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Abstract Meindl et al. (Adv Space Res 51(7):1047-1064,
2013) showed that the geocenter z-component estimated
from observations of global navigation satellite systems
(GNSS) is strongly correlated to a particular parameter of
the solar radiation pressure (SRP) model developed by Beut-
ler et al. (Manuscr Geod 19:367-386, 1994). They analyzed
the forces caused by SRP and the impact on the satellites’
orbits. The authors achieved their results using perturbation
theory and celestial mechanics. Rebischung et al. (J Geod
doi:10.1016/j.asr.2012.10.026, 2013) also deal with the geo-
center determination with GNSS. The authors carried out a
collinearity diagnosis of the associated parameter estimation
problem. They conclude “without much exaggerating that
current GNSS are insensitive to any component of geocenter
motion”. They explain this inability by the high degree of
collinearity of the geocenter coordinates mainly with satel-
lite clock corrections. Based on these results and additional
experiments, they state that the conclusions drawn by Meindl
et al. (Adv Space Res 51(7):1047-1064, 2013) are question-
able. We do not agree with these conclusions and present
our arguments in this article. In the first part, we review and
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highlight the main characteristics of the studies performed
by Meindl et al. (Adv Space Res 51(7):1047-1064, 2013)
to show that the experiments are quite different from those
performed by Rebischung et al. (J Geod doi:10.1016/j.asr.
2012.10.026,2013) . In the second part, we show that nor-
mal equation (NEQ) systems are regular when estimating
geocenter coordinates, implying that the covariance matri-
ces associated with the NEQ systems may be used to assess
the sensitivity to geocenter coordinates in a standard way.
The sensitivity of GNSS to the components of the geocenter
is discussed. Finally, we comment on the arguments raised
by Rebischung et al. (J Geod doi:10.1016/j.asr.2012.10.026,
2013) against the results of Meindl et al. (Adv Space Res
51(7):1047-1064, 2013).
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1 A review of the article (Meindl et al. 2013)

Data basis and motivation Time series of geocenter coordi-
nates were determined, separately from GPS and GLONASS
observations, for the years 2008—2011. The four years of data
were recorded by 92 globally distributed and permanently
observing GPS/GLONASS receivers.

Whereas the x- and y-components of the geocenter were
found to agree quite well for the two systems, large periodic
excursions were visible in the GLONASS z-component. The
variations show an eye-catching correlation with the maxi-
mum and minimum values of the angle B, the Sun’s elevation
above/below the orbital planes, suggesting a correlation of
the z-component with one of the estimated orbit parameters
(or with a linear combination thereof).
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Mathematical/physical approach Meindl et al. (2013)
apply the methods of first-order perturbation theory and
celestial mechanics to study the correlation mechanism. Each
orbit is modeled by six initial osculating elements and five
SRP parameters (Meindl et al. 2013). In a first step, they
decompose the constituents of the SRP model into the com-
ponents R, S, and W of a system co-rotating with a GNSS
satellite. The first axis er of this system points from the geo-
center to the satellite; the second axis eg is orthogonal to e
and lies in the orbital plane; the third axis ew is normal to the
orbital plane. They show that an acceleration associated with
the direct SRP parameter Dg always (except for B; = 0°)
causes an acceleration Wp = Dy sinfs, which is orthogonal
to the orbital plane.

In a next step, they explicitly solve the Gaussian perturba-
tion equations (Beutler 2005, Vol I, Chapter 6.3) of a GNSS-
like satellite for a constant acceleration W in W-direction.
They find that the resulting perturbed orbit is shifted in par-
allel w.r.t. a mean orbit by the distance of

w
ow = —

5 (in units of meters),
n

where n is the mean motion of the satellite. Consequently,
the constant SRP parameter Dy is always associated with a
parallel shift of the orbit.

Relation of geocenter z-coordinate and SRP Based on
three different (theoretical) GNSS configurations, the authors
explain the mechanism of how a parallel shift of an orbital
plane may be (partly) compensated by a z-shift of the geocen-
ter. They raise the question whether an estimated geocenter
shift may be described by the differences of two sets of Dy
parameters, where one Dy-set is estimated together with geo-
center coordinates and the other without. Based on the results
from perturbation theory, they derive the equation

_ > ADgsin By

8z 3

ey

n+cosi

describing the geocenter z-shift §z as a function of the mean
plane-specific Dy-differences ADy, £ = 1,2, ..., p, of all
p orbital planes. The angle B, is the elevation angle of the
Sun w.r.t. the orbital plane £ and i is the inclination of the
planes (assumed to be the same for all satellites).

Meindl et al. (2013) applied Eq. (1) to the four-year
GLONASS and GPS time series and were able to represent
the estimated z-shifts of the geocenter to a remarkable degree
solely based on the Dy-differences. Not only the size but also
the complicated signature is represented very accurately for
both systems, GLONASS as well as GPS.

The results were illustrated by Figs. 7 and 10 in (Meindl
et al. 2013), showing the estimated geocenter z-components,
the corresponding values calculated with Eq. (1), and the
differences of both. As the two figures show the key findings
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Fig. 1 Estimated (black) and calculated (gray) z-coordinates of the
geocenter and their differences (bottom) for GLONASS
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Fig. 2 Estimated (black) and calculated (gray) z-coordinates of the
geocenter and their differences (bottom) for GPS

of the study, they are reproduced here for convenience as
Figs. 1 and 2.

The two figures directly illustrate the quality of the
approximations by Eq. (1): It is better than about 30 % for
GLONASS and 15 % for GPS. This approximation is suf-
ficient for the analysis presented by Meindl et al. (2013).
Refinements of formula (1), including the impact of other
SRP parameters, would be possible but were not considered
by Meindl et al. (2013).

2 Estimating geocenter coordinates with GNSS

Definition Meindl etal. (2013) understand geocenter esti-
mation as the determination of the components of the offset
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vector G of the entire network of n tracking stations w.r. t. the
Earth’s instantaneous center of mass. The geocentric position
vector of a single station i = 1,...,n is given by R; — G,
where R; is the station position w.r.t. the origin of the ter-
restrial reference frame.

Normal equation systems Geocenter coordinates, i.e., the
components of G, must be estimated together with all other
parameters occurring in a data analysis of global networks.
Following the least-squares principle, the normal equation
(NEQ) system

ATPAx —ATPI=Nx-b =0, )

can be established, where A is the first design matrix, P is the
weight matrix associated with the GNSS observations, and
[ is the difference between the observations and the mathe-
matical model evaluated at the a priori values. The definitions
for the NEQ matrix N and vector b are obvious from Eq. (2).
The NEQ system can be solved for x, the unknown parameter
increments w.r.t. the a priori values.

NEQ regularization Matrix N may or may not be regu-
lar. In global GNSS analyses, it is usually not, e.g., due to
correlations of polar motion and UT1-UTC parameters with
station network rotations and with the right ascension of the
ascending nodes of the satellites.

Itisin particular not possible to solve for geocenter motion
G and station coordinates R; simultaneously without pro-
viding additional information, because G represents a lin-
ear combination (weighted mean value) of all individual sta-
tion coordinate changes. This singularity may be removed by
introducing a no-net-translation (NNT) condition for the esti-
mated coordinate corrections w.r.t. the corresponding a pri-
ori values for each of the three components x, y, and z.

The regularization conditions may be written as observa-
tions of special linear combinations of the estimated parame-
ters

Hx =0, 3)

where H is the coefficient matrix. To distinguish these obser-
vations from the ordinary GNSS observations, we call them
pseudo-observations. Consult (Dach et al. 2007, Sect 9.3.9)
for details concerning the coefficient matrix H of NNT con-
ditions.

Applying the NNT conditions through the pseudo-
observation equations (3) is a necessity if the geocenter is
estimated together with the station coordinates. Other corre-
lations and resulting singularities are not of our interest here
and we just assume that the necessary regularizations are
applied correctly. The normal equation contribution associ-
ated with Eq. (3) is

H'P.Hx=0. 4)

The dimension of the weight matrix P, equals the sum of
all scalar conditions to be imposed, e. g., three for the NNT
conditions. The weight matrix is usually assumed as diagonal
and the i-th diagonal element is defined as P, ; = 002 / O’CZJ- (00
is the a priori error of unit weight and o, ; is the admissible
RMS error of the network translation values, respectively).

The resulting complete NEQ system now reads as

(N —i—HTPCH)x —Nx=b. (5)

Alternatively to the regularization based on NNT condi-
tions, one may constrain the station coordinates on their a pri-
ori values (by eliminating them from the NEQ system) and
leave only the common offset G in the system. The latter
avenue was actually chosen by Meindl et al. (2013), where
the a priori coordinates were defined according to Meindl
(2011, p. 98 “Multi-year solution™).

Sensitivity of GNSS to geocenter motion The normal equa-
tion matrix N may be decomposed into a part N 11 related to
all parameters except the geocenter coordinates, and a part
N 22 related to the three geocenter coordinates:

N= (IYIT1 1}’12). 6)
Nip Nz

N is the normal equation matrix corresponding to a global

analysis without geocenter estimation. By pre-eliminating

all parameters of N 11, we obtain the following (3 x3)-NEQ

matrix for the three geocenter coordinates:

~ ~ ~T ~—1~
NGCC =N22—N12N11N12~ (7)

Equation (7) assumes the regularity of N ;.

The reduced NEQ matrix N. ccc is regular: A singular
value decomposition (for the arbitrarily chosen day 60 of year
2011) results in the 2-norm condition numbers 2.9 and 6.5 for
the GPS-only and GLONASS-only matrices, respectively.

The covariance matrix ag ‘N, (Eéc (where oy is the a pos-
teriori standard deviation of unit weight) therefore tells how
well the geocenter may be determined. Table 1 contains the
RMS errors of the estimated geocenter coordinates when set
up as unknown parameters.

To illustrate the sensitivity of the GNSS NEQ systems
w.r.t. the z-component of the geocenter furthermore, we gen-
erated global solutions without solving for the geocenter, but
keeping it fixed at values shifted w.r.t. the suspected true
value.

If the NEQ systems were not sensitive to the geocenter,
the a posteriori standard deviations of unit weight would not
change as a function of the fixed geocenter positions. Fig-
ure 3 shows that the a posteriori standard deviation of the
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Table 1 Average RMS (in mm) of daily geocenter estimates from GPS
and GLONASS for 2011; the a posteriori standard deviations of unit
weight are around 1.3 mm for both systems

Component GPS GLONASS
X 0.9 1.6
y 0.9 1.6
b4 1.3 4.4
3

a \/

1 . . . . .
-200  -150  -100 -50 0 50 100 150 200

Geocenter shift (in cm)

Standard deviation (in mm)

Fig. 3 A posteriori standard deviation of unit weight as a function of
the geocenter shift for GPS (gray) and GLONASS (black)

observations is a function of the introduced z-shifts of the
geocenter. Similar figures may be generated for the x- and y-
components of the geocenter showing even more pronounced
sensitivities. Let us point out that Fig. 3 merely is an illustra-
tion. Table 1 tells how well the geocenter may be estimated
from GPS and GLONASS, respectively, in a statistically per-
fect environment.

Based on Table 1 and Fig. 3 we conclude that properly
constrained GNSS NEQ systems are sensitive to the geocen-
ter coordinates.

3 Remarks concerning section “8 Discussion” in
(Rebischung et al. 2013)

Rebischung et al. (2013) dedicate their section “8 Discus-
sion” almost completely to commenting the results achieved
by Meindl et al. (2013). Subsequently, we will address the
most important aspects raised in sections 8.1 and 8.2 of this
article.

“8.1 Comments to Meindl et al. 2013 Rebischung et al.
(2013)” state that the main argument of Meindl et al. (2013)
relies on experiments that are similar in essence to their
simulations. However, as summarized in Sect. 1, the main
topic of Meindl et al. (2013) is the analysis of the correla-
tion of the geocenter z-component with the SRP parameters,
especially the constant Dy parameter. This analysis is purely
based on perturbation theory and celestial mechanics and is
as such independent of any experimental setup. The GPS and
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GLONASS time series, each based on four years of observa-
tion data, were then used to successfully confirm the findings.

Rebischung et al. (2013) introduce an artificial geocenter
shift §z = 1cm in their simulations and in real solutions
(provided by ESA) to test Eq. (1). They find that they were
unable to reproduce the results from Meindl et al. (2013) and
implicitly conclude that Meindl et al. (2013) must be wrong.

As Rebischung et al. (2013) were not able to reproduce
our results, we performed their experiment using, however,
the data sets and general analysis procedures outlined previ-
ously. The two solutions required for Eq. (1) were computed
with the geocenter offset G fixed to zero and to (0, 0, 1) cm,
respectively. The mean value and standard deviation of the
daily shifts resulting from Eq. (1) are 9.4 and 1.4 mm for GPS
and 10.5 and 3.2 mm for GLONASS. Both mean values are
very close to the introduced shift §z = 1 cm. The day-to-day
variability of the z-shifts (expressed in percent) is compara-
ble to the differences in the original experiment as shown in
Figs. 1 and 2.

In Sect. 2, it was mentioned that the regularization of the
NEQ system may either be realized by a NNT condition or
alternatively by tightly constraining the station coordinates
to properly defined a priori values. All results presented by
Meindl et al. (2013) were based on the latter option. To rule
out the datum definition as a potential reason for the dis-
crepancies between Rebischung et al. (2013) and Meindl et
al. (2013), the “1 cm experiment” was repeated for GPS and
GLONASS following an alternative processing scheme.

The first set of Do parameters was computed from a
solution where only a no-net-rotation (NNR) condition was
imposed; the geocenter was implicitly realized by a trans-
lation of the entire station network. Subsequently, all esti-
mated station coordinates have been shifted by §z = 1cm,
re-introduced as new a priori values, and constrained by an
additional NNT condition. The resulting second set of Dy
parameters thus refers to a solution where the (implicit) geo-
center is shifted by 1 cm in z-direction and kept fixed. This
approach closely follows the procedure used by Rebischung
et al. (2013, email communication).

The resulting time series of z-shifts computed with Eq. (1)
exhibits a mean value of 7.8 mm and a standard deviation
of 1.2 mm for GPS and 9.5 and 2.9 mm for GLONASS,
respectively. The results are not the same as those achieved
with fixed coordinates and explicit geocenter parameters, but
they are still close to the expected shift of 1 cm. The definition
of the geodetic datum (fixed vs. NNT condition) can thus be
dismissed as a cause why Eq. (1) seems to be not valid for
the experiments in Rebischung et al. (2013).

“8.2 Lower quality of GLONASS-derived geocenter time
series” Rebischungetal. (2013) state that the geocenter time
series derived from GLONASS observations are of much
lower quality than GPS-derived geocenter time series. This
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Fig. 4 GLONASS-derived geocenter z-coordinates for year 2010 with
(black) and without (gray) ambiguity resolution

is a somewhat pessimistic point of view. The quality of the
GLONASS time series (at least in the years 2009-2011) is,
although not as good as, at least comparable to that of GPS.
Table 1 shows that the RMS ratio of the GLONASS geocenter
time series w.r.t. GPS is of the order of 2-3. Moreover, the
GPS- and GLONASS-specific time series of the geocenter
x-and y-components agree very well as shown in Meindl et
al. (2013, Fig. 2). It is, however, true that the z-component
shows large periodic variations for GLONASS, whereas GPS
does not exhibit such artifacts.

Rebischung et al. (2013) propose that these excursions
may be caused by the large number of unresolved ambigu-
ities: fewer than 50 % of the ambiguities are resolved for
GLONASS as compared to about 90 % for GPS (Meindl et
al. 2013). They support their assumption by the findings of
Springer (2000), who inspected GPS geocenter time series
from the CODE analysis center for the years 1993—-1999. Sig-
nificant geocenter z-variations of about 20cm were visible
before ambiguity resolution was activated in 1994.

The CODE processing protocols revealed, however, that
the average number of resolved ambiguities was only around
20 % during that time period. With this number in mind, it
seems not plausible that (the comparatively high) ambiguity
resolution rate of about 50 % for GLONASS is responsible
for the large periodic variations. To further clarify this issue,
we have recomputed the GLONASS geocenter time series for
the year 2010, once with ambiguity resolution, once without
resolving any ambiguities. Figure 4 shows that although the
noise is clearly higher for the ambiguity-float solution, the
signature is comparable in both, size and period, for the two
solutions.

4 Summary and conclusion

The estimation of geocenter coordinates from GNSS obser-
vations was recently discussed in two articles.

Meindl et al. (2013) derived the correlation between the
SRP parameter Dy and the z-component of the geocen-

ter using the methods of perturbation theory and celestial
mechanics. They validated the results with geocenter time
series derived from four years of GPS and GLONASS obser-
vations.

Rebischung et al. (2013), on the other hand, studied the
collinearity of the geocenter coordinates with other GNSS-
typical parameters. They base their study on a simulated set of
observations and find a very high collinearity of the geocen-
ter coordinates with the satellite clock corrections, whereas
the SRP parameters do not play a significant role. They con-
clude that: (a) GNSS are in general insensitive to geocenter
variations and (b) the results from Meindl et al. (2013) are
questionable.

In Sect. 2, we have shown that the NEQ matrices associ-
ated with geocenter determination are regular and that the
geocenter coordinates can be estimated with an accuracy
derived from the covariance matrix (at least in the absence
of systematic errors). The high collinearity of a parameter
with a linear combination of other parameters is not an indi-
cator for the determinability of almost collinear parameters.
A well-known example are troposphere parameters, station
height, and clock corrections (Rothacher and Beutler 1998).
Although highly correlated, the individual parameters still
can be determined quite well.

In Sect. 3, we have demonstrated that the experiments
and argumentation of Rebischung et al. (2013) do not allow
it to reject the results from Meindl et al. (2013). We have
in particular reproduced the “lcm experiment” of Rebis-
chung et al. (2013) and Eq. (1) works very well in our real-
ization of this experiment; the z-shift computed from the
Dy-differences is quite close to the expected 1 cm for both,
GPS and GLONASS. Additional experiments showed that
the geodetic datum definition (fixed coordinates vs. NNT
condition) is not responsible for Eq. (1) being valid or not.
Finally, ambiguity resolution has been ruled out as a reason
for the periodic variations of the GLONASS-derived geocen-
ter z-coordinate.

From our perspective, the results of the two articles (Rebis-
chung et al. 2013; Meindl et al. 2013) are not in conflict
as they address different aspects: the statistical properties
(collinearity) of geocenter coordinates as parameters in a
GNSS analysis on one hand; the mathematical correlation of
the geocenter z-coordinate with the direct SRP parameter Do
on the other hand. Both approaches give interesting insights
in the mechanism of geocenter estimation with GNSS and
are, as such, valuable scientific contributions.
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