1. Near a ramification point r, we have:
∑

a<b

Q(g)
n (za, zb; zJ ) = Q(g)

n (z, σr(z); zJ ) + analytical at z → r. (B.1)

Proof. To simplify notations, we can always label 1 and 2 the sheets meeting at
the ramification point r. I.e. if z = z1, we have σr(z) = z2. Let us decompose
the sum over indices as:

∑

1≤a<b≤d

Q(g)
n (za, zb; zJ ) = Q(g)

n (z1, z2; zJ ) +
∑

2<b≤d

Q(g)
n (z1, zb; zJ )

+
∑

2<b≤d

Q(g)
n (z2, zb; zJ ) +

∑

2<a<b≤d

Q(g)
n (za, zb; zJ ).

The linear loop equation implies that:

Q(g)
n (z1, zb; zJ ) + Q(g)

n (z2, zb; zJ ) = −
∑

2<a≤d

Q(g)
n (za, zb; zJ ),

and thus:
∑

1≤a<b≤d

Q(g)
n (za, zb; zJ )

= Q(g)
n (z1, z2; zJ ) −

∑

2<a,b≤d

Q(g)
n (za, zb; zJ ) +

∑

2<a<b≤d

Q(g)
n (za, zb; zJ ).

The last two lines have no poles at the ramification point, hence the announced
result. �

Remark B.1. Since the analytic term in r in (B.1) is a quadratic differential
in z invariant under Galois involution, it must actually have a double zero at
r.

Theorem B.1. The ω
(g)
n satisfy the topological recursion:

ω
(g)
n+1(z1, zJ )=

1
2

∑

r∈r

Res
z→r

∫ z

σr(z)
ω

(0)
2 (z1, ·)

ω
(0)
1 (z) − ω

(0)
1 (σr(z))

Q̃(g)
n (z, σr(z); zJ )+H(g)

n (z1, zJ)

where H
(g)
n is holomorphic in z1.

Proof First, Lemma B.1 together with the quadratic loop equation implies
that Q(g)

n (z, σr(z); zJ ) has no pole at the ramification point r. This means that:

Q̃(g)
n (z, σr(z); zJ ) = −ω

(0)
1 (z)ω

(g)
n+1(σr(z), zJ ) − ω

(g)
n+1(z, zJ )ω

(0)
1 (σr(z)) + · · ·
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where the dots are analytical at r. Moreover, using again the linear loop equa-
tion we have that

ω
(g)
n+1(σr(z), zJ ) = −ω

(g)
n+1(z, zJ ) + · · ·

and thus

Q̃(g)
n (z, σr(z); zJ ) =

[

ω
(0)
1 (z) − ω

(0)
1 (σr(z))

]

ω
(g)
n+1(z, zJ) + · · ·

According to the previous remark, the remainder has actually a double zero at
z = r. We remind that ω

(0)
1 = ydx, and since we assume that the embedding

of S [0] in C
2 by (x, y) is regular, dy(r) �= 0. Combined with the assumption

that x has simple ramification points, this implies that
[

ω
(0)
1 (z) − ω

(0)
1 (σr(z))

]

has exactly a double zero at z = r. Therefore, we find:

I(g)
n =

1
2

∑

r∈r

Res
z→r

∫ z

σr(z)
ω

(0)
2 (z1, ·)

ω
(0)
1 (z) − ω

(0)
1 (σr(z))

Q̃(g)
n (z, σr(z); zJ )

=
1
2

∑

r∈r

Res
z→r

(

∫ z

σr(z)

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ )

=
1
2

{

∑

r∈r

Res
z→r

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ )

− Res
z→r

(

∫ σr(z)

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ )

}

where o is an arbitrary base point on the spectral curve. We rename the inte-
gration variable in the second term z → σr(z), and get:

I(g)
n =

1
2

∑

r∈r

{

Res
z→r

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ )

− Res
z→r

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(σr(z), zJ )

}

using again the linear loop equation, i.e. that ω
(g)
n+1(σr(z), zJ ) + ω

(g)
n+1(z, zJ ) is

analytical at r, we arrive to

I(g)
n =

∑

r∈r

Res
z→r

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ).

Now, observe that ω
(g)
n+1(z, zJ ) has poles only at the ramification points,

whereas ω
(0)
2 (z, z1) has a pole only at z = z1 (a double pole). We may move the

integration contours from surrounding the poles of ω
(g)
n+1(z, zJ ) to surrounding

the poles of ω
(0)
2 (z, z1), i.e. using the Riemann bilinear identity:
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I(g)
n = − Res

z→z1

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ )

+
1

2iπ

g
∑

i=1

{

(

∮

Ai

ω
(0)
2 (z1, ·)

)(

∮

Bi

ω
(0)
n+1(·, zJ )

)

−
(

∮

Bi

ω
(0)
2 (z1, ·)

)

(

∮

Ai

ω
(0)
n+1(·, zJ )

)}

,

where the cycles Ai,Bj are chosen to form a basis of 2g non-contractible
cycles on S [0], with canonical intersections Ai ∩ Bj = δi,j . Observe that
(

∫ z

o
ω

(0)
2 (z1, ·)

)

has a simple pole at z1 = z with residue 1, so the first term is:

− Res
z→z1

(∫ z

o

ω
(0)
2 (z1, ·)

)

ω
(g)
n+1(z, zJ ) = ω

(g)
n+1(z1, zJ ).

Since ω
(0)
2 ∈ B(S [0]) (from Corollary 3.5), we also know that

∮

Ai
ω

(0)
2 (z1, ·)

and
∮

Bi
ω

(0)
2 (z1, ·) are holomorphic forms of z1, and thus we have obtained the

decomposition:

I(g)
n = ω

(g)
n+1(z1, zJ ) + holomorphic (z1).

This finishes the proof of Theorem 3.1.

Appendix C. Proof of Lemma 5.8

We want to prove:

δa
xU(

b
y) − δb

yU(
a
x) = [U(

a
x),U(

b
y)] (C.1)

for the choice:

Uk,m(
a
x) =

k−1−m
∑

l=0

(

m − 1 + l

l

)

P
(l)
k−m−l,q(

a
x) (C.2)

where we adopted the notation f (l) = (�∂t)lf . Notice that U is lower trian-
gular, i.e. Uk,m = 0 when k ≤ m since the sum is empty. Subsequently, the
right-hand side of (C.1) is equal to:

[U(
a
x),U(

b
y)
]

k,m

=
k−1
∑

r=m+1

k−1−r
∑

l=0

r−1−m
∑

l′=0

(

r − 1 + l

l

)(

m − 1 + l′

l′

)

P
(l)
k−r−l,q(

a
x)P

(l′)
r−m−l′,q(

b
y)

−
( a

x ↔
b
y
)

(C.3)
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Let us now compute the left-hand side of (C.1). Using the fact that δa
x com-

mutes with ∂t, we have:

{

δa
xU(

b
y)−δb

yU(
a
x)
}

k,m
=

k−1−m
∑

l=0

(

m−1+l

l

)

(�∂t)l
{

δa
xP(

b
y) − δb

yP(
a
x)
}

k−m−l,q

(C.4)

From Lemma 2.2 we remind:

δb
yP(

a
x) =

[P(
b
y),P(

a
x)]

x − y
+ [U(

b
y),P(

a
x)]

One can check that the proof of this equation given in “Appendix A” does not
use the commutation relation (C.1) that we want to prove. We thus find:

δa
xP(

b
y) − δb

yP(
a
x) = [U(

a
x),P(

b
y)] −

( a
x ↔

b
y
)

Then, we remark from the structure of U that the qth column of P(
a
x)U(

b
y) is

zero. So, we have:

δa
xPk−m−l,q(

b
y) − δb

yPk−m−l,q(
a
x) =

{

U(
a
x)P(

b
y)}k−m−l,q −

( a
x ↔

b
y
)

(C.5)

and we can write:
{

δa
xU(

b
y) − δb

yU(
a
x)
}

k,m
= Dk,m(

a
x,

b
y) −

( a
x↔

b
y
)

The expression for the D term is obtained by inserting (C.5) in (C.4), using
the Leibniz rule to distribute the lth order derivative between the two factors
U and P, and replacing U by its value (C.2):

Dk,m(
a
x,

b
y)

=
k−m−1
∑

l=0

l
∑

n=0

q
∑

r=k−m−l−1

k−m−l−r−1
∑

l′=0

(

l

n

)(

r + l′ − 1
l′

)

×P
(l′+n)
k−m−l−r−l′,q(

a
x)P (l−n)

r,q (
b
y). (C.6)

The structure is now similar to (C.3), except that we have a fourfold sum
instead of a threefold sum. To make the comparison precise, let us redefine the
indices of summation (l, n, r, l′) �→ (r, l, l′, n) in (C.6) to mimic those of (C.3):

r = r − m − l′, l′ = l − n, l = l′ + n

Then, automatically the combination k − r − l is equal to k − m − l − r − l′,
and rewriting (C.6) in a form as close to (C.3) as possible:

Dk,m =
∑

r,l,l′

(

r − 1 + l

l

)(

m − 1 + l′

l′

)

P
(l)
k−r−l,q(

a
x)P

(l′)
r−m−l′,q(

b
y) · Sr,l,l′

(C.7)



Vol. 16 (2015) Differential Systems and Loop Equations 2773

The extra-summation over n was included in

Sr,l,l′ = S(l + r − 1 − m − l′,m − 1 + l′, l)

S(a, b, c) =
(a + b − 1 + c)! c!

b!(a − c)!(a + b + 1)!

c
∑

n=0

(a − n)!(b + n)!
n!(c − n)!

(C.8)

To conclude, we must show that S ≡ 1, and describe carefully the range of
summation in (C.7) following from the change of indices.

For the first task, we write a generating series:
∞
∑

c=0

(a − n)!(b + n)!
n!(c − n)!

zc = b! (a − c)!T (b; z)T (a − c; z),

where T (b; z) =
∑

n≥0

(

b+n
b

)

zn. We claim that T (b; z) = (1−z)−(b+1). Indeed,
setting a new summation index k = b + n:

∑

b≥0

T (b)wb =
∑

k≥0

wk
(

k
∑

n=0

(

k

n

)

(z/w)n
)

=
∑

k≥0

wk(1 + w/z)k

=
1

1 − (w + z)
.

which entails the claim after expansion in w → 0. Then:
c
∑

n=0

(a − n)!(b + n)!
n!(c − n)!

= b!(a − c)! [zc]
1

(1 − z)b+a−c+2

=
b!(a − c)!

c!
(b + a + 1)!

(b + a − c + 1)!
.

which proves that S(a, b, c) ≡ 1.
For the second task, we decompose as follows the change of indices

(l, n, r, l′) �→ (r, l, l′, n), with the convention that the innermost summation
indices appear at the bottom of the column.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

l [0, k − 1 − m]
r [1, k − 1 − m − l]
n [0, l]
l′ [0, k − 1 − m − r − l]

r↔l−→
l=l′+n

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r [1, k − 1 − m]
l [0, k − 1 − m − r]
n [0, l]
l [n, k − 1 − m − r − l + n]

l↔n−→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r [1, k − 1 − m]
n [0, k − 1 − m − r]
l [n, k − 1 − m − r]
l [n, k − 1 − m − r − l + n]

n↔r−→
l′=l−n

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n [0, k − 2 − m]
r [1, k − 1 − m − n]
l′ [0, k − 1 − m − n − r]
l [n, k − 1 − m − r − l′]

l′↔r−→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n [0, k − 2 − m]
l′ [0, k − 2 − m − n]
r [1, k − 1 − m − n − l′]
l [n, k − 1 − m − r − l′]

−→
r=r+m+l′

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n [0, k − 2 − m]
l′ [0, k − 2 − m − n]
r [1 + m + l′, k − 1 − n]
l [n, k − 1 − r]

l′↔r−→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n [0, k − 2 − m]

r [1 + m, k − 1 − n]
l′ [0, r − m − 1]
l [n, k − 1 − r]

n↔r−→

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r [1 + m, k − 1]

l′ [0, r − m − 1]
n [0, k − 1 − r]
l [n, k − 1 − r]
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Eventually, exchanging the sums over n and l, we find the range of summa-
tions:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

r [1 + m, k − 1]
l′ [0, r − m − 1]
l [0, k − 1 − r]
n [0, l]

(C.9)

The summation over n indeed matches with (C.8) since we took c = l, while
the first threefold sum is exactly the same as in (C.3). Hence the claimed
equality (C.1). �

Appendix D. Matrix Models and Motivations

The theory we presented was initially motivated by particular cases at the
intersection between random matrix models and integrable systems, such as
the 1- and the 2-matrix model. We give a short summary of the correspondence
between the notions introduced in this article and the one usually used to study
those matrix models.

D.1. The 1-Matrix Model

Consider a hermitian matrix integral of the type

ZN =
∫

HN

dM e−�
−1 Tr V (M),

where dM =
∏N

i=1 dMi,i

∏

1≤i<j≤N dRe Mi,j · dIm Mi,j is the usual invariant
Lebesgue measure on the space of N × N hermitian matrices HN , and where
V (M) = t0 +

∑d
k=1 tkMk/k is a polynomial, called the potential.

D.1.1. The Differential System. It is well known that the matrix integral ZN

is a Jimbo–Miwa isomonodromic Tau function [12,13]. After Heine formula
[60], the expectation value of the characteristic polynomial is an orthogonal
polynomial with respect to the measure e−�

−1 V (x) dx:

pN (x) = EN

[

det(x1 − M)
]

=
1

ZN

∫

HN

dM e−�
−1 Tr V (M) det(x1 − M),

i.e. it satisfies:
∫

R

pN (x) pL(x) e−�
−1 V (x) dx = hNδN,L.

The orthogonality is a way of writing Hirota equation [54, Sect. 2.2]. The
orthogonal polynomials satisfy a linear, second-order differential equation,
which can be written in 2 × 2 matrix form:

� ∂xΨN (x) = LN (x)ΨN (x), ΨN (x) =
(

ψN (x) φN (x)
ψN−1(x) φN−1(x)

)

,

(D.1)
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where

ψN (x) =
pN (x)√

hN

e− 1
2�

V (x)

is the normalized N -orthogonal polynomial up to an exponential prefactor,
and

φN (x) =
∫

R

ψN (x′)
x − x′ e

1
2�

(V (x)−V (x′)) dx′

is its Hilbert transform. It is characterized by the property that it is holomor-
phic in C\R, and on the real line its lower and upper boundary values satisfy
a Riemann Hilbert problem:

φN (x + i0) − φN (x − i0) = −2iπ ψN (x). (D.2)

The matrix LN (x) is traceless, and its entries are polynomial in x of maximal
degree (d − 1): it can be found, e.g. in [13]. This is our starting point (1.1).
There is also a compatible recursion relation in N , which is the Toda chain [47].
The times tj generate the jth Toda flow and are isomonodromic parameters
for the ODE (D.1).

D.1.2. Matrix Kernel and Correlators. The expectation values of ratios of
characteristic polynomials obey Giambelli determinantal relations [45]:

EN

[∏n
i=1 det(xi1 − M)

∏n
i=1 det(yi1 − M)

]

=
det1≤i,j≤n K(yi, xj)

det1≤i,j≤n
1

yi−xj

, (D.3)

where the scalar kernel K is defined as

K(y, x) =
1

y − x
EN

[

det(x1 − M)
det(y1 − M)

]

∝ φN (y)ψN−1(x) − φN−1(y)ψN (x)
x − y

.

(D.4)

Since the matrix LN (x) is traceless, detΨN (x) is constant, so up to a constant
prefactor, the scalar kernel coincides with the (1, 1) entry of the matrix kernel
K of our definition 2.1:

K(y, x) ∝ 1
y − x

(

Ψ(y)−1 Ψ(x)
)

1,1
∝ K1,1(y, x).

while the (1, 2) entry of the matrix kernel is proportional to the Christoffel–
Darboux kernel of orthogonal polynomials:

N−1
∑

M=0

ψM (x)ψM (y) =
ψN (x)ψN−1(y) − ψN−1(x)ψN (y)

x − y
∝ K2,1(x, y).

(D.5)

According to (D.2), it is obtained from the scalar kernel (D.4) by computing
its discontinuity when y crossed the real axis. Computing likewise the discon-
tinuity of (D.3) gives the famous formula of Dyson and Mehta [57] for the
k-point density correlations of the eigenvalues as a k × k determinant of the
Christoffel–Darboux kernel.
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In the matrix model, the n-point correlation functions are defined as
expectation values of traces of resolvents:

W1(x) = EN

[

Tr
1

x1 − M

]

, (D.6)

and for n ≥ 1

Wn(x1, . . . , xn) = EN

[

n
∏

i=1

Tr
( 1

xi1 − M

)

]

c

, (D.7)

where the subscript c means that we take the cumulant. Since

lim
y→x

det(x1 − M)
det(y1 − M)

− 1
y − x

= Tr (x1 − M)−1,

we have:

W1(x) = lim
y→x

(

K(y, x) − 1
y − x

)

= W1(
1
x),

and similarly:

Wn(x1, . . . , xn) = Wn(
1
x1, . . . ,

1
xn)

in terms of the correlators in our Definition 2.2. By the remark of Equation
(D.2), the entry Wn(

a1
x1, . . . ,

2
xi, . . . ,

an
xn) can be expressed in terms of the dis-

continuity of Wn(
a1
x1, . . . ,

1
xi, . . . ,

an
xn) when xi crosses the real line.

The n-point correlation functions in the matrix model satisfy Schwinger–
Dyson equations, which are obtained by integration by parts in the matrix
integral—see, e.g. the review [37]. The first Schwinger–Dyson equation is:

W2(x, x) + W1(x)2 − 1
�

V ′(x)W1(x) = EN

[

Tr
V ′(M) − V ′(x)

M − x

]

∈ C[x].

And, for each n ≥ 2, there exist similar equations involving Wn+1, . . . ,W1.
Together with the linear loop equations of Proposition 2.1, they imply the
quadratic loop equations of Proposition 2.2.

The correlators Wn and the matrix kernel K are related by the boson–
fermion correspondence. We have seen that Wn satisfy determinantal formulae
in terms of K. Conversely, we notice that:

det(x1 − M)
det(y1 − M)

= eTr [ln(x1−M)−ln(y1−M)] = e
∫ x
y

Tr (x′1−M)−1 dx′
,

so we have an exponential formula for the matrix kernel in terms of the corre-
lators:

K(y, x) =
1

y − x
exp

(
∑

n≥1

1
n!

∫ x

y

· · ·
∫ x

y

Wn(x′
1, . . . , x

′
n)dx′

1 · · · dx′
n

)

.

This relation is however formal since it is subjected to convergence of the series
in right-hand side.
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D.1.3. Insertion Operator. The formal differential operator:

δx := −�

x

∂

∂t0
−

∞
∑

k=1

k �

xk+1

∂

∂tk
(D.8)

is such that:

δxe−�
−1Tr V (M) = Tr (x1 − M)−1 e−�

−1Tr V (M).

Therefore,

δx ln ZN = W1(x), δxn+1Wn(x1, . . . , xn) = Wn+1(x1, . . . , xn, xn+1).

So, in matrix models, (D.8) realizes the notion of insertion operator of Defini-
tion 2.5.

D.1.4. Asymptotic Expansions. The regime, where N� = t �= 0 is fixed while
N → ∞ and � → 0, is the most interesting for applications of random matrices
and has been extensively studied. For potentials V such that the zeroes of
orthogonal polynomials accumulate on a single segment (the so-called one-cut
regime) and under some extra-technical assumptions, it was proved [2,15,20,
35] that the asymptotic expansion takes the form:

ln ZN − �
−2 ln(�) =

∑

g≥0

�
2g−2 F (g),

Wn(x1, . . . , xn) =
∑

g≥0

�
2g−2+n W (g)

n (x1, . . . , xn),
(D.9)

i.e. the correlators do have an expansion of topological type. The proof in
[2,20] relies on the analysis of the Schwinger–Dyson equation of the matrix
model, that is roughly speaking on the loop equations of Propositions 2.1
and 2.2. Actually, the main task of those works was to prove the existence of
an expansion in 1/N and that Wn ∈ O(N2−n). It is then a famous and early
noticed fact—that can be attributed to [24] and [5]—that the Schwinger–Dyson
equations of hermitian matrix models force the expansion of Wn to have parity
(−1)n, i.e. it is really an expansion in 1/N2. Taking (D.9) as a starting point,
the solution of the loop equations was written for the first time in the form of
Eq. (3.13) in [36] for this 1-hermitian matrix model. It was then realized that
this universal form is relevant beyond the scope of the 1-matrix model, and
even beyond matrix models.

Determinantal formulae are difficult to handle in the � → 0 limit, because
many cancellations can occur in the alternating sum contained in the deter-
minants. Informally put, the loop equation approach takes care of those can-
cellations and is better suited for the asymptotic analysis.

D.2. The 2-Matrix Model

The story is almost the same for the 2-matrix model, but the rank d of the
differential equation can be larger than 2. Consider the 2-matrix integral:

ZN =
∫∫

HN ×HN

dM dM̃ e−�
−1 Tr (V (M)+Ṽ (M̃)−c MM̃),
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where V (M) = t0 +
∑d

k=1 tkMk/k and Ṽ (M) = t̃0 +
∑d̃

k=1 t̃kMk/k are 2
polynomials, called the potentials. ZN is again a Miwa–Jimbo isomonodromic
Tau function [12]. The expectation values of the characteristic polynomials
now form a family of bi-orthogonal polynomials:

pN (x) = EN

[

det(x1 − M)
]

, p̃N (y) = EN

[

det(y1 − M̃)
]

,

with scalar product:
∫

R2
pN (x) p̃L(y) e−�

−1 (V (x)+Ṽ (y)−c xy) dxdy = hNδN,L.

The pN (resp. p̃M ) do satisfy a linear order d̃ (resp. d) isomonodromic ODE.
For instance for ψN (x), we have:

� ∂xΨ(x) = LN (x)Ψ(x), Ψ(x) =

⎛

⎜

⎝

ψN (x) . . .
...

...
ψN−d̃+1(x) . . .

⎞

⎟

⎠ .

The entries in the first column of ΨN (x) are the normalized biorthogonal
polynomials

ψN (x) =
pN (x)√

hN

e−�
−1 V (x),

and the other columns can be expressed in terms of Fourier and Hilbert trans-
forms of the latter, cf. [9]. It is also shown that the tj (resp. t̃j) are isomon-
odromic times for the ODE (D.10) (resp. the analog ODE for Ψ̃N (x)).

Paragraph D.1.2 can be almost repeated here. In particular, it is a non-
trivial result of [7,45] that the determinantal formulae of Sect. D.1.2 for expec-
tation values of ratios of characteristic polynomials of any of the matrices (say
M) hold as well in the 2-matrix model. The only difference is that the expres-
sion of the scalar kernel K(y, x) in terms of ψ and φ is not as simple, but
continues to coincide with the (1, 1) entry of the matrix kernel. Likewise, the
density correlations are determinants of the kernel obtained from K(y, x) by
computing its discontinuity when y crosses the real axis. The result is a gen-
eralization of the Christoffel–Darboux formula, in particular (D.5) does not
hold. The n-point correlators of the matrix M—defined in the matrix model
by Equations (D.6)–(D.7) again—satisfy Schwinger–Dyson equations of degree
d̃ written in [42]. Notice that, if d̃ = 2, the measure for the matrix M̃ is Gauss-
ian so it can be integrated out and we are left with a 1-matrix model, and we
indeed find Schwinger–Dyson equations that are quadratic.

Establishing an all-order asymptotic expansion when N → ∞ is notably
more difficult in the 2-matrix model. A consequence of the general results of
[48,56] is that, for V (M) and Ṽ (M) close enough to Gaussians and c small
enough, the correlators (with respect to M , or with respect to M̃) do have
an asymptotic expansion of topological type (D.9). In any case, if there is an
expansion of topological type in a 2-matrix model, it was then shown in [42]
that the W

(g)
n are computed by the topological recursion of Theorem 3.1. The

strategy of [42] actually consists in showing directly that if one inserts the
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topological expansion in the Schwinger–Dyson equation, after a long algebra,
the 1/N -expanded version of the loop equations of Propositions 2.1 and 2.2 is
implied.
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