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Abstract

Motivation: Alternative splicing represents a prime mechanism of post-transcriptional gene regula-

tion whose misregulation is associated with a broad range of human diseases. Despite the vast

availability of transcriptome data from different cell types and diseases, bioinformatics-based

surveys of alternative splicing patterns remain a major challenge due to limited availability of ana-

lytical tools that combine high accuracy and rapidity.

Results: We describe here a novel junction-centric method, jSplice, that enables de novo extraction

of alternative splicing events from RNA-sequencing data with high accuracy, reliability and speed.

Application to clear cell renal carcinoma (ccRCC) cell lines and 65 ccRCC patients revealed experi-

mentally validatable alternative splicing changes and signatures able to prognosticate ccRCC out-

come. In the aggregate, our results propose jSplice as a key analytic tool for the derivation of cell

context-dependent alternative splicing patterns from large-scale RNA-sequencing datasets.

Availability and implementation: jSplice is a standalone Python application freely available at

http://www.mhs.biol.ethz.ch/research/krek/jsplice.

Contact: wilhelm.krek@biol.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Alternative splicing, a mechanism unknown more than 30 years ago,

is now regarded a major contributor to transcriptome and proteome

diversity (Modrek and Lee, 2002). It is estimated that, in human,

95% of multi-exon genes undergo alternative splicing (Pan et al.,

2008; Wang et al., 2008), underscoring the importance of this post-

transcriptional mechanism in the regulation of gene expression.

Indeed, many key biological processes and disease states involve pro-

found alternative splicing pattern changes (Singh and Cooper, 2012).

Nowadays, technological advances in RNA sequencing (RNA-seq)

are yielding data at an enormous scale and allow for genome-wide

analysis of alternative splicing patterns from patient data. However,

the availability of in silico tools able to reliably interrogate alternative

splicing events from RNA-seq data remains limited (Ozsolak and

Milos, 2011). For example, transcript-based approaches, such as

CuffDiff (Trapnell et al., 2012b), allow for reconstruction of the com-

plete transcriptome but are limited in their accuracy of extracted

events (Garber et al., 2011; Rehrauer et al., 2013). Exon-based

approaches, such as DEXSeq (Anders et al., 2012), provide more reli-

able results but due to their focus on a subset of events, yield only par-

tial information. In addition, both of these approaches suffer from

scalability issues, hindering the analysis of large-scale datasets. Hence,

there is pressing need to expand methodologies for fast and accurate

analysis of alternative splicing patterns.
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Over the past few years, an increased ability to align split reads

to the genome and greater sequencing depths raised the status of

junction reads—reads that span exon–exon junctions—to an inde-

pendent and reliable source of information. To the contrary of other

reads, they permit a precise localization of exon boundaries and

allow testing whether two exons exist consecutively within a tran-

script, an essential step for the detection of alternative splicing

events. An increasing number of methods, such as DiffSplice (Hu

et al., 2013), MISO (Katz et al., 2010), JuncBASE (Brooks et al.,

2011), or SplicingCompass (Aschoff et al., 2013), are including

junction reads in their analysis but only few—e.g. Spanki (Sturgill

et al., 2013) and rMATS (Shen et al., 2014)—consider them as the

primary source of information.

Here we present jSplice, a junction-centric method to identify

differentially expressed alternative splicing events at the exon level.

Unlike Spanki and rMATS, which rely on databases of splicing

events, jSplice performs a de novo reconstruction of all possible al-

ternative splicing events based on junction positions, allowing thus

detection of simple and complex alternative splicing events even in

poorly annotated genomes. Distinctive to other currently applied

methods, jSplice does not assess the statistical significance of the

observed changes in expression between two groups of samples.

Rather it relies on a set of user-defined thresholds to select and rank

alternative splicing changes by the amplitude. The performance of

jSplice vis-�a-vis other splicing analysis software tools was rigorously

assessed on simulated and real datasets and shows a greatly

enhanced sensitivity and specificity. Also, application of jSplice to

RNA sequencing datasets derived from human clear cell renal cell

carcinoma (ccRCC) cell lines and patient tumors identified validat-

able alternative splicing events. Our work suggests that jSplice is a

highly reliable and accurate method with remarkably low execution

times, making it greatly suitable for routine large-scale analysis of

RNA-seq data.

2 Methods

2.1 The jSplice computational pipeline
jSplice, with the ‘j’ standing for ‘junction’, follows a classical alter-

native splicing analysis pipeline (Fig. 1). It starts with an external

read alignment procedure (e.g. STAR (Dobin et al., 2013) or

TopHat (Kim et al., 2013)) followed by the detection and scoring of

alternative splicing modules (ASMs) to finally generate a ranked list

of differentially expressed ASMs. Distinctive to other methods such

as DEXSeq (Anders et al., 2012) or MISO (Katz et al., 2010), jSplice

detects alternative splicing modules solely based on junction pos-

itions. jSplice adopts thus a junction-centric approach as emphasized

in Spanki and rMATS but addresses their limitations by relying on a

de novo reconstruction, as proposed in DiffSplice and JuncBASE,

and a novel scoring system. Indeed, current methods rely heavily on

genome annotations or databases of splicing events and, unlike

jSplice, might miss complex or novel alternative splicing events.

The definition of an ASM in jSplice is inspired by Hu et al.

(2013) and represents the set of exon-exon junctions of a genomic

region where transcripts diverge in more than one isoform. From

their definition of an ASM—a region of the splice graph with a sin-

gle entry point and a single exit point—one can observe that given a

junction i from an ASM A, there always exists a junction j in A s.t. j

overlaps position-wise with i. By extension, if a junction k overlaps

with i then k belongs to A. A maximal set of overlapping junctions,

which defines an ASM in jSplice, is thus the set of junctions of an

ASM as defined by Hu et al., including its nested ASMs. Retained

introns contain only one junction and therefore have to be treated as

special cases in jSplice that require information on exons. The latter,

if available, is added to the ASM if they are fully contained position-

wise within it but does not contribute to their identification. Note,

that the detection of all ASMs can be done in linear time once elem-

ents are sorted.

The identification of differential expression within an ASM in

jSplice differs greatly from current methods. Instead of estimating a

read count distribution, which would account for the technical and

biological variation inherent to RNA-seq experiments, jSplice only

considers the expression fold-change between conditions on every

possible pair of overlapping junctions (position-wise), or exons if

available. By definition, overlapping elements of an ASM belong to

different sets of transcripts. Therefore pairwise comparisons assess

whether there exists one or several transcripts whose expression is

changed with respect to the others. jSplice tests then, for each ASM,

all pairs of overlapping junctions and defines an ASM as differentially

expressed if there exists at least one pair that satisfies the five thresh-

olds defined below. Among all differentially expressed pairs, the one

with the maximum fold-change value is highlighted in jSplice’s output

and its average value across replicates is used as the ranking criterion

for the ASM. The rationale for using a fold-change ratio is that, due

to their flanking DNA sequences, two different junctions will have

different read-binding affinities. A fold-change ratio of a single junc-

tion over two conditions will eliminate this particular bias and render

junction-junction comparisons feasible. Note that the fold-change is

still subject to technical and biological variability and thus entails as-

sessment of statistical significance. For the sake of comparison, the

popular ‘percent spliced in’ (PSI) metric (Sturgill et al., 2013) assumes

that all junctions have the same read-binding affinity.

As mentioned above, five user-defined thresholds are used to test

if a pair of overlapping junctions is differentially expressed:

– Fold-change ratio. We define the relative log2 fold-change, given

two overlapping elements i, j of an ASM and their associated read

counts in condition A and B (ci,A, ci,B, cj,A and cj,B), as

– relFC ¼ log2 ci;A=ci;B

� �
� log2 cj;A=cj;B

� �
. Infinite values are returned

if counts are zeros. The absolute relFC has to be above or equal to

the user-defined threshold.

Fig. 1. The jSplice pipeline. Schematic outline of jSplice distinguishing data

files (light red) and software operations (light blue and light green). jSplice’s

inputs are aligned RNA-seq reads from paired experiments. The call to

CoverageBed is executed within jSplice but the read alignment procedure

has to be performed independently, e.g. with STAR or TopHat
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– Fisher exact test. The latter is carried out on the read counts to as-

sess whether there exists, per replicate and junction pair, a non-

random difference between the two conditions. By default, a

P-value threshold of 0.05 is considered.

– Minimum read count. The threshold tc enforces a lower limit on

the read count to compute expression ratios. A valid junction pair

(i,j) has ci;A � tc and cj;B � tc or vice-versa (tc¼20 by default). In

the case in exon pairs, length-normalized counts are used.

– Transcript inclusion percentage: The threshold ti ensures a focus

on major transcripts or isoform switches if set to a high value. A

valid junction pair (i,j) has ci;A � ti�maxðck;Ajk 2 ASMÞ and cj;B

� ti�maxðck;Bjk 2 ASMÞ (ti¼10% by default). In the case of exon

pairs, length-normalized counts are used.

– Total gene expression: The threshold tr limits the analysis to well-

expressed genes (tr¼1 RPKM by default). A valid gene has a total

gene expression higher than tr in all conditions.

Similar to MISO (Katz et al., 2010), jSplice handles replicates in-

dependently. By default all thresholds have to hold in all replicates

but in case of large cohorts, one can focus on ASMs that happen in

at least N patients.

To obtain read counts per exon and genes, jSplice relies on

CoverageBed from the BEDtools package (Quinlan and Hall, 2010).

Note that jSplice distributes the CoverageBed commands—one per

sample file—to the available CPU cores (user-defined). For efficiency

reasons, the genome annotation is compared to the junction files be-

fore the call to CoverageBed is performed. Exons without any junc-

tion matching one of their extremities are discarded and new exons

are added by intersecting annotated exons with junctions. The anno-

tation is then used to assign gene names and exons to ASMs.

2.2 Data
Data simulation was performed through BEERS (Grant et al., 2011)

with the human RefSeq annotation. Two different setups were

applied. First, we generated a ‘simple’ dataset where we randomly

selected 100 multi-transcript genes on chromosome 1 and changed

the expression of the lowliest expressed transcript to twice the total

gene expression. Simulations were run in triplicates with 10M 100-

bp reads. Second, we created a ‘complex’ dataset by selecting 1000

multi-transcript genes and randomly assigning the expression of one

transcript to another value sampled from the original distribution.

Additionally, biological noise was added to each replicate in the

‘complex’ dataset as a Gaussian distribution with a standard devi-

ation of 1 RPKM. Combinations of 20 M, 50 M, 100 M of 48-bp,

100-bp, up to five replicates were used for the simulations. Unless

specified otherwise, jSplice was run with a relFC threshold of

log2(1.5), tc threshold of 10, and ti threshold of 10% to capture all

types of events.

Real datasets were downloaded from the Gene Expression

Omnibus (GEO) database (Edgar et al., 2002) with the following ac-

cession numbers: GSE37704 (Trapnell et al., 2012a) and GSE23776

(Griffith et al., 2010). The 189 RT-PCR gel images from Griffith

et al. were visually categorized as differentially expressed or not by

Dr. Rafal Pawlowski, Dr. Peter Mirtschink and Dr. Yann Christinat

independently based on the relative band intensity. The category

was assigned in case of agreement between at least two examiners.

jSplice was run with a relFC threshold of log2(2), a tc threshold of

10 (20 for the Griffith dataset as the read length is shorter), and a ti
threshold of 10% to capture all types of events.

Level 3 RNA-seq data from 65 ccRCC patients with matching

samples (normal and primary tumor tissues) were downloaded from

the TCGA web archive (http://tcga-data.nci.nih.gov, accessed on

November 4, 2013). As exon read count is readily available, it was

included as outlined in the jSplice pipeline. jSplice was run with a

relFC threshold of log2(2), a tc threshold of 20 (as the data consists

of 42bp reads), a ti threshold of 50% to focus on isoform switch

events. A minimum of 5 samples had to match all criteria.

Clustering of jSplice results was performed first on the 1225 ASMs

(Ward linkage), then on samples separated by their VHL mutation

status.

2.3 Read alignment and other software
For all experiments (simulated and real data), reads where aligned

with STAR (v2.3.0)—or TopHat (v2.0.11) when specified—and the

University of California, Santa Cruz (UCSC) hg19 genome annota-

tion. All software were executed using default parameters. An FDR

value of 0.05 was used for DEXSeq (v1.8.0), rMATS (v3.0.8),

DiffSplice (v0.1.1) and SplicingCompass (v1.0.1) to enforce high

specificity. Results based on exon and junction reads were con-

sidered for rMATS. The complete database of splicing events (SE,

MXE, AFE, ALE, RI, A3SS and A5SS) was used for MISO (v0.4.9)

in all cases except for the Griffith dataset where only cassette exons

(SE) were considered. A Bayes factor threshold of 3, to hold in all

replicates, was used for MISO. Multicore processing was used

whenever available and depended on the cluster load. Results for

CuffDiff2 on the Trapnell dataset and ALEXA-Seq on the Griffith

dataset were taken from their respective publications (Griffith et al.,

2010; Trapnell et al., 2012a).

2.4 Cell culture
RCC4, HEK293T and Lynex cells were cultured in DMEM supple-

mented with 10% FCS, L-Glutamine and Pen/Strep. RCC4 cells re-

expressing pVHL (‘VHL’) or control cells (‘EMPTY’) were gener-

ated by lenti- (using pLKO1) or retro-viral (pBABE) transduction as

previously described (Thoma et al., 2007; Troilo et al., 2014). Pools

of RCC4 cells stably expressing pVHL were obtained by culturing in

the presence of puromycin (2 lg/ml) for at least one week.

2.5 RNA isolation and sequencing
Total RNA was isolated using miRNeasy kit (Qiagen), including

DNase digestion step, according to the manufacturer’s protocol.

The quality of the RNA samples was verified by measuring absorb-

ance at 280 and 260 nm, assessment of rRNA 28S/18S ratio and

RNA Integrity Number (RIN). RNA sequencing was carried out at

the Beijing Genomics Institute (BGI) on an Illumina HiSeq 2000 se-

quencer and resulted in 50 M of 100-bp paired-end reads per sam-

ple. Reads were aligned with STAR on hg19 and UCSC annotations.

jSplice was run with a relFC threshold of log2(2), a tc threshold of

10 (as the data consists of 100 bp reads), and a ti threshold of 50%

to focus on major isoforms only. Data are available under accession

number SRP045624 at http://www.ncbi.nlm.nih.gov/sra.

2.6 Immunoblot analysis
Cells were lysed directly on the dish using standard 2� SDS sample

buffer. Protein samples were sonicated, resolved on acrylamide gels,

transferred to nitrocellulose membranes and visualized using anti-

bodies against pVHL (Hergovich et al., 2003), HIF1 (Novus

NB100-479), HIF2 (Novus NB100-122) and GLUT1 (Abcam

ab14683).
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2.7 Gene and RNA isoform expression analysis by

quantitative and semi-quantitative PCR
2–3 lg of total RNA was reverse-transcribed into cDNA using

EcoDry Premix Random Hexamers kit (Clontech) according to the

manufacturer’s instructions. cDNA samples were then analyzed by

real time PCR using LightCycler 480 SYBR Green (Roche) and pri-

mer pairs designed to recognize either the specific RNA isoforms or

the total mRNA. Semi-quantitative PCR was carried out using

PrimeSTAR Max DNA Polymerase (Clontech) and primer pairs de-

signed to bind exons flanking the alternatively spliced regions.

Subsequently, PCR products were resolved on 2% agarose gels and

visualized using a UV lamp. The primer pairs used in this study with

the corresponding sequences are listed in supplementary material

(Supplementary Table S5).

3 Results

3.1 jSplice is a fast and accurate method to detect

differentially expressed alternative splicing events
As no benchmark dataset exists to validate methods for the detec-

tion of differential alternative splicing, we first employed simulated

data. For that purpose, we used BEERS (Grant et al., 2011), a simu-

lation engine for generating RNA-seq data to create two different

scenarios. The ‘simple’ dataset contains no biological variation and

introduces obvious splicing changes (median fold-change of 4.43,

5% percentile at 4.01, IQR of 2.15) while the ‘complex’ dataset had

biological variation and a wider range of splicing changes (median

fold-change of 2.80, 5% percentile at 1.09, IQR of 5.42). We then

compared the performance of jSplice with several other currently

available methods. We included software that have a broad user

base (DEXSeq (Anders et al., 2012), MISO (Katz et al., 2010) and

rMATS (Shen et al., 2014)), that introduced the notion of ASMs

(DiffSplice (Hu et al., 2013)) and that has just recently been released

(SplicingCompass (Aschoff et al., 2013)). We define a true positive

as a gene where at least one of the originally changed alternative

exon was correctly identified by the method.

On the ‘simple’ dataset, jSplice provides by far the shortest run-

ning time when compared to other methods (Fig. 2a). A comparison

of jSplice and DEXSeq, which is second to jSplice, shows a 28-fold

improvement when accounting for the number of cores. In terms of

accuracy, jSplice displays the highest specificity and sensitivity

(Fig. 2b). Its F-score—a performance measure that combines sensi-

tivity and specificity into one single value—is largely superior to the

second best method: DEXSeq (0.77 for jSplice and 0.51 for

DEXSeq). DEXSeq compares favorably against rMATS and MISO

as it provides a higher sensitivity and similar specificity. DiffSplice

identified only three genes with differential alternative splicing and

two turned out to be true positives. SplicingCompass, for an un-

known reason and despite our best efforts, kept returning an error.

Of note, all but 3 true positives identified by rMATS were also iden-

tified by jSplice (Chi-square test P-value of 2.75�10�5). To the ex-

ception of MISO, no bias in genes with low total expression was

observed in any method (Fig. 2c).

As jSplice depends on the quality of the read alignment, we

tested its performance using TopHat instead of STAR. Regarding

the alignment performance, TopHat detected on average fewer true

junctions than STAR (18 649 versus 18 820) but demonstrated a

better specificity (93% versus 90%). However, the junction read

count of STAR showed a better correlation to the true junction read

count (Pearson’s rho of 0.995 versus 0.961). In terms of jSplice’s ac-

curacy, it translated into a slightly lower specificity (89% versus

93%) with TopHat. A comparison with the true alignment, i.e. as

defined by the simulation engine, revealed that the read aligner has

little influence on jSplice (Supplementary Fig. S1). Lastly, the run-

ning time of the two methods differs enormously. While it took only

8 min per file for STAR, TopHat completed the task in 2 h and

34 min, a 20-fold difference.

jSplice’s method relies on junctions as a primary source of infor-

mation and then complements this with exons (‘optional step’ in

Fig. 1). In principle, this second step can be skipped resulting in a

small drop in sensitivity—65% to 61%—without affecting specifi-

city (93% versus 94%). This indicates that even though exon infor-

mation is beneficial, junction reads are the main contributors to

jSplice’s accuracy.

Based on these results, it appears that jSplice demonstrates super-

iority over MISO, rMATS, SplicingCompass, DiffSplice and

DEXSeq in detecting major splicing changes in the absence of biolo-

gical noise. Importantly, it provides a tremendous speedup when

compared to all tested software, enabling thus the analysis of large

datasets.

3.2 jSplice is robust to biological noise and

parameter changes
Application of jSplice and its two closely related analytical tools

(DEXSeq and rMATS) on the ‘complex’ dataset confirmed its ad-

vantages in identifying genomic regions with consequent alternative

splicing changes (Fig. 3a). Interestingly, in the presence of biological

noise, DEXSeq’s performance dropped. Nonetheless, if test criteria

were relaxed to focus at genes only, that is irrespective of the identi-

fied exons, DEXSeq’s sensitivity raises to 26% but remains inferior

to rMATS and jSplice (35% and 37%). Quite noticeably, rMATS

and jSplice share only two third of their true positives (Fig. 3b).

However, jSplice was able to identify many true positives identified

by DEXSeq but not by rMATS. This tends to indicate that jSplice is

able to capture a wider and different range of splicing events than

DEXSeq or rMATS. An analysis of sensitivity with respect to the

amplitude of the true change revealed that jSplice’s sensitivity in-

creases with the amplitude of the change (Fig. 3c). A similar behav-

ior is observed with rMATS and DEXSeq but rMATS seems to

plateau at 50% sensitivity.

Fig. 2. Performance of jSplice on the ‘simple’ simulated data. (a) Comparison

of execution time in hours (h) and minutes (min) of several methods.

Multithreading was used whenever available (depending on the software and

cluster load) and the number of used cores (cpus) is indicated next to each re-

sult. All pipelines were run with STAR whose execution time is not included.

(b) Accuracy comparison of the indicated methods. (c) Percentage of identi-

fied genes with low expression (below 5RPKM) for each indicated method.

‘All (truth)’ represents the 100 genes that were originally modified to have dif-

ferential alternative splicing
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jSplice relies on four user-defined thresholds (relative fold-

change, minimum read count, Fisher’s exact test P-value and inclu-

sion percentage) and consequently their influences on the results

were tested. For the simulations, true alignments were used to dis-

card any bias induced by the read aligner. One could observe that al-

though the removal of one or another threshold affects the

sensitivity or specificity of jSplice, its F-score remained unchanged

(Supplementary Fig. S2a). Additionally, smaller coverage (20M

reads), lack of replicates, or use of 48-bp reads (Supplementary Fig.

S2b, c and d), reduces the amount of available information and im-

pacts the performance of jSplice. This however translates into a

lower sensitivity and a higher specificity, affecting, in the end, only

moderately the accuracy of jSplice. An increase in the total number

of reads (100 M) or the use of more than two replicates did not actu-

ally improve jSplice’s accuracy (Supplementary Fig. S2b and d). For

the sake of comparison, we investigated the use of rMATS’ param-

eter to threshold the amplitude of the splicing change—a parameter

similar to our relative fold-change threshold—but did not observe

any improvement of its accuracy, rather a trade-off between sensitiv-

ity and specificity (Supplementary Fig. S3).

Taken together, the results from the ‘simple’ and the ‘complex’

simulations suggest that the flexibility offered by the four thresh-

olds, the presence of biological noise, or the use of different RNA-

seq setups, does not influence the high specificity of jSplice. Splicing

changes identified by jSplice may therefore by more likely validat-

able through PCR reactions of biological material.

3.3 Application of jSplice to real data sets confirms its

rapidity and accuracy
Simulated data have their limitations and hence we tested jSplice on

two publicly available datasets from Griffith et al. (2010) and

Trapnell et al. (2012a). Griffith et al. performed RNA-sequencing

on fluorouracil-resistant and –nonresistant human colorectal cancer

cell lines (50 M of 42-bp reads, no replicates) and assessed 189 cas-

sette exons by RT-PCR, which makes it the most extensively tested

dataset for differential alternative splicing to date. Based on those

results, we categorized each cassette exon as differentially expressed

(DE) or not, resulting in 41 DE events (38 genes) and 77 non-DE

events (77 genes) (Supplementary Table S1). Using this dataset, we

observed striking differences between different methods (Fig. 4a).

rMATS returned only 7 genes whereas jSplice, MISO and ALEXA-

Seq yielded 280, 324 and 1724 genes respectively. Of note, all three

true positives identified by rMATS were also identified by jSplice,

which is consistent with the results on simulated data. Even though

jSplice and MISO identified a similar number of events, the agree-

ment between the two methods was weak; 43 common genes.

Nonetheless, for a similar number of genes in the RT-PCR validated

set, jSplice greatly outperformed MISO. Note that the gene selection

for the PCR validation was based on the results from ALEXA-seq,

which introduces a bias. DEXSeq, DiffSplice and SplicingCompass

require replicates and hence could not be run on the Griffith dataset.

Trapnell et al. performed RNA-sequencing on a HOXA1 knock-

down experiment in human fibroblasts and RNA-sequencing (20 M

of 100-bp reads in triplicates). However, few alternatively spliced

genes were validated through PCR experiments. Application of jSplice

and other methods to the Trapnell dataset revealed an extensive dis-

agreement in terms of identified genes with differential alternative

splicing (Fig. 4b). SplicingCompass failed to complete the task (un-

known error) and DiffSplice returned no results at a 10% FDR.

DEXSeq predicted the highest number of genes with DE splicing

events (250 genes), but only 10% of these were also identified by an-

other method, suggesting low specificity. Consistent with the results

on the Griffith dataset, rMATS identified few genes and all were de-

tected by jSplice and at least another method, suggesting low sensitiv-

ity but high specificity for rMATS. In general, two thirds of the genes

identified by several methods were also identified by jSplice, which

hints at a high specificity. In their original publication, Trapnell et al.

(2012a) selected 4 genes with DE transcripts for PCR validation:

TBX3, CDC14B, ORC6 and CDK2. However, with the exception of

DEXSeq, which detected CDC14B and jSplice, which identified

TBX3, no other method reported any of the four genes.

The two above-mentioned datasets represent examples of RNA-

seq experiments performed with biological samples and thus can be

used to assess jSplice’s speed improvement over existing methods.

Consistent with the results on the simulated data, jSplice provides a

massive speedup over existing methods (Fig. 4c and d). Accounting

Fig. 3. Performance of jSplice on the ‘complex’ simulated data (50 M of 100-

bp reads, aligned with STAR). (a) Accuracy comparison of the indicated meth-

ods. (b) Overlap of true positive genes identified by the different methods. (c)

Sensitivity with respect to absolute changes in transcript expression. The

number of genes per category is indicated in parentheses

Fig. 4. Performance of jSplice on real data. (a) Results of rMATS, MISO,

ALEXA-Seq and jSplice on the Griffith dataset. Other methods require repli-

cates and could not be run on this dataset. The number in parenthesis repre-

sents the total number of PCR-tested genes identified by each method. For

instance, among the differentially spliced genes identified by jSplice, 10 were

tested by PCR by Griffith et al. and 7 were validated as differentially spliced.

(b) Result comparison of several methods on the Trapnell dataset. Execution

times of several methods on (c) the Griffith dataset and (d) the Trapnell

dataset
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for the difference in computing cores, it yielded a 65-fold improve-

ment over DEXSeq on the Trapnell dataset. In conclusion, a test on

two public real datasets confirmed the results from the simulated

data—a tremendous speedup and a superior accuracy—and revealed

large discrepancies in results between state-of-the-art methods.

3.4 Experimental examination of VHL tumor

suppressor-regulated alternative splicing changes in

renal carcinoma cell lines
Tumorigenesis is associated with profound alternative splicing

changes affecting virtually all aspects of cancer biology (Oltean and

Bates, 2013; Sette et al., 2013) but only a handful of genes have

been well characterized with respect to their splicing isoform func-

tion in tumor formation, growth and metastasis. Biallelic inactiva-

tion of the von Hippel-Lindau (VHL) tumor suppressor gene is a

signature feature of ccRCC but its potential role in alternative splic-

ing regulation has not been yet investigated. To investigate the mat-

ter, we engineered RCC4 renal cell carcinoma cells, which are VHL-

deficient, to re-express the VHL gene product pVHL, and carried

out transcriptome sequencing in cells expressing VHL (RCC4-VHL)

and control cells (RCC4-EMPTY). Western blot analysis of the pro-

tein samples confirmed pVHL re-expression, as well as diminished

abundance of pVHL’s degradation targets HIF1 and HIF2 and re-

pression of GLUT1, a prominent target of HIF regulation (Fig. 5a).

Total gene expression levels from the RNA-sequencing results con-

firmed inhibition of canonical HIF target genes EGLN3, LDHA

and SLC2A1 in RCC4-VHL cells, whereas ACTB remained un-

changed (Fig. 5b). Thus, the 6VHL RCC4 cell line pair functionally

recapitulates the situation of VHL inactivation in RCC.

To obtain insight into the regulation of alternative splicing by

VHL, we analyzed the RNA sequencing results with jSplice and

identified four genes—MYO6 (myosin VI), DNMT3B (DNA

(cytosine-5)-methyltransferase 3 beta), NEDD4L (neural precursor

cell expressed, developmentally down-regulated 4-like, E3 ubiquitin

protein ligase) and TMCC1 (transmembrane and coiled-coil domain

family 1)—whose transcript abundance was consistently altered

across three independent pVHL re-introduction experiments (Fig.

5c; genomic coordinates of the identified ASMs are given in

Supplementary Table S2). A comparative analysis using

SplicingCompass, DiffSplice, DEXSeq, rMATS and MISO on the

pVHL re-introduction RNA-seq samples revealed no overlap across

methods except for genes identified by jSplice, which were, to the

exception of TMCC1, all identified by at least another method.

Again, a huge reduction in execution time was observed for jSplice

when compared to the other methods.

In order to verify the results of the software analysis, we per-

formed real time quantitative PCR (qPCR) measurement of specific

gene transcripts as well as total gene expression. In all four cases,

qPCR results concurred with the in silico analysis (Fig. 5d).

The analysis by qPCR allows quantitative measurements of

mRNA species across conditions, but it does not provide direct in-

formation about the relative contribution of each mRNA transcript

to the total gene expression. Consequently, we carried out a semi-

quantitative PCR analysis using a similar setup. Results recapitulate

the quantitative isoform measurements by real-time qPCR, which

are an isoform switch for MYO6 and the up-regulation of an alter-

native transcript for DNMT3B and NEDD4L (Fig. 5e).

Experimental validation confirmed thus the findings of jSplice.

3.5 Application of jSplice identifies tumor-specific

alternative splicing events in human kidney cancer
Next, we set out to further identify genes undergoing alternative

splicing in ccRCC and assess the applicability of jSplice to large-

scale datasets. To this end, we analyzed a previously described gen-

omic data from the TCGA consortium from 65 ccRCC patients

(Supplementary Table S3) and identified 1225 ASMs with a relative

fold-change superior to 2 in at least 5 patients (Fig. 6a and

Supplementary Table S4). In this regard, we note that jSplice ana-

lyzes each patient independently and does not attempt to identify

splicing events significantly changed across the whole cohort. This

allows, in turn, for an independent and subsequent clustering ana-

lysis of the identified splicing events in order to identify subgroups

within the cohort. Exon read counts were already provided by the

TCGA and hence removed the need to perform CoverageBed calls,

which in turn allowed the analysis to complete in a mere 45 min on

a desktop computer. A similar analysis executed with MISO or

rMATS would have taken weeks to complete and required a few

terabytes of disk space. The application of DEXSeq or DiffSplice is

not possible due to the availability of only one sample per patient.

Of the four splicing events identified in the VHL re-introduction

experiment, only MYO6 was also reported in the jSplice analysis of

the TCGA data. DNMT3B is too lowly expressed to meet the read

count threshold, the short transcript of NEDD4L is never a major

one, and the short junction of TMCC1 is not reported. Nonetheless,

an expression analysis at the exon level confirmed that the splicing

changes identified in RCC4 cell lines upon VHL re-introduction do

also occur in patients (Supplementary Fig. S3). Of note, the VHL

mutation rate in the 65 patients is of 55% but did not reveal any

pattern in alternative splicing (Fig. 6a).

In the TCGA data, jSplice detected a FGFR2 (fibroblast growth

factor receptor 2) mRNA isoform switch (Fig. 6b), which had al-

ready been reported (Zhao et al., 2013), and a cassette exon in SYK

(spleen tyrosine kinase), whose tyrosine kinase protein product is a

Fig. 5. Relative mRNA abundance of MYO6, DNMT3B, NEDD4L and TMCC1

isoforms as a function of pVHL status. (a) Western blot of protein samples iso-

lated from the RCC4-EMPTY and RCC4-VHL cell lines with antibodies against

indicated proteins. (b) qPCR results on RCC4-EMPTY and RCC4-VHL cell lines

and indicated genes (N¼ 3 independent experiments, error bars indicate

SEM). (c) Schematic view of the four alternative splicing events identified by

jSplice. (d) qPCR analysis of transcript expression of indicated genes. ‘Ratio’

represents the long/short ratio of the qPCR signal (N¼ 3 independent experi-

ments, error bars indicate SEM). (e) RT-PCR results. Primers were designed

to bind flanking exons of the alternatively spliced regions and to give rise to

the PCR products corresponding to the two alternative splicing transcripts dif-

ferentially expressed in 6pVHL RCC4 cells

2116 Y.Christinat et al.

Deleted Text: Figure 
Deleted Text: Figure 
Deleted Text: &hx2009;
Deleted Text: ,
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw145/-/DC1
Deleted Text: ,
Deleted Text: Figure 
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw145/-/DC1
Deleted Text: Figure 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw145/-/DC1
Deleted Text: minutes 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw145/-/DC1
Deleted Text: Figure 
Deleted Text: Figure 


key regulator of immune signaling (Fig. 6c) (Lowell, 2011; Mocsai

et al., 2010). Up-regulation of the long isoform of SYK has been pre-

viously reported in breast and ovarian cancers (Klinck et al., 2008;

Prinos et al., 2011; Wang et al., 2003) but has not been yet associ-

ated to ccRCC.

Another interesting example from jSplice’s results is the MAP

kinase interacting serine/threonine kinase 2 (MKNK2). Alternative

splicing of MKNK2 has been recently shown to be a tumor-promot-

ing mechanism present in breast, lung and colon cancer (Maimon

et al., 2014). The pro-oncogenic isoform, MKNK2b, lacks the

MAPK-binding site but enhances protein synthesis. Based on junc-

tion information, we could observe that the MKNK2b mRNA tran-

script has a higher expression in tumor tissue (Fig. 6d). To assess

whether its expression with respect to the MKNK2a transcript cor-

relates with patient outcome, 475 ccRCC patient samples from the

TCGA archive were stratified into two equally sized groups based

on their MKNK2b/MKNK2a ratio. Kaplan-Meier plots showed that

patients with high levels of MKNK2b display a significantly worse

overall survival (log-rank P-value: 5.95�10-7, Fig. 6e).

To conclude, a jSplice analysis of 65 ccRCC mRNA samples identi-

fied, in less than an hour, multiple alternative splicing events associated

to ccRCC. Alternative splicing of MYO6, which was linked to VHL in

RCC4 cells, has been confirmed in ccRCC patient data. Furthermore,

this analysis revealed several other splicing events that were previously

reported in other cancer types but not in clear cell renal cell carcinoma

providing a new entry point for treatment for ccRCC.

4 Discussion

Recent studies concur that most if not all of human multi-exon genes

yield multiple splice isoforms through alternative splicing.

Alternative splicing is also highly context-dependent and promotes

an enormous diversification of gene function that dictates tissue dif-

ferentiation, development and, when misregulated, disease develop-

ment. With transcriptomes of different tissues and disease states

becoming readily available through the application of high-through-

put RNA-sequencing, analytical methods to distinguish and quantify

mRNA isoforms hold the potential for an unbiased and thorough in-

sight into alternative splicing. However, data analysis is not trivial

and, as a result, the development of software for fast, reliable and ul-

timately routine detection of alternative splicing lags currently be-

hind the sequencing capabilities. The development of jSplice

described here provides an important advance as it provides a

method of unmatched specificity, sensitivity and rapidity for the

analysis of AS events, key elements that currently hinder the compre-

hensive analysis of large-scale experiments. Thus, jSplice is highly

suitable for reliable analysis of alternative splicing events in large-

scale transcriptome data. Application of jSplice on RNA-seq data-

sets of renal carcinoma cells and human ccRCC tissues revealed

novel, validatable VHL- and renal cancer-dependent alternative

splicing events substantiating the value of jSplice as an analytical

tool for genome-wide analysis of AS events.

jSplice relies on a novel junction-based definition of alternative

splicing modules that allows for a rapid detection of alternative splic-

ing events, simple or complex, without having to rely on a predefined

set of transcripts such as implemented in rMATS or MISO. The con-

cept of ASMs confers generality while keeping complexity at a low

level but the associated software, DiffSplice, suffers from high execu-

tion time and low accuracy. Another key feature of jSplice is its en-

tirely different method for the assessment of differential expression.

That is, to focus on expression fold-change instead of modeling biolo-

gical and technical variations. Models of read count distribution are

necessary to estimate transcript abundance for a given experiment and

to assess the statistical significance of the change. However a simple

fold-change threshold, as implemented in jSplice, seems, in practice,

sufficient to detect large splicing changes in comparisons of experi-

ments. Supporting that argument, Rehrauer et al. (2013) recently

pointed out that a fold-change measurement is sufficient to identify

differential expression of genes. Of note, as the complexity of an ASM

increases, so does the number of pairwise comparisons, which in-

creases the possibility of identifying a false positive. In this specific

state, jSplice may potentially overreport complex ASM. Variability be-

tween replicates is inherent to biological experiments and, in the con-

text of our simulations, affected all tested methods. Nonetheless

jSplice aims at ranking splicing events by the amplitude of the change

in order to provide a list of validatable genes for experimental biolo-

gists. In that respect the larger changes are potentially the most rele-

vant ones and jSplice showed a better accuracy than DEXSeq and

rMATS in detecting those. Additionally, we demonstrated that the use

of a different read aligner, different parameters, or a different RNA-

sequencing setup did not impact jSplice’s high specificity.

Application of jSplice to detect alternative splicing events in

renal carcinoma cells as a function of pVHL status identified alter-

native splicing events in MYO6, DNMT3B, NEDD4L and

TMCC1. Since loss of VHL represents a signature lesion in human

ccRCC, it is attractive to consider that one or more of these changes

in alternative splicing contribute, in part, to renal carcinogenesis.

Myosin VI (MYO6), whose alternative splicing event was identified

by jSplice in both cell lines experiment and TCGA data, moves

Fig. 6. jSplice analysis of human ccRCC cases from the TCGA archive. (a)

Biclustering of patient-specific relative fold-change, as returned by jSplice, for

each of the 1225 identified ASMs across the 65 TCGA patients with respect to

their VHL mutation status. (b) Expression levels of FGFR2 exons. Only the first

3 flanking exons are displayed. (c) Expression levels of the identified SYK cas-

sette exon together with the first 3 flanking exons on each side. (d)

Expression levels of MKNK2 junctions. The alternative end exons are not

annotated in the TCGA but the corresponding junctions are. Hence analysis

was performed on junctions. (e) Kaplan-Meier curves of 475 ccRCC patients

from TCGA, grouped by their MKNK2b/MKNK2a ratio. The latter is computed

as the ratio of junction read counts. A threshold of 2 corresponds to the me-

dian. The red line represents patients above the threshold and the blue line

represents patients below the threshold. In (b), (c) and (d) events identified by

jSplice are outlined in orange. Splice graphs, with alternative exons in gray,

were inferred from UCSC annotations
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toward the minus end of actin filaments and is involved in the trans-

port of vesicles and organelles (Tumbarello et al., 2013). The three

exons that we found alternatively spliced in renal carcinoma cells

encode a fragment referred to as ‘long insert’ located in the cargo

binding tail of myosin VI (Buss et al., 2001; Tumbarello et al.,

2013). Thus, the presence of the ‘long insert’ may affect motor-cargo

interactions. It may also confer preferential expression in polarized

cells (such as kidney cells (Buss et al., 2001; Hasson, 2003)). As the

long isoform of Myosin VI is more abundant in pVHL-proficient

renal carcinoma cells and in healthy tissue compared to tumor, it is

conceivable that a myosin VI switch from the long to the short iso-

form may contribute to the loss of polarization of transformed kid-

ney cells. DNMT3B is implicated in chromatin methylation and has

been previously shown to be differentially spliced in multiple cancer

types (Klinck et al., 2008; Ostler et al., 2007; Saito et al., 2002;

Vasanthakumar et al., 2013; Venables et al., 2008; Wang et al.,

2007). Also the alternative exon identified in this study has been pre-

viously shown to discriminate between pluripotent and differenti-

ated cells (Gopalakrishna-Pillai and Iverson, 2011). Thus, pVHL-

dependent changes in DNMT3B splicing may be added to the grow-

ing list of chromatin modifying enzymes functionally altered in

human ccRCC. NEDD4L has been shown to regulate TGF-beta sig-

naling (Gao et al., 2009) and its gene expression has been associated

with several cancers (Hu et al., 2009; Sakashita et al., 2013;

Tanksley et al., 2013). However the reported alternative splicing

event has not been explored. TMCC1 is the least studied of the four

genes identified in the jSplice analysis in renal carcinoma cells. In a

recent study, it has been shown to anchor in the endoplasmic reticu-

lum (ER) to regulate ER membrane organization and the attachment

of ribosomes to the ER (Zhang et al., 2014). The short isoform iden-

tified in this study would encode only the C-terminal transmem-

brane domain and create a loss of function.

It has been previously reported that splicing events are not neces-

sarily specific to one cancer type, but rather that common splicing sig-

natures exist (Klinck et al., 2008; Oltean and Bates, 2013; Sette et al.,

2013; Venables et al., 2008, 2009; Zhao et al., 2013). Consistent with

this notion, our jSplice analysis of RNA-seq data from human ccRCC

obtained from the TCGA archive unveiled potentially generic alterna-

tive splicing events in SYK (previously shown to occur in breast and

ovarian cancer (Klinck et al., 2008; Prinos et al., 2011; Wang et al.,

2003)), and MKNK2 (found in breast, lung and colon cancers

(Maimon et al., 2014)). In the case of MKNK2, we observed a highly

significant correlation between the relative expression of the MKNK2

isoforms and patient outcome. Given the very encouraging reports on

the recent development of orally available small molecule splicing

modifiers for the treatment of spinal muscular atrophy (Naryshkin

et al., 2014), it will be exciting to explore the possibility of targeting

MKNK2 alternative splicing as a line of therapy in cancer.

AS analysis of large-scale patient data, such as provided by the

TCGA, is currently unachievable with other software such as

DEXSeq (Anders et al., 2012) or rMATs (Shen et al., 2014). Their

long execution time or their inability to use read counts as inputs

renders them impractical for large-scale analyses. In that respect,

jSplice offers a convenient and fast solution. As a consequence, a

pan-cancer analysis of alternative splicing in patient data is now

feasible and may reveal potential splicing signatures suitable for

diagnostic and therapeutic applications.
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