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Abstract

Modern structural biology still draws the vast majority of information from crystallography, a tech-

nique where the objects being investigated are embedded in a crystal lattice. Given the complexity

and variety of those objects, it becomes fundamental to computationally assess which of the inter-

faces in the lattice are biologically relevant and which are simply crystal contacts. Since the

mid-1990s, several approaches have been applied to obtain high-accuracy classification of crystal

contacts and biological protein–protein interfaces. This review provides an overview of the con-

cepts and main approaches to protein interface classification: thermodynamic estimation of inter-

face stability, evolutionary approaches based on conservation of interface residues, and

co-occurrence of the interface across different crystal forms. Among the three categories, evolu-

tionary approaches offer the strongest promise for improvement, thanks to the incessant growth in

sequence knowledge. Importantly, protein interface classification algorithms can also be used on

multimeric structures obtained using other high-resolution techniques or for protein assembly de-

sign or validation purposes. A key issue linked to protein interface classification is the identification

of the biological assembly of a crystal structure and the analysis of its symmetry. Here, we high-

light the most important concepts and problems to be overcome in assembly prediction. Over the

next few years, tools and concepts of interface classification will probably become more frequently

used and integrated in several areas of structural biology and structural bioinformatics. Among the

main challenges for the future are better addressing of weak interfaces and the application of inter-

face classification concepts to prediction problems like protein–protein docking.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: guido.capitani@psi.ch

1 Introduction

Contemporary structural biology is a mature yet dynamic field,

where well-established techniques like protein crystallography and

nuclear magnetic resonance coexist and cross-fertilize with emerging

or re-emerging ones, such as electron diffraction or single-particle

electron cryomicroscopy. Thanks to advances in detectors and soft-

ware, this latter technique has broken resolution barriers that were

once thought unassailable (Bartesaghi et al., 2015; Campbell et al.,
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2015; Nogales and Scheres, 2015). The bulk of biomacromolecular

structural information; however, still comes from protein crystallog-

raphy, which accounts for 89% of the entries in the Protein Data

Bank (PDB) (Berman, 2000) as of June 2015. A key feature of the

crystal structure of biomacromolecules is that the molecules are

embedded in a crystal lattice, containing several non-biological

interfaces called crystal packing contacts (or, briefly, crystal con-

tacts), which are often indistinguishable by crystallographic means

from any biological interface the protein may possess (Fig. 1). With

the increasing complexity of biomacromolecular structures, the

interface problem—correctly classifying all contacts in a crystal lat-

tice as biologically relevant or crystal contact—has become more

frequent and important. Starting in the mid-1990s, several computa-

tional approaches, based on a variety of concepts, have been de-

veloped to tackle this ‘interface classification problem’. The number

and diversity of the scientific contributions in this area are now large

enough to constitute a recognized topic in structural biology and

structural bioinformatics. This review aims to provide an overview

of the protein interface classification problem, as well as a historical

perspective of the research in this area, of its applications and of the

main perspectives and challenges for the future.

2 Determining and annotating the oligomeric
state of proteins

Experimentally determining the oligomeric state of a protein in solution

can be a difficult task. The determination can be carried out by using a

range of biophysical techniques with various degrees of applicability,

accuracy and resolution. A non-exhaustive list of such techniques is

given in Supplementary Table S1. Particularly challenging is the case of

detergent-solubilized transmembrane proteins (TMPs), where the pres-

ence of the detergent interferes with the measurements and special

measures have to be taken to achieve an accurate molecular mass deter-

mination. In many occasions, the outcome of a particular technique

might not be conclusive enough and validation by different techniques

is desirable. An inherent difficulty with many of these techniques is

their limited accuracy in molecular mass determination. At the same

time, many of them will not provide the precise location of the biolo-

gical interfaces, but rather just a global stoichiometry or an approxi-

mate idea of the arrangement of molecules. Not infrequently, in the

end, linking these experimental data to the interfaces observed in a

crystal structure can still lead to ambiguities.

Crystallographers are requested upon depositing a new structure

to define the biological assembly, with what they believe to be the

most likely solution state of the molecule or complex. The PDB

stores these ‘biological units’ in the pdbx_struct_assembly category

of the mmCIF dictionary (Westbrook and Bourne, 2000) (corres-

ponding to REMARK 350 of the PDB file format) and shows them

prominently in their websites (Rose et al., 2011). However, due to

missing or ambiguous experimental data and to mistakes during

data deposition, these manual annotations are not always reliable.

Estimates of the error rate in biological unit annotation in the PDB

indicate that the problem is not negligible: Levy found errors in

14.4% of biological units (Levy, 2007), while a study of all protein–

protein contacts in the PDB (Baskaran et al., 2014) reported a lower

bound of 6.6% of misannotated protein interfaces. In recent years,

two independent efforts addressed these difficulties by providing

community-based annotation platforms for quaternary structure:

PiQSi (Levy, 2007) and PDBWiki (Stehr et al., 2010).

An additional difficulty related to the oligomeric state of a pro-

tein is the fact that the complexes exist in an equilibrium, character-

ized by a certain dissociation constant Kd, with values typically in

the nanomolar range for strong interactions and in the micromolar

or even millimolar range for very weak ones (Ali and Imperiali,

2005). It is important to note that the weakest complexes have free

energies of dissociation comparable to those of crystal lattice con-

tacts, so crystallography may not be able to capture them in some

cases (Krissinel, 2010). The stability and oligomeric state of com-

plexes is at the same time influenced by the environmental condi-

tions, like pH, ionic strength or temperature. A well-studied

example is GAD1 from Arabidopsis thaliana, which is a hexamer at

low pH (below 6.8) and a dimer at neutral pH (Astegno et al., 2015;

Gut et al., 2009). When discussing biological assemblies, we gener-

ally consider only complexes that are strongly bound under physio-

logical or close-to-physiological conditions, that is, with a Kd at least

in the low micromolar range or smaller. Weak and transient inter-

actions, however, may still be present in protein structures and can

lead to ambiguous assemblies.

Defining the biological assembly can be further complicated by

the presence of partial structures or partial complexes: in the former

case, entire domains or segments of the full-length sequence are

deleted for protein preparation or crystallization purposes, while, in

the latter, the components of the real assembly are missing. In those

cases, strong biological interfaces are likely to be conserved, but the

overall biological assembly will be incomplete and may be influ-

enced by crystal contacts. The determination of the oligomeric state

should be carried out for the construct used for crystallization.

Otherwise, there is no guarantee that a certain oligomeric state of a

full-length protein will be the same as that of a single domain ex-

tracted from the protein.

It is in response to the above experimental and annotation com-

plexities and difficulties that the field of interface classification in

protein crystals started to emerge.

3 Background and history of the field

The first decades of protein crystallography, from the late 1950s to

the 1980s, were characterized by structural studies of proteins that

could be purified in large quantities from natural sources, that were

biochemically well-characterized and that were nearly always sol-

uble and globular, with a well-known quaternary structure. When a

Fig. 1. 2D schematic illustration of the interface classification problem. Given

(a) as a crystal lattice, any of (b–d) could be inferred with equal validity as the

biological unit. Without further information, it is not clear which arrangement

represents the true biological unit. This figure was inspired by a similar one

by Levy and Teichmann (2013), which, in turn, was inspired by ‘Fish (N� 20)’

by M.C. Escher
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new protein structure was finally obtained, after painstaking effort,

the preexisting biochemical knowledge made it easy for researchers

to find out which protein–protein contacts in the crystal lattice, if

any, were biologically relevant and, thus, contributors to the quater-

nary assembly. The technological advances of the following years,

with the mass adoption of recombinant protein production, bright

synchrotron radiation sources and much improved structural solu-

tion and refinement software, brought about deep changes in the

field. Very challenging systems, including multiprotein complexes

and TMPs, could now be recombinantly produced, crystallized and

structurally solved, sometimes even before a full biochemical ana-

lysis of their quaternary structure was available. In fact, the average

number of contacts in crystal structures has nearly doubled in the

last 30 years (Fig. 2) and is now about 10. As a consequence, the in-

terpretation of crystal lattices in terms of biologically relevant inter-

faces ceased being a trivial issue and started, in some cases, to be a

true challenge. This had to be tackled either by further experimental

efforts or by computational means, which required the development

of new tools.

A detailed comparison of the features of biologically relevant

and of crystal interfaces was described in 1995 (Janin and Rodier,

1995) and followed by a similar study in 1997 (Carugo and Argos,

1997). The two kinds of interfaces were analyzed quantitatively for

the first time, by looking at their Buried Surface Area (BSA), defined

as the difference in Accessible Surface Area (ASA) between uncom-

plexed and complexed structures. The authors counted both sides of

the interface in computing the area, whilst later methods used the

average between the two sides, thus dividing this value by 2:

BSA ¼ 1=2ðASAu � ASAcÞ. This latter convention is the one used

throughout this review.

The interface classification problem was formulated 2 years later

in a seminal paper that also contained the first computational

method for interface classification (Janin, 1997). This method relied

on a statistical analysis of the interface areas of lattice contacts in

crystals of monomeric proteins, which led to an equation relating

the BSA to the probability of the interface being a crystal contact.

In 1998, the Protein Quaternary Structure (PQS) software

(Henrick, 1998) provided a quaternary structure estimation for the

entire PDB for the first time. To distinguish biological interfaces

from crystal contacts, PQS used a composite empirical score based

on several geometric and energetic factors: the difference in ASA

upon interface formation, the number of buried residues at the inter-

face, an estimation of the difference in the solvation energy of fold-

ing of the quaternary assembly and that of its components

(Eisenberg and McLachlan, 1986) and the number of salt bridges

and interchain disulfide bridges. In 2000, Ponstingl et al. studied

how to distinguish biological homodimers from crystal dimers by

using a knowledge-based atomic pair-potential (Ponstingl et al.,

2000). Later, they generalized the method (Ponstingl et al., 2003) to

predict full quaternary structure assemblies combining the pairwise

method with a graph partitioning algorithm. The corresponding

software, named PITA, is still accessible today.

Not long afterward, methods appeared that focused on an essen-

tial difference between biologically relevant protein interfaces and

crystal contacts: evolutionary conservation. Biological interfaces are

the result of evolution and should bear a recognizable signature of

selection pressure, while no such pressure acts at crystal contacts to

conserve the sequence. A very simple metric of the selection pressure

acting on the residues of a given protein is the Shannon entropy

(Shannon, 1948) of the position of a multiple alignment of putative

homologs of that protein. In 2001, two groups (Valdar and

Thornton, 2001b; Elcock and McCammon, 2001) introduced inter-

face classification methods based on evolutionary conservation of

interface residues. In their article, Valdar and Thornton (2001a) as-

sessed interface residue conservation in six families of homodimers,

calculated the probability that the observed level of conservation

had occurred by chance and concluded that that was not the case. In

a follow-up work, they extended the analysis to a much larger set of

monomeric and homodimeric proteins and studied the usefulness of

residue conservation to identify the biological relevance of a protein.

They discovered that conservation, combined with interface size, is

a powerful predictor of biological relevance. Similarly, Elcock and

McCammon (2001) compared the average Shannon entropies of

protein interface and surface residues using a simplified amino acid

alphabet. In 2005, another group (Guharoy and Chakrabarti, 2005)

addressed the issue of possible biases in interface residue versus sur-

face residue entropy comparisons by running a sequence entropy

analysis of interface residues only, after subdividing them into ‘core’

and ‘rim’ residues based on the presence of fully buried atoms. The

rationale of the method is that, for a biological interface, selection

pressure should be stronger on the ‘hotspot’ core residues than on

the rim residues, and this difference should show up in an analysis

of the average sequence entropies of the two sets. The ‘core’ and

‘rim’ concepts are widely agreed to have a central importance in

describing the interfaces, though the different authors did not fully

agree on their definition. For instance, a residue can be defined as

core if it contains at least one fully buried atom upon interface for-

mation (Bahadur et al., 2003; Chakrabarti and Janin, 2002).

Alternative definitions of core residue are based on the change in

ASA that a residue undergoes upon interface formation (Levy, 2010;

Schärer et al., 2010). Rim residues are commonly defined as those

interface residues that are not ‘core’ (e.g. Schärer et al., 2010).

Another important contribution came in 2004, when Bahadur

and colleagues introduced the use of packing density, along with

Fig. 2. Average number of contacts between chains of the lattice per PDB

entry for structures solved using X-ray crystallography from 1980 to 2014.

Averages for all structures solved in a particular year appear in pink (dots,

solid line), cumulative averages for the whole PDB per year are shown in tur-

quoise (triangles, dashed line). Essentially the same value for the current

average number of contacts was independently obtained in an analysis of a

2012 PDB subset consisting of monomeric proteins with one chain per asym-

metric unit (Carugo and Djinović-Carugo, 2012)
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residue propensity and hydrophobic interaction scores, for protein

interface classification (Prasad Bahadur et al., 2004). A year later

the PISA (Protein Interfaces, Surfaces and Assemblies) method was

published, an approach based on thermodynamic estimation of

interface stability. PISA is currently the most popular method for

predicting biological assemblies. Additional details about PISA are

described in the next section.

A notable approach, NOXclass, appeared in 2006 and used six

interface properties in a support vector machine three-state classifier

distinguishing obligate, non-obligate and crystal packing inter-

actions (Zhu et al., 2006). Another method, DiMoVo (Bernauer

et al., 2008), relied on Voronoi tessellation to obtain parameters for

interface description and a support vector machine to achieve a two-

state classification from those parameters. In the same year, the

COMP method was introduced, which uses a linear combination of

interface complementarity for three features (electrostatic potential,

hydrophobicity and shape of the interfaces) (Tsuchiya, 2008) used

previously in the PreBI server (Tsuchiya et al., 2006).

In the meantime, the problem had become better known in the

community: a review by Kobe et al. (2008) provided interesting ex-

amples of difficult interface classification cases that ultimately had

to be addressed using hybrid methods, combining the crystallo-

graphic information with data from other techniques such as site-

directed mutagenesis. In another review (Poupon and Janin, 2010),

the entire problem was clearly summarized with the statement ‘crys-

tallography is surprisingly poor at establishing the quaternary

structure’.

Among the more recent methods are IPAC (Mitra and Pal,

2011), using a naive Bayes classifier with ten geometric and physico-

chemical features, and EPPIC (Evolutionary Protein Protein

Interface Classifier) (Duarte et al., 2012), which relies on evolution-

ary and geometric information. EPPIC remains under active devel-

opment and is described in more detail in the next section as an

example of an evolution-based method.

Another approach (Liu et al., 2014) employs B-factor–related

features for interface classification. Here, the rationale is that the

average behavior of B-factors in biological interfaces and in crystal

contact residues should be different (Carugo and Argos, 1997).

Another recent technique uses a method in machine learning, a ran-

dom forest, to classify protein interfaces based on a variety of inter-

face properties (Luo et al., 2014). A third recent approach, ECR,

uses principal component analysis of geometric and energetic (com-

putational alanine mutagenesis) interface features (Sudarshan et al.,

2014).

Protein interface classification methods have also been developed

for modeling purposes, i.e. to validate quaternary structure in hom-

ology modeling templates. To that end, SWISS-MODEL (Biasini

et al., 2014) uses a protocol based on sequence conservation, inter-

face hydrophobicity and interface co-occurrence across potential

templates

4 Datasets of Biological Interfaces and
Crystal Contacts

An important issue affecting all these methods is the availability of

reliable datasets of biological interfaces and crystal contacts for

method development and benchmarking. For them to be sufficiently

reliable, such datasets are nearly always manually curated. Among

the most popular are those compiled by Ponstingl et al. (2003) and

by Prasad Bahadur et al. (2004). Recently, two specialized, manually

curated datasets that cover only the most difficult-to-classify range

of interface areas were introduced: DCbio and DCxtal (Duarte

et al., 2012), covering the 800–2000 Å2 range of BSA. The PiQSi

server (Levy, 2007) also provides a large dataset of biological inter-

faces via a mix of automated (homology inference) and manual val-

idations. In an attempt to create datasets more than one order of

magnitude larger, Baskaran et al. (2014) introduced two automatic-

ally compiled datasets, BioMany and XtalMany, also selected to

span a difficult-to-classify area range (500–2000 Å2).

5 Commonly used methods: two examples

There exist more than a dozen different methods for the computa-

tional classification of protein interfaces, some of which were pub-

lished as proof-of-concept works while others were implemented as

user-friendly, publicly available software and even as web servers.

This last feature is particularly important since otherwise the meth-

ods would remain out of reach for most structural biologists. In

Supplementary Table S2, a chronologically ordered list of such

methods is shown as well as some fundamental information on each

method. Two well-maintained methods using very different and

complementary approaches are discussed below in some detail. PISA

attempts to estimate the energy of binding, while EPPIC relies on

evolution to try to classify the interfaces.

5.1 PISA: protein interfaces, surfaces and assemblies
In 2005, Krissinel and Henrick (2005, 2007) introduced a method

for estimating interface stability based on the binding energy

of the interface and the entropy change due to complex formation.

The estimated interface stability thus dictates whether it should exist

in solution (biological interface) or only in the crystalline state (crystal

contact). The method goes through a series of approximations and

considers BSA, hydrogen bonds, salt bridges and disulfide bonds in

order to estimate changes in free energies. For the entropic part, the

translational, rotational, vibrational and surface entropy components

are estimated using the subunit mass, surface area, symmetry number

and inertia moments. After the approximations, several empirical par-

ameters are left to be fitted to training data (the Ponstingl dataset).

The energetic estimations are combined with a graph-search algo-

rithm enumerating all the possible assembly combinations present in

the crystal. Importantly, interfaces that would assemble infinitely

through pure translations or screw axes (‘equivalent monomeric units

in parallel orientations’) are pruned away in the search. This is a fun-

damental part of the method, since these imposed geometrical and

topological constraints are often enough to filter out crystal contacts

even before the thermodynamic estimations are brought into play. It

also allows contributions from several weak interfaces to be con-

sidered in the overall stability of the complex.

The algorithm was implemented in PISA as an online web server,

which has become the de facto standard for interface classification

in the community.

PISA achieves as high as 90% classification accuracy on the

training dataset, with the strongest misclassifications being attrib-

uted to differences between experimental and physiological condi-

tions. The program generally returns accurate predictions, even for

recently solved protein structures, which have become more com-

plex over the past decade. The main difficulties appearing in the pre-

dictions seem to be distinction between higher and lower oligomeric

states of the same assembly set and the presence of artifactual small

molecules and ions in the crystal (Krissinel, 2011). Unlike small mol-

ecules and ions, crystallographic water molecules are not taken into

account in PISA calculations.
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The final quaternary structure predictions are given as a list with

the most probable ones appearing first. The sorting is not done only

through the free energy values but is helped by a set of rules, prefer-

ring for instance higher order oligomers (Krissinel, 2011). The need

for these heuristic rules indicates that the approximations leading to

the free energy estimations are not accurate enough to be used as the

only classification criterion.

Recently, Taudt et al. (2015) used a more complex model to pro-

vide more accurate estimations of free energies, based on molecular

dynamics simulations. The authors compared their results to PISA

predictions and found that, although the values were often in dis-

cord, the general trends were the same; the rankings of interfaces

from most to least stable tended to agree with one another. In the fu-

ture, it will be interesting to study the agreement of these free energy

estimation methods with a statistically significant dataset of experi-

mental free energy values. However, such a dataset must span a

broad range of conditions to address the dependency of free energy

values on experimental conditions. An early example of a dataset of

experimental free energy values is PINT (Kumar, 2006); a more re-

cent one with a focus on mutations, is SKEMPI (Moal and

Fernandez-Recio, 2012). A new version of PISA, jsPISA (Krissinel,

2015), has been released within the CCP4 suite (Winn et al., 2011).

It features a web graphical user interface and a few improvements

that aid in the interpretation of the predictions.

5.2 EPPIC: evolutionary protein–protein

interface classifier
EPPIC was published 3 years ago (Duarte et al., 2012), based on ear-

lier work by the same team (Schärer et al., 2010) and is a collection

of three different classifiers: one based on geometrical features of the

interface and two based on evolutionary features. The evolutionary

conservation of residues is assessed by constructing a multiple se-

quence alignment of all sequence homologs to the target protein

structure under study. Differently from previous approaches (Elcock

and McCammon, 2001; Glaser et al., 2004; Lichtarge et al., 1996;

Valdar and Thornton, 2001a), EPPIC uses closely related homologs

only (a 60% sequence identity cutoff when selecting sequences for

the alignment). This ensures that homologs share high tertiary and

especially quaternary structure similarity (Poupon and Janin, 2010).

The information entropy per column of the alignment is then calcu-

lated using a reduced amino acid alphabet.

The solvent-ASA of residues is used to classify each interface resi-

due as either ‘core’ (fully buried upon interface formation) or ‘rim’

(partially buried upon interface formation). These assignments, to-

gether with the conservation values, are used to calculate the two

evolutionary scores: core-rim, comparing relative conservation of

the interface core residues versus the rim residues; core-surface,

comparing the conservation of interface core residues versus the rest

of the surface, done with a z-score approach through random sam-

pling of surface residues. Additionally, a simple geometry-based

classifier estimates the stability of the interface by counting the num-

ber of core residues, defined as 95% buried residues (Schärer et al.,

2010). The number of core residues was shown to be a good inter-

face classifier on the DCxtal and DCbio datasets (Duarte et al.,

2012).

The three scores are combined to form a consensus call through

a simple-majority voting scheme. When EPPIC was originally

released in 2012, it was trained using the DCbio and DCxtal data-

sets that focused on difficult-to-classify interfaces: small biological

interfaces and large crystal contacts. EPPIC’s prediction accuracy

was measured as 89% using the Ponstingl dataset and its predictions

agree with PISA 88% of the time on a PDB-wide scale (Baskaran

et al., 2014). Unsurprisingly, the lowest agreement between EPPIC

and PISA is observed in the 600–1200 Å2 range of interface area,

where classification is particularly hard. The main disadvantage of

this evolutionary approach is in situations where not enough se-

quence data can be found to make a confident prediction. Despite

the growth of sequence databases, there are still a certain number of

protein structures for which only very few sequence homologs are

known. For some cases (especially viral proteins), many sequence

homologs are known but with similarity (>90% identity) too high

to the studied structures. The alignments resulting from such a dis-

tribution of homologs will have little information content compared

with varied alignments. These problems in any case will be lessened

by the ceaseless growth of sequence databases. In fact, the authors

demonstrated that the scores have been improving with the growth

of the databases by looking at archived sequence database data from

the first 10 years of UniProt (Duarte et al., 2012).

Another possible downside comes in assessing the interfaces be-

tween small domains of larger protein structures. EPPIC uses surface

residues as the baseline of evolutionary conservation, but in the case

of domains the exposed residues in the surface are not necessarily

representing the real situation in the full length protein. Thus, scores

can be artifactually shifted due to these problems.

6 Comparative methods

In addition to methods based on single structures analysis, several

methods exist that incorporate information from multiple struc-

tures. Such methods benefit from the redundancy in the PDB and

would be expected to gradually increase accuracy and coverage as

the PDB grows, in much the same way that homology modeling has

benefited from the growth of sequence databases.

6.1 Conservation of interfaces across crystal forms
For many proteins, several structures have been solved via X-ray dif-

fraction performed on different crystal forms: the percentage of PDB

entries with at least two crystal forms was estimated to be 64% (Xu

and Dunbrack, 2011). For strong biological interfaces, one would

expect all crystal forms of the protein to contain the interface, while

the crystal contacts might vary depending on the crystal form.

Crystallographers have traditionally used this idea to provide evi-

dence for the validity of putative biological interfaces (Gonciarz

et al., 2008; Lee et al., 2002). Xu et al. (2008) devised a method to

perform this analysis automatically, comparing interfaces in differ-

ent crystal forms across the PDB. They even extended this idea by

comparing crystals of homologous proteins. The results were made

available via the ProtCID web server (Xu and Dunbrack, 2011). The

availability of this resource allowed for some intriguing findings:

Weitzner et al. (2009) analyzed an unusually small dimer interface

in cytosolic sulfotransferases, which was extremely well-conserved

across 17 crystal forms, whilst the PDB biological unit annotations

were mostly monomeric for these structures. The dimer for the

human form of the enzyme was initially identified and thoroughly

validated with independent non-crystallographic data (Petrotchenko

et al., 2001). In summary, this represents a notable case of a very

small, thoroughly validated dimer interface (under 400 Å2). A limi-

tation of this method resides in the need of several crystal forms for

a given interface to robustly assess its biological character, which

limits coverage. In addition, there exist cases of crystal contacts con-

served across several crystal forms, which represents a source for

noise (Xu and Dunbrack, 2011). In an early, detailed study of six
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crystal forms of the monomeric bovine pancreatic ribonuclease A, it

was found that all crystal contacts differed across them with excep-

tion of a large dimer found in the three crystal forms where the pre-

cipitant was salt (Crosio et al., 1992). Hence, the dimer was

interpreted as a salt-induced crystallization intermediate. Such cases

suggest that diversity of crystallization conditions across crystal

forms of a conserved interface would be an even better criterion for

biological relevance.

6.2 Inferring biological units from homology
Close homologs generally have conserved quaternary structure, al-

though some notable exceptions exist (Harrop et al., 2014; Luo

et al., 2013; Qin et al., 1998). Thus, if the biological unit of an oli-

gomeric protein or of a protein complex is well-established, one can

reasonably assume that proteins with similar sequence retain the

same assembly. The key issue is determining a suitable sequence

similarity threshold to assume quaternary structure conservation

within a protein family. This has been studied by Levy et al. (2006,

2008), who analyzed PQS conservation as a function of sequence

identity, concluding that 60% identity is a safe threshold for quater-

nary structure conservation. He also compared quaternary structure

information within protein families (Levy, 2007). This analysis re-

sulted in two valuable resources: 3Dcomplex (Levy et al., 2006) and

PiQSi (Levy, 2007), which as well as inferring assemblies by hom-

ology, allow for community annotation of PDB biological units. An

approach, called IBIS, which provides homology-based inference of

the most probable biological interactions given a protein structure,

was developed in 2010 and uses PISA among other sources of infor-

mation (Shoemaker et al., 2010). Inferring biological units from

homologous templates is of key importance for homology modeling.

SWISS-MODEL uses sequence conservation (among other criteria)

to assess whether the quaternary structure of a given structural tem-

plate can be attributed to the sequence to be modeled (Biasini et al.,

2014).

7 Assemblies: topology and symmetry

A very important aspect of combining pairwise protein–protein

interfaces into stable and finite assemblies is that those assemblies

have to fulfill precise topological conditions leading to a small num-

ber of closed symmetries. This had already been recognized in the

1960s (Monod et al., 1965) and further elaborated upon in several

later works (Hanson, 1966; Levy and Teichmann, 2013). Figure 3 il-

lustrates some basic concepts for homooligomeric assemblies.

Homodimer interfaces can be classified into either isologous inter-

faces, where the same residues participate from both subunits, and

heterologous interfaces, where different binding sites are used on

each partner. To prevent aggregation and the formation of infinite

fibrils, biologically relevant interfaces must either be isologous

homodimers (Fig. 3a) or heterologous oligomers with closed sym-

metry (Fig. 3c and d); other heterologous interfaces lead to infinite

assemblies (Fig. 3b).

Higher-order closed assemblies, such as those with dihedral sym-

metry (Fig. 3e), cannot be formed by heterologous interfaces alone

and necessarily also contain isologous interfaces. Such topology and

symmetry considerations are very important when it comes to deriv-

ing biological assemblies within a given crystal lattice starting from

single-interface classification calls. They have also been employed to

study how assemblies reflect the evolution of protein complexes and

to explain the preponderance of D(n) over C(n) assemblies in the

PDB for n�4 (Levy et al., 2008).

Importantly, these considerations also apply to heteromers and

necessarily lead to even stoichiometry (n:n) as a consequence of the

point group symmetry requirement. It is only through pseudo-

symmetry or self-occlusion that the even stoichiometry rule can be

broken. Marsh et al. (2015) compiled all known cases of such uneven

stoichiometries, finding an occurrence below 10% of all heteromers

in the PDB, including some errors in biological unit assignments.

The first method to automatically treat the topology of assembly

was PITA (Ponstingl et al., 2003). The authors represented the crys-

tal contacts in a graph with chains as nodes and contacts between

them as edges. They additionally weighted the edges with their

atomic-pair potential scores. By iterative partitioning of the graph,

they were able to enumerate all the closed assemblies and select only

those that would score above a certain threshold, finally sorting

them by oligomeric size. Such symmetry considerations are also an

essential part of the PISA method (Krissinel and Henrick, 2007).

With a similar graph representation as PITA, PISA enumerates all

possible assemblies in the crystal, rapidly pruning off branches with

a combination of closed-symmetry rules and their calculated free-

energy scores. Point-group symmetry is also a fundamental part of

IPAC, in combination with a naive Bayes classifier (Mitra and Pal,

2011).

In the vast majority of cases, the closed-symmetry requirement is

obvious from the crystal packing and automatic methods simply

give a quick confirmation of what can be manually observed by the

crystallographer. In some cases, however, the assemblies can be very

subtle and there automatic methods can help the most. PDB ID

2PEL (Banerjee et al., 1996), is an example of a subtle lattice ar-

rangement, where partial symmetry exists but there is no closed

point-group symmetry beyond a C2 dimer (Supplementary Fig. S1).

The annotated biological unit coincides with the tetrameric asym-

metric unit; however, the asymmetric unit tetramer has no point

group symmetry, so it can only be considered as two copies of a C2

dimer. PISA produces a tetrameric arrangement different from that

Fig. 3. Protein topology and assemblies. (a) Two identical protomers coming

together to form an isologous homooligomeric assembly. The black lens de-

notes a 2-fold axis of rotational symmetry. (b) Three identical subunits

assembling to form an infinite heterologous homooligomeric assembly. (c)

Six identical protomers assembling to form a closed heterologous homooli-

gomeric assembly with 6-fold symmetry (the black hexagon). (d) A rendering

of a cyclic C6 assembly (PDB ID: 4QNB). (e) A protein with dihedral D4 sym-

metry (PDB ID: 4OAO)
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in the asymmetric unit, but still without a closed point-group sym-

metry (formed through the largest isologous interface plus a smaller

isologous 310 Å2 interface), showing that the algorithm did not

prune off this particular invalid topology. Another interesting case is

PDB ID 1R1Z (Velloso et al., 2003), where the authors chose an

asymmetric unit with four molecules and no point group symmetry.

However, careful observation of the crystal lattice will show that a

C4 assembly exists within, which could have some biological rele-

vance (Supplementary Fig. S2). In its predictions, PISA does not

show this assembly, which we presume to fall below its scoring

threshold.

8 Improving current methods

The variety of approaches employed for protein interface classifica-

tion makes it particularly difficult to forecast whether the field will

see incremental improvements of the existing methods or completely

new approaches will appear and become mainstream. Some lines for

the future development of the main families of existing methods can;

however, be reasonably discerned. For methods based on stability

estimations of protein interface stability, new approaches to stability

estimation—e.g. those based on advanced force fields and molecular

dynamics simulations of the interface of interest (Johnston and

Filizola, 2014; Taudt et al., 2015)—may increase accuracy.

For evolution-based methods, various developments can be fore-

seen. First, the powerful growth of sequence databases will almost

certainly continue boosting the coverage and performance of those

methods for several years to come. Second, as shown in the past

with CRK (Schärer et al., 2010), more sophisticated methods to cap-

ture the signal of biological interface evolution than sequence en-

tropy can be employed. A candidate in this area is the correlated

mutation approach (Göbel et al., 1994; Pazos et al., 1997;

Shindyalov et al., 1994), initially introduced for tertiary structure

prediction and subsequently proposed for quaternary structure pre-

diction as well (Hopf et al., 2014; Ovchinnikov et al., 2014). This

approach is currently the subject of intensive research, both in terms

of its applications in structure prediction and of its foundations and

limitations (Talavera et al., 2015). Classifying protein interfaces

based on the presence or absence of a subset of contacts exhibiting

correlated mutations is an easier task than predicting quaternary as-

sembly ab initio, since in the former problem the positioning of the

interface partners and the interface geometry are given while in the

latter problem only the unbound structures are known. This may

help reduce the need for very large multiple sequence alignments

that is typical of this approach (Hopf et al., 2014). A challenge for

future methods to tackle is the classification of weak biological

interfaces, which are particularly difficult since, compared with

strong biological interfaces, they are more similar to crystal con-

tacts. The properties of weak interfaces have been studied in detail

(Dey et al., 2010; Nooren and Thornton, 2003), which represents a

good basis for improving their classification.

9 Interface classification and docking

Protein interface classification has close ties with the field of pro-

tein–protein docking. The docking problem can be roughly decom-

posed into several subproblems (Ehrlich and Wade, 2001; Smith and

Sternberg, 2002): (i) sampling: generating the docking poses given

the structure of the independent subunits; (ii) scoring: ranking the

different poses according to some scoring scheme; and (iii) introduc-

ing flexibility in order to refine the good-scoring docking poses.

Clearly, the scoring problem is the one that bears close resemblance

with interface classification: the sampled protein–protein complexes

can be analyzed no differently from any experimentally observed

protein–protein interface. Thus, in principle, any of the scoring

methods introduced earlier are equally applicable to protein–protein

docking.

In fact, the scoring methods developed for the docking field go

along the same lines as methods seen earlier: geometrical descriptors

(Chen and Weng, 2003; Gabb et al., 1997), energy estimations

(Camacho et al., 2000; Norel et al., 2008), knowledge-based statis-

tical potentials (Glaser et al., 2001; Moont et al., 1999; Norel et al.,

2008) and evolution-based methods (Choi et al., 2009; Duan,

2005). A set of methods that have also improved docking results are

those related to guided or restrained docking (Dominguez et al.,

2003). The restraints can come either from experimental data such

as chemical shift data or mutagenesis (Dominguez et al., 2003) or

from independent predictions to find residues involved in binding

(Li and Kihara, 2012; Xue et al., 2014). Surely, there is still potential

for cross-breeding between the two fields, which we will hopefully

see with new developments in the near future.

10 Conclusion

When compared with other fields and problems in structural bioinfor-

matics, protein interface classification arose later and is a much

smaller area of study with very clear practical applications in struc-

tural biology. At the same time, it represents a well-defined field with

a narrower focus than more classic problems such as tertiary structure

prediction, protein–protein docking or protein function prediction.

Deeper understanding of the classification problem can help create

better foundations for other fields such as protein–protein docking.

The number and variety of protein interface classification methods

developed in the last decade testifies to the vitality of the field, which

appears ready to tackle the challenges of an ever more diverse and

complex set of crystal structures and also to find useful applications

in other fields for some of its tools and concepts.

Note Added in Proof

With regard to the peanut lectin (PDB ID 2PEL), it is worth noting

that in the first paper reporting the structure (Banerjee et al., 1994),

the authors described the open tetramer lacking point group symme-

try and proposed it as biologically relevant. Later structures of the

same protein also contain the open tetramer. Early biochemical

studies indicate a pH-dependent dimer–tetramer equilibrium, with a

tetramer being the stable form at pH values above 4.75 (Fish et al.,

1978). However, this tetramer is not necessarily the same as the

open one observed in the crystal structures, and in our opinion the

correct assembly should have D2 symmetry. We will carry out fur-

ther studies to clarify the nature of the peanut lectin tetramer.
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