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Abstract

Motivation: From image stacks to computational models, processing digital representations of

neuronal morphologies is essential to neuroscientific research. Workflows involve various techni-

ques and tools, leading in certain cases to convoluted and fragmented pipelines. The existence of

an integrated, extensible and free framework for processing, analysis and visualization of those

morphologies is a challenge that is still largely unfulfilled.

Results: We present NeuroMorphoVis, an interactive, extensible and cross-platform framework for

building, visualizing and analyzing digital reconstructions of neuronal morphology skeletons

extracted from microscopy stacks. Our framework is capable of detecting and repairing tracing

artifacts, allowing the generation of high fidelity surface meshes and high resolution volumetric

models for simulation and in silico imaging studies. The applicability of NeuroMorphoVis is dem-

onstrated with two case studies. The first simulates the construction of three-dimensional profiles

of neuronal somata and the other highlights how the framework is leveraged to create volumetric

models of neuronal circuits for simulating different types of in vitro imaging experiments.

Availability and implementation: The source code and documentation are freely available on

https://github.com/BlueBrain/NeuroMorphoVis under the GNU public license. The morphological

analysis, visualization and surface meshing are implemented as an extensible Python API

(Application Programming Interface) based on Blender, and the volume reconstruction and ana-

lysis code is written in Cþþ and parallelized using OpenMP. The framework features are accessible

from a user-friendly GUI (Graphical User Interface) and a rich CLI (Command Line Interface).

Contact: felix.schuermann@epfl.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The study of the morphology of neuronal cells, that is, their shape,

is fundamental to reveal some of the key structural and functional

aspects of the brain. Not surprisingly, the pioneering work of

Ramón y Cajal at the dawn of modern neuroscience focused on cata-

loging and classifying the intricate cell shapes that Golgi prepara-

tions make visible under the microscope, an effort that has not

stopped since then (Grant, 2007). Cell morphology influences cell’s

function and the network topology in several ways. Cross sectional

and surface areas determine intrinsic electrical properties of the

excitable membrane of neurons (Segev and Rall, 1998). The shapes

of dendritic and axonal arbors affect how cells process information

at the cell and circuit levels. At the cell level, the firing pattern of

cells is influenced by the shape of the dendritic tree (Van Ooyen

et al., 2002; Vetter et al., 2001) and the distribution of synapses

affects how information is integrated by the cell (Destexhe and Paré,

1999; Häusser et al., 2000; Jarsky et al., 2005). At a smaller scale,

how the cell membrane is shaped at dendritic spines of excitatory

neurons has a direct effect on the properties of synaptic transmission

due to compartmentalization effects (Adrian et al., 2014). At the
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circuit level, morphologies by themselves can be used to predict the

characterization of synaptic pathways (Reimann et al., 2015). In

order to build computational models that would help advancing our

understanding of how the brain computes is therefore subject to

obtaining high fidelity digital representations of the cell morph-

ology. We address this concern and present a high level framework

for visualization, analysis and repair of neuronal morphologies that

are reconstructed from microscopy stacks.

1.1 Motivation and relevant work
Neuronal morphologies are digitally reconstructed from image

stacks either with manual, semi-automated or fully automated meth-

ods. The reconstruction process includes preparing and staining the

tissue sample, acquiring the images and finally tracing the neurites.

The end result of this process is a hierarchical skeletal representation

of the branching structure of the neurite arborization described as a

set of connected points with their cross sectional radii. Each neurite

in the skeleton is composed of a set of non-bifurcating sections,

where each section is represented by a list of segments and each seg-

ment is defined by two connected points. The reconstructed morph-

ology might contain some additional information such as soma (or

cell body) profiles or markers for spine and bouton locations. For a

comprehensive review of the existing tracing techniques, the reader

is referred to previous surveys (Meijering, 2010; Parekh and Ascoli,

2013). Despite the progress made thanks to the DIADEM challenge

(Brown et al., 2011), many algorithms still require users to provide

some global information for accurate reconstructions. In any case,

the result of automatic algorithms needs human validation.

Implementations of some algorithms are available in the form of

open source or freeware tools such as VAA3D (Peng et al., 2010),

FARSIGHT (Luisi et al., 2011), Neuromantic (Myatt et al., 2012)

and Simple Neurite Tracer (Longair et al., 2011). Commercial solu-

tions for neuronal tracing also exist, such as the AutoNeuron exten-

sion for Neurolucida (Glaser and Glaser, 1990), Filament Tracer

from Imaris and Aivia. These tools usually provide visualization

capabilities and interactive methods to edit the skeleton paths and

correct errors. It is also quite common to post-process reconstruc-

tions obtained from these tools to further fix different types of prob-

lems for which the tools do not provide adequate solutions, such as

sample preparation artifacts (e.g. tissue shrinkage). Post-processing

is also critical when the morphologies used in a study come from a

publicly available database (Ascoli et al., 2007), as there are no

guarantees about the quality of the data.

Morphometric analysis tries to derive representative features of

the full cell or individual structures such as total dendritic length,

neurite count, maximum and average branching order of terminal

points and spine length distribution, to name a few. Classification of

cells based on their morphologies is another common analysis. Some

data used in analysis is estimated directly from the image stacks

instead of using skeletal representations or segmentation of finer

structures. Tools specific for performing morphometric analysis are

L-measure (Scorcioni et al., 2008), which provides extensive quanti-

tative analysis, but relies on other tools for visualization purposes;

NeurphologyJ (Ho et al., 2011), which provides a tracing algorithm

customized to the type of analysis it performs; and NeuroMorpho

(Jorstad et al., 2015), which allows basic analysis of areas and vol-

umes of segmented surfaces. Additionally, reconstructions of the cell

membrane using surface or volume representations are interesting

for performing other morphometric analysis (such as estimating the

area and volume of somata and spines) and also for creating models

essential for specific types of simulations or in silico brain imaging

(Abdellah, 2017). When mesh membrane models are not available,

deriving a mesh representation of the soma and neurites directly

from the morphological skeleton is desirable as well. Different algo-

rithms have been developed to generate surface and volume repre-

sentations of the membrane. Some techniques derive surface

representations of the full membrane as a single polygonal mesh

using a spherical approximation for the soma (Lasserre et al., 2012)

or more elaborate methods to deal with the lack of information

about the actual shape (Brito et al., 2013). The problem of voxeliz-

ing surface models at high resolution and full cell extent has been

addressed by a different technique (Abdellah et al., 2017b), as none

of the previous algorithms can guarantee the watertightness required

for direct voxelization of the meshes. A similar challenge to

DIADEM has been proposed for the segmentation of ultrastructures

from electron-microscopy image stacks (Arganda-Carreras et al.,

2015).

Multi-compartment neuron models also take morphologies as in-

put. For such models, dendrites are often too detailed compared to

the space resolution required by the cable equations, and morpholo-

gies are post-processed to collapse multiple consecutive segments

into electrically equivalent cylinders. Tools based on image process-

ing libraries (e.g. ImageJ) allow plenty of extensibility, but the

graphical interfaces they provide are less user friendly than commer-

cial and more visualization oriented tools. Some open-source frame-

works such as Vaa3D allow users to write their custom plug-ins in

Cþþ. Plug-ins for commercial scientific visualization frameworks

have a lot of potential for integration with additional extensions, at

the cost of depending on a proprietary solution. Regardless of their

technical merits, an important limitation of commercial tools speci-

alized in neuronal morphology reconstruction and analysis, apart

from their price, is the lack of a programming interface for writing

user extensions in the form of plug-ins.

The existence of so many different, but connected processes

highlights the potential utility of a framework that allows tracing,

validation, editing, surface and volume reconstruction, analysis and

visualization of neuronal morphologies in a integrated and exten-

sible approach to foster collaboration between research groups

through code and data sharing. In particular, to the best of our

knowledge, no tool integrates morphology visualization, analysis,

mesh reconstructions and voxelization. In this paper, we propose a

framework that tries to fill this gap. This framework is designed as a

Blender (Blender, 2016) add-on that can be loaded into its GUI and

can also be called from the command line for batch and distributed

processing. Blender is a free and open-source toolset that features

several powerful engines for modeling, physics simulation and inter-

active rendering.

1.2 Contributions
We present NeuroMorphoVis: a light, efficient and user friendly

framework dedicated to neuroscientific research with the following

features:

1. Visualization, analysis and automated repair of digitally recon-

structed neuronal morphology skeletons from optical micros-

copy stacks.

2. Building highly realistic three-dimensional neuronal somata on a

physically plausible basis.

3. Creating high fidelity polygonal mesh models of neurons using

the repaired morphology skeletons.

4. Creating high resolution volumetric models of neurons that ex-

press their optical and spectroscopic characteristics.
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2 Architecture

NeuroMorphoVis is composed of five principal modules for (i) data

handling, (ii) simulation of three-dimensional somata profiles, (iii)

building, repair and analysis of morphological skeletons, (iv) cre-

ation of polygonal surface meshes and (v) reconstruction of volu-

metric models that reflect the geometrical description of the

skeletons. A high level overview of the architecture of the frame-

work is illustrated in Figure 1 and a screen shot of its GUI is given in

the Supplementary Material (Supplementary Fig. S1).

2.1 Data handling
The framework is capable of loading morphological skeletons stored

in the standard file format (.swc) and a custom one (.h5) as well.

The users can also load morphologies associated with a certain neu-

ron identifier (or a gid) in a circuit or even an entire cell target that

consists of a group of unique neurons. To unify the data processing

operations, the loaded skeletons are rearranged in a unifying struc-

ture that facilitates accessing the different components of the morph-

ology. We perform a set of preprocessing operations and filters to

extract certain information necessary for the skeleton building pro-

cess and also to repair morphologies containing artifacts.

2.2 Morphology skeleton repair
Due to tracing errors arising during the digitization process, neuron-

al skeletons are usually reconstructed with different types of artifacts

(Conde-Sousa et al., 2017; Myatt et al., 2012; Rodriguez et al.,

2003). These artifacts can potentially introduce serious issues

and limitations either for simulation (Hernando et al., 2012;

Ramaswamy et al., 2015) or meshing (Brito et al., 2013; Lasserre

et al., 2012) applications. Our framework is integrated with a mod-

ule for detecting and repairing various artifacts that have been

reported in the literature or observed by our facility members includ-

ing neuroanatomists, in silico neuroscientists and also visualization

experts. The list is by no means exhaustive, however, it is extended

whenever we receive new tickets for suspicious artifacts or get

acquainted by others published in recent research studies. We man-

aged to find plausible and efficient solutions to repair the majority

of these artifacts, for example:

1. When two neurites or more intersect with each other at their first

order sections. We determine the neurite with the largest diam-

eter and consider it the principal one emanating from the soma.

The other ones are either connected to the principal neurite or

directly extended to the soma origin.

2. When there is an intersection between a neurite and the soma,

i.e. some samples that belong to this neurite are located within

the extent of the soma. In this case, the intersecting samples are

either slightly shifted off axis or totally removed from the branch

according to their position.

3. When a neurite is disconnected from the soma. This issue

happens when the first segment of a neurite is relatively (with

respect to the other neurites and other neurons with the same

morphological type) located far away from the soma. A reliable

solution to this artifact is adding an auxiliary sample between

the first segment and the origin of the soma. The location of this

sample is set based on the mean radius of the soma and its direc-

tion, otherwise the reconstructed soma profile can be totally

deformed.

4. When the radius of a sample located on the initial segment of a

bifurcating branch is larger than that of the last segment of the

parent.

A list of all the artifacts the framework could handle are detailed

in the documentation. For some other artifacts, which are consid-

ered less important, we could not propose convenient solutions to

repair them. For instance, when a branch is intersecting with itself.

A possible fix to this artifact requires spatial indexing to localize

all the self-intersecting branches and then shift them slightly out-

wards. However, this process might be time consuming for a neuron

with complex arborization. All the artifacts detected during the

skeleton building process are reported and repaired if requested by

the user.

Fig. 1. A high level overview of NeuroMorphoVis workflow. The framework

imports morphological skeletons from standard file formats and applies a set

of predefined filters to repair the skeletons from any tracing artifacts. The

user can use the morphometric analysis tools for various purposes, for

example, to compute the number of segments per branch or the average seg-

ment length per section. The morphology skeleton is converted into a three-

dimensional geometric representation based on a specific method selected

by the user for visualization and certain analysis purposes. During the inter-

active visualization session, the user can manually apply other repairs, if

required, and perform other visual analytics tasks. Afterwards, the repaired

skeleton is used to reconstruct a three-dimensional surface mesh using piece-

wise watertight meshing (Abdellah et al., 2017b). The resulting mesh can be

exported into various file formats for applying simulation data on a vertex

basis. This surface mesh is converted into a volumetric model tagged with

user-defined optical properties using conservative voxelization. The volume

can be exported into common file formats including binary and byte vol-

umes. All the tasks can be executed from a user-friendly graphical interface

(GUI) or via command-line interface (CLI) and batch scripts for large scale

analysis
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2.3 Soma profile reconstruction
Due to the fuzzy definition of the soma, the relevant information

contained in generic morphology skeletons that describe the soma is

usually insufficient to reconstruct a realistic representation of it

(Brito et al., 2013; Luengo-Sanchez et al., 2015). In those morpholo-

gies, the soma is merely represented by a centroid, a radius that

approximates the average distance between this centroid and the ini-

tial segments of each neurite, and a projective profile that is traced

along a two-dimensional plane (Abdellah et al., 2017b; Halavi

et al., 2008; Lasserre et al., 2012). In certain studies, the soma is not

modeled based on the reported data in the morphological skeleton,

but rather represented by an implicit surface for convenience

(Ostroumov, 2007). Therefore, the reconstruction of even an ap-

proximation of the soma contour is quite challenging. Recent meth-

ods have been presented to provide a univocal definition of the

somata, allowing automated characterization of neurons and accur-

ate segmentation of three-dimensional somata profiles measured at

multiple depths of fields (Fig. 2) during the tracing procedure

(Luengo-Sanchez et al., 2015; Pawelzik et al., 2002). However, this

approach can be applied only in advanced reconstructions (Abdellah

et al., 2017b).

The soma reconstruction module is added to allow the gener-

ation of highly plausible somata profiles relying on their two-

dimensional contours and the starting locations of their correspond-

ing neurites. This process simulates the progressive reconstruction of

the soma using Hooke’s law and mass spring models (Nealen et al.,

2006; Terzopoulos et al., 1987). The idea has been adapted from a

recent study (Brito et al., 2013) and implemented in Blender

(Blender, 2016) using its physics engine (Abdellah et al., 2017b).

However, the source code of both implementations was not released

publicly. We extended the Blender-based implementation and inte-

grated this module into our framework to provide a convenient tool

to validate and compare the somata obtained by segmenting a

microscopic stack with the ones extracted from three-dimensional

contours. Figure 3 illustrates the process of reconstructing a realistic

soma profile from a traditional morphology skeleton, and the pro-

cedure is demonstrated in the Supplementary Video V1.

2.4 Morphological skeleton visualization and analysis
Standard skeletons reconstructed with optical microscopes are com-

posed of labeled neurites (axon, basal dendrites and apical dendrite)

in addition to the soma, where each neurite is defined by a set of

samples that describe their positions and radii in three-dimensional

space using a vector-based format (Stepanyants and Chklovskii,

2005). Reconstructed skeletons from electron microscopes are prin-

cipally stored in volumetric format and segmented later to extract a

mesh-based representation for each component (Jorstad et al.,

2015). Each neurite is structured into a series of sections, each repre-

sents a set of connected non-bifurcating segments and each segment

is composed of two adjacent samples (Abdellah et al., 2017b).

Visualizing imported skeletons directly from morphology files

seems to be a straightforward task if we connect the samples to-

gether using poly-lines. However, gleaning insights from these skele-

tons requires more advanced techniques to highlight certain

structural aspects that cannot be revealed from merely connecting

the samples. Therefore, we implemented four different algorithms,

illustrated in Figure 4, to visualize the various structures of the mor-

phologies either in connected or disconnected styles. The discon-

nected style is normally used for analysis purposes and the

connected one is more suitable for investigating and validating the

structure of the entire skeleton following to its reconstruction. It will

also be utilized later for creating a polygonal surface mesh that

reflects the membrane of the neuron.

2.4.1 Disconnected segments

This style is used to visually analyze the distribution of the segments

along a certain section or even an entire branch. Each segment is

represented by an independent tapered cylinder whose length is

equivalent to the distance between the two samples of the segment.

The radius of each side of the cylinder is set to that of the corre-

sponding sample. Two coloring schemes are supported to shade the

segments. The first uses alternating colors (black and white) across

the whole morphology to visualize the segments distribution, shown

in Figure 4A. The default scheme, Figure 4B, applies user-defined

colors to each component of the morphology.

2.4.2 Disconnected sections

We also implemented a visualization style that draws a set of con-

nected segments as a single independent section. All the samples that

belong to each section in the morphology are converted to a poly-

line, whose cross section is defined by a two-dimensional bevel ob-

ject that approximates a circle. The initial radius of the bevel object

is set to one, but the radius of the polyline at each particular sample

is multiplied by the radius of the sample itself. With this style,

Fig. 2. (A) An overlay of multiple two-dimensional contours of a neocortical

pyramidal neuron reconstructed automatically at different depth of fields

from a brightfield microscopy stack. (B) A side view of the profiles along the

optical axis. (C) The three-dimensional profile of the soma reconstructed

from the contours. A smoothing filter is applied to the generated surface to

enhance its appearance. The reconstruction and renderings were created

with Neurolucida (Glaser and Glaser, 1990)

Fig. 3. Accurate reconstruction of a three-dimensional profile of a neocortical

neuronal morphology using soft body physics, mass-spring models and a nu-

merical solution of Hooke’s law. (A) The soma is initially represented by an

ico-sphere. (B) The initial segments of each branch are identified and con-

nected to the origin using an auxiliary sample whose radius is set to zero. On

the surface of the sphere, the vertices that correspond to each branch are

merged together in a single face and reshaped into a circle with the same ra-

dius of the initial sample of the branch. (C) The faces are pulled towards the

branches and aligned with the segments that connect their initial segments

with the origin. The soft body object is converted into a solid mesh. (D) An

orthographic rendering of the front, side and top views of the reconstructed

soma
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illustrated in Figure 4C, we analyze the number of segments per spe-

cific section selected by the user and the average segment length.

Moreover, we added the capability to draw joint spheres between

the different sections (Fig. 4D) allowing to compare our skeletons

with those created by similar tools, such as neuroConstruct (Gleeson

et al., 2007).

2.4.3 Connected sections

Similar to the previous one, we have added another style for draw-

ing the skeleton as a set of connected sections along each branch, as

shown in Figure 4E. This style is essential for manual analysis and

repair of the branches, where the user can select a specific branch,

switch to the edit mode and manipulate the positions or radii of its

samples.

2.4.4 Full morphology

In this style, each neurite is drawn as a unique object generated by

applying a joint operator on all of its sections. For each neurite, we

have added an additional sample at the origin to connect its initial

segment to the center of the soma. We used two models of the soma:

a symbolic representation by a sphere whose radius is equivalent

to the mean radius extracted from the skeleton (Fig. 4F) or by a

plausible three-dimensional profile reconstructed as shown earlier

(Fig. 4G). This style allows building watertight polygonal mesh

models that can represent the membrane of the neuron, and conse-

quently creating high fidelity volumetric models. Other features of

this module are demonstrated in the Supplementary Video V2.

2.5 Neuronal mesh reconstruction
To enrich the functionality of our framework beyond visualizing

morphological skeletons, we integrated another module to exploit

the repaired skeletons for creating high quality polygonal meshes

that can accurately represent the surface of neuronal membranes.

This module extends a recent meshing algorithm (Abdellah et al.,

2017b) capable of reconstructing piecewise watertight meshes that

can be employed to visualize detailed electrophysiological activities

obtained from voltage dynamics simulations, where each compart-

ment is mapped to a specific vertex along the mesh (Hernando et al.,

2012; Lasserre et al., 2012; Markram et al., 2015).

In summary, a surface mesh representing the whole neuron is

created in four basic steps: (i) reconstructing a distinct mesh for the

soma, (ii) repairing the morphological skeleton and building a tube

representation, as shown in Figure 4G, (iii) meshing each component

of the tube model as an individual object, (iv) connecting all the

meshes into a single mesh object and optionally (v) decimating this

mesh object if desired. The users can adjust the tessellation level of

the mesh for optimization purposes. We have used an effective tes-

sellation algorithm that allows the reduction of the number of poly-

gons by 90% and preserving the extent (or the intracellular volume

of the neuron). This tessellation level is obtained by comparing the

spatial distributions of high resolution volumes created from a refer-

ence non-tessellated mesh and other meshes generated at different

tessellation levels, shown in Figure 5.

Due to manual tracing artifacts, traditional skeletons are nor-

mally reconstructed with hard edges between the different samples.

This issue reduces the realism of the generated meshes, in particular

for close up renderings. To remove these artifacts, we introduced an

option to apply a vertex smoothing filter that smooths those hard

edges while preserving the geometry of the rest of the skeleton.

Figure 6 shows a comparison between two meshes created with

and without smoothing. Finally, the reconstructed meshes can be

exported into different standard file formats including the Stanford

triangle format (.ply), Wavefront object format (.obj), stereolithog-

raphy fromat (.stl) and as a blender file (.blend) for interactive visu-

alization and analysis purposes using other tools in our software

ecosystem. Video V3 demonstrates the process of building a high fi-

delity surface mesh of a neuron from its skeleton.

Fig. 4. We implemented different algorithms for visualizing neuronal morphologies. The skeleton is visualized as a set of disconnected segments shaded in alter-

nating colors (black and white) in (A) and using the same colors for each component in (B), where each segment is represented by a tapered cylinder along its

two samples. (C) The skeleton is visualized as a set of disconnected sections, where each is drawn as a single polyline. (D) For comparative studies, we imple-

mented a similar method to neuroConstruct where the different sections are joint using uniform spheres (in yellow) (Gleeson et al., 2007). (E) The skeleton is

visualized as a set of connected sections, where all the sections that belong to the same branch are drawn as a single polyline object. (F) The skeleton is visualized

as a joint object where all the neurites are connected to the soma that is represented by a uniform sphere whose radius is set to the mean of the soma. (G) The

soma is reconstructed on a physically plausible basis and connected to all the arbors, and the entire morphological skeleton is integrated into a single object. In

(B–G), the soma, basal dendrites and axon are colored in orange, red and light blue, respectively
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2.6 Volume reconstruction of neuronal tissue
Volumetric models of neuronal tissue are crucial for performing spe-

cific neuroscientific analysis studies (Favre-Bulle et al., 2015; Jarvis

et al., 2017; Nikolic et al., 2013) and in silico experiments

(Abdellah et al., 2015, 2017a; Markram et al., 2015). They can be

also exploited for comparative morphometric studies for validating

reconstructed morphologies in volumetric form from microscopy

stacks with respect to the ones extracted from vector-based repre-

sentation. Contrary to geometric ones, those volumetric models can

express the intrinsic optical properties of the neuronal tissue, mak-

ing it possible to accurately simulate light interaction with them

using the radiative transfer equation (Pharr and Humphreys, 2010).

Creating volumetric representations of neurons from raw morpho-

logical skeletons is a challenging task, in particular for large scale

neuronal circuits that can contain few hundreds of thousands of

neurons or more. A recent solution was presented to accomplish this

challenging mission (Abdellah et al., 2017b), allowing the recon-

struction of large scale volumetric models of neuronal tissue. This

solution was adopted, improved and integrated into our framework

as a module that can create volumes of individual components

such as spines, neurons (as shown in Fig. 7) or even a high density

neuronal circuit containing thousands of neurons (Supplementary

Fig. S5). In case of neurons, morphology skeletons are repaired and

converted into piecewise watertight meshes, where each section of

the morphology is represented by a watertight mesh with zero

non-manifold vertices and edges. The volumes are created from their

corresponding surface meshes in two basic steps. The first, called

surface voxelization, uses conservative rasterization (Hasselgren

et al., 2005) to generate volumetric shells that reflect the membrane

of the mesh models. The intracellular space of the volumes are filled

using solid voxelization techniques, for example the recursive eight-

way flood-filling algorithm (Burtsev and Kuzmin, 1993). The recon-

structed volumes can be stored in binary (one bit per voxel) and byte

(8 bits per voxel) formats. The byte volumes are utilized to annotate

different structures in the volume either with multiple optical prop-

erties, for example for different regions in the brain (Azimipour

et al., 2014), or by distinct spectroscopic characteristics to represent

different fluorescent dyes expressing the neurons (Swartling et al.,

2003).

2.7 Software design and interface
Our framework is written in Python and Cþþ. The data handling,

morphology visualization, repair and mesh reconstruction modules

in addition to the rendering operations are based on version 2.78c of

the Blender API and integrated as an add-on that can be loaded

from the GUI. The voxelization code is written in Cþþ and parallel-

ized using OpenMP, but the functionality is exposed via the user

interface to facilitate generating volume models directly with a sin-

gle click. The framework is designed to run on large scale visualiza-

tion clusters using distributed computing nodes and multi core CPUs

based on Slurm (Yoo et al., 2003). We added support to run the

framework from a CLI to make it easy to link it to web interfaces.

The tool does not have any specific hardware requirements in gen-

eral, but the resolution of reconstructed neuronal volumes will be

limited by the memory size.

3 Results and discussion

We designed a set of use cases to demonstrate the functionality of

each module in the framework using the morphologies of a group of

neurons reconstructed from the cortex of a 2-week-old rat. We only

report two use cases in this section and present further details on the

other ones in the online documentation.

3.1 Visual analysis of somata parametrization
The effect of varying the parameters of the soma reconstruction

module, mainly the number of soft body subdivisions and stiffness,

is visually demonstrated on a layer V pyramidal neuron. The num-

ber of subdivisions was varied between 2 and 6, while the stiffness

value was set to 0.001, 0.05, 0.1, 0.5 and 1.0. The number of itera-

tions (or steps) used to run the soft body simulation is fixed to 100

to guarantee convergence. The objective of this case study is to allow

the neuroanatomists fine-tuning the simulation parameters until

obtaining the most plausible soma profile. A subset of the results

are illustrated in Figure 8, whereas the entire matrix that summa-

rizes all the combinations is provided in the Supplementary Material

(Supplementary Fig. S2).

3.2 Neocortical volume reconstruction for in silico

imaging
Another case study that highlights the significance of

NeuroMorphoVis in computational neuroscience studies is modeling

light interaction with digital models of different brain structures to

image the brain in silico, i.e. to simulate tissue imaging with optical

microscopes. This simulation requires the generation of highly real-

istic neuronal tissue models that characterize their intrinsic optical

Fig. 5. Wireframe polygonal mesh models of a neocortical neuron created at

(A) 100%, (B) 50%, (C) 25% and (D) 10% tessellation levels. Lower level-of-de-

tail meshes are essential for large scale simulation experiments, making it

possible to load and visualize a massive amount of neurons on-the-fly and

also in volumetric studies where multiple triangles along the surface span the

same extent of a single voxel

Fig. 6. The effect of using vertex smoothing filters to improve the realism of

the reconstructed neuronal mesh models. The shown meshes are generated

without (top row) and with (bottom row) smoothing
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properties, allowing the simulation to be performed on a bio-

physically plausible basis. This case study demonstrates the func-

tionality of the entire pipeline of our framework starting from

loading a group of neurons from a circuit and until the reconstruc-

tion of large scale annotated volumes that express the optical prop-

erties of brain tissue (Azimipour et al., 2014) and also the intrinsic

spectroscopic characteristics of any fluorescent proteins expressed in

it. We performed three in silico experiments using a single neuron, a

group of few pyramidal neurons and a fraction of 10% of a meso-

scale circuit that is composed of �100 000 neurons reflecting a digit-

al slice extracted from the somatosensory cortex of rat brain

(Supplementary Fig. S3). The goal of the first experiment is to evalu-

ate and visualize the light distribution within certain tissue region

for a specific type of microscopy illumination with varying intensity

and wavelength. The result of this experiment is illustrated in

Figure 9A. The second experiment simulates the imaging of a group

of layer V pyramidal neurons stained with a standard Golgi’s

method using brightfield microscopy, see Figure 9B. The intracellu-

lar space of all the neurons of interest (represented by a specific

target in the circuit) were annotated with the optical properties of

Golgi’s stain. The last experiment investigates the distribution of

neurons tagged with various fluorescent dyes (with different spectro-

scopic characteristics) that are layer-specific by simulating tissue

imaging with widefield fluorescent microscopy. This simulation is

used to validate several structural and functional aspects of the

circuit, for example, how the fluorescent tags are distributed in the

circuit and at which excitation wavelength they can fluoresce or

emit fluorescent light. The result of this experiment is shown in

Figure 9C. It can also be used to design experimental setups for

in vitro techniques to refine the input used for data driven modeling.

3.3 Discussion and user feedback
Being an open-source tool written in Python makes our framework

accessible to computational neuroscientists, allowing them imple-

menting their algorithms and ideas and share their results in a col-

laborative way with other teams in our lab or even with external

collaborators and interested users. We believe that the add-on design

will motivate neuroanatomists with minimal programming know-

ledge to use the framework in their daily analysis work. The pre-

sented use cases have shown an integration of features that do not

exist in other frameworks that only focus on morphology analysis or

visualization.

To assess the impact and usability of our framework, it was dem-

onstrated to our lab members during an all-hands meeting. This

demonstration was followed by an extensive discussion with a group

of >10 domain experts including neuroscientists, neuroinformati-

cians and visualization specialists. We prepared a set of morpholo-

gies with various types of artifacts and invited the experts to use our

tool to visualize these morphologies and report their feedback in

Fig. 7. The sequence followed to reconstruct a solid volumetric model of a neocortical neuron from its morphological skeleton. (A) A geometric representation of

the neurites of the morphology is extracted. (B) The three-dimensional profile of the soma is reconstructed on a physically plausible basis. (C) The different com-

ponents of the neuron (axon, dendrites and soma) are grouped together into a single connected polygonal surface mesh that is piecewise watertight. (D) A volu-

metric shell of the polygonal mesh is obtained using conservative rasterization and surface voxelization. (E) The intracellular space of the neuron is filled and

annotated with user-specified optical properties based on the flood-filling algorithm

Fig. 8. Three-dimensional mesh models simulating the variations of the soma

of a layer V pyramidal neuron using different values for number of soft body

subdivisions and stiffness. The simulation parameters are as follows (number

of subdivisions, stiffnesses): (A: 2, 0.05), (B: 3, 0.05), (C: 2, 0.5), (D: 4, 0.1),

(E: 4, 0.5) and (F: 6, 0.5)
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terms of its functionality, user-friendliness, improvements and fea-

ture requests. The interface design was reported to be nice and

friendly for domain experts who are familiar with Blender. Experts

with limited Blender experience had to reuse the framework few

times to get used to it before reporting their feedback. In general, the

experts provided a positive feedback. Neuroinformaticians working

on morphology synthesis and analysis pointed out that the different

methods we have used to visualize the skeletons (shown in Fig. 4)

would be extremely helpful to verify the structural and connectivity

issues between the different sections along the arbors. The integrated

rendering features would allow them creating high resolution visuals

that would improve their analysis workflow. The principal idea that

was quite exciting for all the domain experts was the ability to visu-

alize, analyze, report broken morphologies and at the end create sci-

entific illustrations and renderings that can be used for their reports

and publications in an automated way. The visualization experts

indicated that the API provided by the framework can be used to de-

sign and integrate novel methods for visualizing and rendering the

repaired morphologies and consequently creating highly artistic vis-

uals for their media production. We have received few feature

requests including (i) reading morphologies in ASCII file format, (ii)

adding a convenient help tooltip for every feature in the user inter-

face to avoid referring to the online documentation repeatedly, (iii)

adding support to render the difference between repaired and unre-

paired morphologies and (iv) building a web interface, making it

possible to load the framework from a web browser.

4 Conclusion and future work

NeuroMorphoVis is an extensible, platform-independent and free

framework dedicated to neuroscience research, allowing visual ana-

lysis of neuronal morphology skeletons. The framework provides a

set of various algorithms and modules for visualizing the different

components of a morphology skeleton. It is also capable of repairing

skeletal artifacts and constructing high fidelity surface meshes and

annotated volumetric models of neurons from their raw skeletons.

The framework is integrated in Blender as an add-on with a user-

friendly GUI, providing accessibility to neuroscientists, either exper-

imentalists or theoreticians, with limited programming knowledge.

It can be also executed from a rich CLI that accepts configuration

files. The functionality of the framework is demonstrated with a set

of case studies for constructing three-dimensional soma profiles and

simulating the imaging of neocortical neurons with brightfield and

fluorescence microscopy.

Software and data availability

The code is available under the GNU General Public License at

https://github.com/BlueBrain/NeuroMorphoVis. The datasets includ-

ing morphology files, surface meshes and reconstructed volumes used

and created in this paper are available on request. Further information

is provided in the Supplementary Material. NeuroMorphoVis is

designed as a python add-on within the Blender open source software.

The add-on depends only on Blender and the HDF5 library.
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