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Abstract Nerve cells in the brain generate sequences of
action potentials with a complex statistics. Theoretical
attempts to understand this statistics were largely limited to
the case of a temporally uncorrelated input (Poissonian shot
noise) from the neurons in the surrounding network. How-
ever, the stimulation from thousands of other neurons has
various sorts of temporal structure. Firstly, input spike trains
are temporally correlated because their firing rates can carry
complex signals and because of cell-intrinsic properties
like neural refractoriness, bursting, or adaptation. Secondly,
at the connections between neurons, the synapses, usage-
dependent changes in the synaptic weight (short-term plas-
ticity) further shape the correlation structure of the effective
input to the cell. From the theoretical side, it is poorly
understood how these correlated stimuli, so-called colored
noise, affect the spike train statistics. In particular, no stan-
dard method exists to solve the associated first-passage-time
problem for the interspike-interval statistics with an arbi-
trarily colored noise. Assuming that input fluctuations are
weaker than the mean neuronal drive, we derive simple
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formulas for the essential interspike-interval statistics for
a canonical model of a tonically firing neuron subjected
to arbitrarily correlated input from the network. We verify
our theory by numerical simulations for three paradigmatic
situations that lead to input correlations: (i) rate-coded nat-
uralistic stimuli in presynaptic spike trains; (ii) presynaptic
refractoriness or bursting; (iii) synaptic short-term plasticity.
In all cases, we find severe effects on interval statistics. Our
results provide a framework for the interpretation of firing
statistics measured in vivo in the brain.

Keywords Interspike-interval statistics - Stochastic
integrate-and-fire neuron - Non-renewal process - Temporal
correlations - Spontaneous activity

1 Introduction

The biophysics of action potential generation in a single
nerve cell is well understood in the framework of the cel-
ebrated equivalent circuit model by Hodgkin and Huxley
(Koch 1999). However, there is a huge difference between
the properties of neurons in isolation as described in the
Hodgkin-Huxley model and in vivo, i.e. embedded in a net-
work of other neurons. In particular, spontaneous neural
activity is largely caused by the massive quasi-random input
from surrounding cells (Destexhe et al. 2003), which also
strongly affects a cell’s computational properties (Brunel
et al. 2001; London et al. 2010). Hence, when modeling sin-
gle neuron activity, it is vital to properly account for the
characteristics of the spike trains that constitute this input.
Theoretical studies often assume that input spike trains
have no temporal structure but are completely random in
time with a spiking statistics given by a Poisson process.
This assumption has been successfully used to explain and
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self-consistently determine the irregular, Poisson-like firing
patterns of cortical neurons and the emergence of network
oscillations (see, e.g. Brunel (2000)). However, in biologi-
cal neural networks the Poisson assumption is rarely strictly
fulfilled (Baddeley et al. 1997). Sources that induce tempo-
ral correlations are signal-related processes (Baddeley et al.
1997), neuronal refractoriness (Cateau and Reyes 2006)
and bursting (Bair et al. 1994), adaptation (Wang 1998)
and network-generated oscillations (Buzsdki and Draguhn
2004). Also the synapse with its conductance dynam-
ics (Koch 1999) as well as short-term synaptic plasticity
(Fortune and Rose 2001) contribute to correlate the effec-
tive input seen by the postsynaptic cell. As a consequence
of both the nonlinear neural dynamics and the temporally
structured driving, the interspike-interval (ISI) statistics of
the driven cell is complex (Bair et al. 1994; Baddeley et al.
1997; Compte et al. 2003; Nawrot et al. 2007).

Mathematically, it is convenient to neglect any correla-
tions in the input because it implies that the postsynaptic ISI
can be modeled as the first-passage time of a Markov pro-
cess. For the important class of integrate-and-fire models
with white noise (Burkitt 2006) efficient numerical schemes
(Richardson 2008) and in simple cases even explicit analyt-
ical expressions exist (Gerstein and Mandelbrot 1964) that
fit the ISI histograms of some neurons surprisingly well
(Gerstein and Mandelbrot 1964; Fisch et al. 2012). The
challenge of analyzing neural activity driven by temporally
correlated fluctuations, i.e. by a colored noise, is that we
need to consider a non-Markovian process, for which no
standard techniques exist to compute the first-passage-
time (i.e. ISI) statistics. For the special case of a colored
noise that can be represented by one or a few stochastic
differential equations, researchers have used a Markovian
embedding (Hénggi and Jung 1995), i.e. an extension of the
phase space by the degrees of the noise dynamics ending
with a first-passage-time problem in a higher-dimensional
space. Analytical approaches using this trick have been
largely limited to the case of exponentially correlated noise
(for an exception, see Bauermeister et al. (2013)), that can
be mimicked by an Ornstein-Uhlenbeck process (one addi-
tional degree of freedom). Using perturbation techniques
(small or large correlation time or small noise inten-
sity) approximations have been worked out for the firing
rate (Brunel and Sergi 1998; Moreno-Bote and Parga
2004; Alijjani and Richardson 2011), the spike train’s
auto-correlation (Brenner et al. 2002; Moreno-Bote and
Parga 2006), the ISI density (Lindner 2004; Schwalger
and Schimansky-Geier 2008) and ISI correlations (Lindner
2004), and the dynamical response (Brunel et al. 2001;
Alijani and Richardson 2011) and applied to experimental
data (Fisch et al. 2012). However, the diverse temporal cor-
relation patterns of in-vivo input mentioned above cannot
be captured by an exponentially correlated noise.
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To account for the variety of correlation structures, a the-
ory is needed that characterizes the firing statistics for an
arbitrary input correlation function. In this paper, we put
forward a set of explicit formulas that relate the correla-
tion structure of the input noise to the ISI statistics of a
perfect integrate-and-fire (PIF) neuron, which is a canoni-
cal model for the mean-driven firing regime (Section 2.1).
The analysis is based on the assumption that the corre-
lated noise input can be represented by a multi-dimensional
Ornstein-Uhlenbeck process (Markovian embedding) and
that the noise is weak compared to the mean driving current.
This allows us to formulate the first-passage-time problem
in terms of a multi-dimensional Fokker-Planck equation,
which is solved for arbitrary dimensions of the Ornstein-
Uhlenbeck process using weak noise approximation tech-
niques. The details of the rather lengthy calculations are
presented in the Appendix A. In Section 2.2, we apply our
general results to generic situations of correlated input and
compare the ISI statistics to the commonly studied case
of uncorrelated Poisson inputs. In Section 2.3, we inves-
tigate whether our findings for the PIF model also hold
for more realistic nonlinear integrate-and-fire models. For
the suprathreshold firing regime and weak noise, we use
the phase response curve to derive expressions that gen-
eralize some of the results for the PIF model. For the
exponential integrate-and-fire model, we use these ana-
lytical expressions as well as simulation results for the
subthreshold regime to show that similar effects of non-
Poissonian inputs also occur under more general condi-
tions. We finally discuss further applications of the theory
(Section 3).

2 Results
2.1 Theoretical framework and analytical results

We consider a perfect integrate-and-fire (PIF) neuron, which
represents a reasonable approximation of neural spike gen-
eration in the mean-driven firing regime. The membrane
potential V (¢) obeys
CoV =Ip+ Lyn(t), ifV=Vr: V->0mV. ()
where Cy, is the membrane capacity and [y is a con-
stant membrane current. Instances at which V (¢) reaches
the threshold Vt = 15 mV and is reset to V = 0 mV
define the spike times {#;} and thus a sequence of ISIs
T, = t; —ti, i = 1,2,..., as well as the output
spike train xou () = »_; 8(r — 1;). The synaptic input cur-
rent is modeled as Iy, (f) = Zévzl(jg * Xin,¢)(?), where
Xine () = Y8 (t - t}“),z — 1,..., N, is the input spike
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train of the €'" presynaptic neuron with spike times t](.l).
The convolution (ji * Xin¢)(t) = [ dt’ je(t')Xin,e(t — 1') of
the spike train with the post-synaptic current jy(¢) approx-
imates the synaptic filtering by the conductance dynamics
of synapse £. The statistics of stationary input spike trains
can be characterized by the input firing rates vy = (xin ¢ (¢))
and the input covariance matrix Ce(t) = (Xin k (£)Xin,¢ (f +
T)) — vgve, or equivalently, by the spectral statistics
Ske(f) = f dt e¥"/T Cyy (7). For the case of the commonly
used Poisson statistics, the spike train power spectrum
is simply a constant equal to S¢e(f) = ve. In general,
however, a spike train has a frequency-dependent power
spectrum reflecting the presence of temporal correlations
(Fig. 1, left).

If the number of inputs is large, Isyn(#) is approxi-
mately Gaussian with an auto-correlation function that is
shaped by both the spatio-temporal correlations Ci¢(t) of
presynaptic spike trains (Cateau and Reyes 2006; Lindner
2006) and the synaptic filter (Fig. 1, middle). In this Gaus-
sian approximation, the dynamics Eq. (1) can be cast into
the form V = u + on(t), where u subsumes the con-
stant parts of the input, o2 is the variance of the synaptic
drive and n(¢) is a zero-mean, unit-variance Gaussian pro-
cess with correlation function Cj,(7) and power spectrum
Sin(f) = [dte*™i/1Cip(2), cf. Appendix A.1. In the case
of a flat power spectrum (white noise), the model generates
a renewal spike train with an inverse Gaussian ISI statis-
tics. In contrast, we are concerned here with the case of
a correlated (colored) noise n(#) with an arbitrary correla-
tion function and a non-flat power spectrum leading to a
nonrenewal spike train, i.e. the ISI sequence displays serial
correlations. One can show that regardless of the input’s cor-
relation structure, the output firing rate of our simple model
is always r = u/Vr (Bauermeister et al. 2013). However,
the ISI probability density and its higher moments as well
as the serial correlations among ISIs are strongly shaped by
input correlations.

2.1.1 Markovian embedding

The voltage dynamics V (¢) is non-Markovian because 7(z)
is correlated in time. Apart from a few special cases
(e.g. Salinas and Sejnowski (2002), Lindner (2004), and
Droste and Lindner (2014)), exact solutions of the asso-
ciated FPT problem are not known for non-Markovian
processes. To obtain approximations of the FPT statistics,
we assume here that the noise is weak as expressed by
the small parameter ¢ = o/pu <« 1. In particular, this
excludes the singular case of purely white noise, for which
the variance diverges. Furthermore, we assume that there
exists a (possibly high-dimensional) Markovian embedding
(Héanggi and Jung 1995) such that (¢) can be represented as
a projection of a multivariate Ornstein-Uhlenbeck process

31
non-Poissonian input  synaptic synaptic current spike output
filtering & generator  spikes
summation
1 rromn
2 1 1 11
3 nrn-s 4{
[V A I | time
—_—
time
spike train power spectra input power input correlation output
spectrum function statistics
St1(f) Sea(f) Saa(f)  Sww(f) R ISI density,
- cV,
0 (S i skewness,
T P ISI correlations,
-- Poisson 0 20 -200 0 200 spike train
— non-Poisson frequency f time lag 7 correlogram

Fig. 1 Illustration of the colored-noise problem for neurons receiv-
ing massive spike train input through N synapses. Presynaptic spike
trains have temporal structure, e.g. due to refractoriness, bursting, or
rate modulations, which is expressed by non-flat power spectra Sgx (f),
k = 1,..., N, for each single spike train (red lines). This is con-
trasted to a Poisson statistics corresponding to flat (constant) Poisson
spectra (blue dashed line). Each spike train is filtered by the synaptic
conductance dynamics and subsequently summed to produce a total
input current that drives the neuron. The input current is approximately
Gaussian with a power spectrum (or auto-correlation function) formed
by single spike train statistics, cross-correlations and synaptic filter.
The goal of this study is to link this input statistics to the spiking
statistics of the postsynaptic neuron (output statistics)

(OUP):

() =b"Y(1), Y=AY+BE®). @
Here, b is a constant projection vector, Y is a d-dimensional
OUP, &(r) is a vector of Gaussian white noise processes
obeying (&;(1)€;(t")) = &; ;j6(t —t’), and A and B are con-
stant matrices determining the drift and diffusion strength
of the OUP, respectively. To ensure a finite variance of the
OUP, we require that the eigenvalues of A have negative real
parts.

The Markovian embedding is possible if the correla-
tion function of the noise can be approximated by a sum
of exponential functions and damped harmonic oscillations
with decay rates and oscillation frequencies given by the
(complex) eigenvalues of A. In the frequency domain, this
amounts to approximating the power spectrum of the noise
by a sum of Lorentzian functions. Thus, by allowing arbi-
trarily large dimensions of the OUP, the class of attainable
correlation functions or power spectra is large. In particu-
lar, many biologically relevant correlation functions may be
approximated by a sufficiently large number of exponen-
tials, possibly with complex-valued rates. In Section 2.2,
we show that even power spectra with an algebraic decay
proportional to 1/fV are captured by our approach because
such noise arises from infinitely many exponentially corre-
lated processes with a continuum of correlation times (see
e.g. Sobie et al. (2011)).
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Explicitely, the correlation function and the power spec-
trum corresponding to Eq. (2) are given by Cin(tr) =
bT Zel"ATb and Siy(f) = —2bT [A2 + 27 f)?1,] " AZb,
respectively (Risken 1984). Here, e™ is the matrix expo-
nential function, I; is the identity matrix and X is the
covariance matrix of Y. Its elements X;; = (¥;Y;) can be
computed from Eq. (34) given in the Appendix A.2.

Fortunately, the inverse problem, i.e. finding matrices A
and B that yield a desired correlation function Cj,(t), does
not need to be solved. Indeed, the Markovian representation
(2) is only an intermediate step that allows us to formulate
the evolution of the system by the multi-variable Fokker-
Planck equation (FPE) (Risken 1984)

p

ap & 9 9%p
bTy)—=>" | Aij—(@;p)—D .
” (u+o y)av [Uayi(yjp) }

Y ayidy;
3)

Here, p(v,y, t) is the probability density for the joint pro-
cess [V(¢),Y(¢)] (Fig. 2) and D = %BTB is the diffusion
matrix. Remarkably, we will see that the final expressions
for the ISI statistics can be re-expressed solely in terms of
the correlation function Cj,(t). Thus, an explicit construc-
tion of the OUP, i.e. of the Markovian embedding Eq. (2), is
not necessary for the application of our theory.

In order to calculate the statistics of the stationary ISI
sequence {7;}, we shift the time origin to the zeroth spike,
fo = 0. The statistics of , = Y _,T; is given by the n'h-
order interval density P,(¢). Because the right hand side of
Eq. (1) does not depend on V, the time of the n-th spike is
equivalent to the first-passage time from V = 0 to the n-
fold threshold V = nVt (Middleton et al. 2003; Lindner
2004). For an ensemble of trajectories with V(0) = 0, the
first-passage-time density is equal to the total probability

ij=1

bTy

I
t(a) +(b) +(c)

i
|

- emee B vy,

colored noise 7
|
A=

membrane potential v

Fig. 2 Schematic of the probability flow in the space (v, y). Initially,
the probability density p(v,y, 0) is concentrated at v = 0 and propor-
tional to the distribution upon firing pspike (¥). Snapshots of p(v,y, 1)
are schematically depicted at three different times (0 < 1@ < r® <
1(©)). The density moves towards the threshold for > 0 and is not
reset upon crossing the hyperplane v = V. The p.d.f. of the nth spike
time, P, (), is equal to the total flux f dd y Jy(nVt,y,t) through the
hyperplane v = nVt. The boundary condition that prevents recross-
ings with negative velocity i + b’y < 0 (region below dashed line)
can be neglected foro/u < 1
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flux at time ¢ across the threshold (Fig. 2) if trajectories that
have reached the threshold are removed from the ensem-
ble. Thus, P,(t) = [ d9y J,(nVr,y, 1), where J,(v,y, 1) =
(u+ob-y)p(v,y,t) is the v-component of the probability
flux. Besides the natural boundary conditions [p(v,y, ) =
0 for v - —oo and y; — Zo00], the removal of trajecto-
ries can be realized by requiring that p(nVt,y,t) = 0 for
all y for which u 4+ ob -y < 0. The latter ensures that
there is no re-flux of probability into the domain v < nVt
from above threshold (cf. Brunel and Sergi (1998)). How-
ever, for weak noise, o/u < 1, negative velocities V =
© + ob Y are highly unlikely, so that this boundary condi-
tion can be safely ignored. The initial condition corresponds
to the state of the ensemble conditioned on a spike at t =
0. Hence, p(v,y,0) = 8(v)Ppike(y), wWhere Pypike(y) =
(1 + €b -y)ps(y) is the stationary density of the OUP upon

firing and ps(y) = exp (—%yT2’1y> /\/(ZH)d|2| is the

stationary density of the OUP at an arbitrary time.
2.1.2 ISI density and spike auto-correlations

As shown in Appendix A.2, the n'"-order interval density
P, () can be re-expressed in terms of the characteristic func-
tion g(¢,k, 1) = [dve'® [d?ye*Yp(v,y, 1) instead of
p(v,y,t). This function obeys a tractable first-order differ-
ential equation (Fourier-transformed FPE) (see Appendix
A.2). In the solution, the correlation function Cj,(t) =
bT ZelATh can be identified and re-substituted. The result
is

Py = r o [ (rt —n)2i|
" samema Tl 4

{ [(n —rt)g(t) + 2h(t)]?
2h(t)

—e? [gz(t) - 2h(t)Cin(t)] } ,
t t
g(t)= r/ dt’'Cin(t)), h(t) = r/ dt’ gt). 4)
0 0

For n = 1 this formula yields the ISI density Pj(z). Our
result includes the known special cases for exponentially
correlated noise (Lindner 2004) and narrow-band noise
(Bauermeister et al. 2013). It also allows to relate the output
correlation function Cou(7) = (S(t)S(t + 7)) — r2 to the
input correlation function Ci,(t) by the formula (Cox and
Lewis 1966a)

Cou(r) =71 (S(I) + Z Pu(|z]) — r> : &)

n=1

In Figs. 4D and 5C, below, we truncated the sum at n = 4.
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2.1.3 Cumulants and correlations of ISIs

Using the moment-generating function P,(s) = fooo
dte™*'P,(t), the k-th cumulant of 7, is given by
kk.n = (—DKd*In P, /ds*|s—¢ (Risken 1984). The moment
generating function can be rewritten as P,(s) =
n (1 —ieb™Vi) p(nVr, k, s)|k=0, where ¢(v,k,s) =
fooo dr et fddy ¢®Yp(v,y, 1) obeys a transformed FPE,
which still contains mixed derivatives. To solve this equa-
tion for weak noise, we use the perturbation expansion ¢ =
> 72 oW ek, This yields a hierarchy of first-order equations
for the coefficients ga(k), which can be solved iteratively (see
Appendix A.2). Up to a correction of order €, the second
and third cumulant of the nth-order interval are obtained as

ko & ko =22y + € [ g+ Cot/m |} ©)
k3 A 12r gy, ™

using the shorthand g, = g(n/r) and h, = h(n/r).
To quantify the variability of ISIs, we consider the
(squared) coefficient of variation

C\Z; = r2/22,1 + (9(66) ¢))
~ N2 o’ 2
=2 = [ 4 Supsine(s/r) ©

where sinc(x) = sin(srx)/(wx). This shows that the vari-
ance of ISIs is determined by the total power of the sinc-
filtered input noise. Hence the color of the noise (i.e. the
form of Si,(f)) and the output firing rate r = 1/(T) (affect-
ing the width of the filter but also the prefactor) directly
influence the CV.

Particular effects of input correlations become apparent
in higher-order cumulants of the ISI density. Convenient is
the comparison to the cumulants of the inverse Gaussian
density, which is the exact solution for pure uncorrelated
(white noise) input (Gerstein and Mandelbrot 1964). Here
we consider a rescaled version of the skewness involving
the third cumulant: oy = (T)k3.1/ (3/{22’1). This quantity is
equal to unity for any inverse Gaussian ISI density and is
smaller or larger unity for a less or more skewed distribu-
tion, respectively (Schwalger et al. 2010). For weak noise,
we find from Eqgs. (6) and (7)

g(T) _ 2[df Sn(f)sine2f/r)
h(T)) — [df Swm(f)sinc(f/r)

That is, the skewness is the ratio of the areas under the
functions 2Si,(f)sinc(2 f/r) and Sin(f)sincz(f/r). For a
constant power spectrum, these areas are equal yielding
oy = 1 as expected for a white-noise-driven neuron. A less
or more skewed ISI density can be obtained by weighting
the minima or maxima of sinc(2 f/r) by the input spectrum,
respectively.

(10)

oy

Correlations between ISIs can be quantified by the serial
correlation coefficient (SCC) p, = ((T,- Titn) — (T,-)z)/
((le) - (Ti)z), where n is the lag between ISIs. The SCC
is given by the second-order cumulants (Lindner 2004),
yielding

K2 n41 — 22,0 + K2 n—1

Pn = e (11)
_ Kong1 — 22,11 + K21 +O@Eh (12)
[ df Sin(f)sinc® (f (T))e= 27/ (Tin LoD, (3)
a [ df Swm(f)sinc®(f(T)) '

The leading-order approximation (third line) shows that the
SCC is proportional to the inverse Fourier transform of the
filtered spectrum Si,(f )sincz( f(T)) evaluated at discrete
time lags + = n(T). This is equivalent to the correlation
function of the input noise smoothed by a moving average
of window size (T').

As shown in the Appendix A.2, the leading-order approx-
imations for the CV and the SCC, Egs. (9) and (13), are
consistent with exact analytical results for the variability
of the spike count on large time scales, which have been
obtained previously (Middleton et al. 2003; Sobie et al.
2011; Moreno-Bote et al. 2014). Indeed, the Fano factor
F(t), defined as the variance to mean ratio of the spike
count in a time window of length ¢, can be approximated for
general t > 0 as

F(t) = [{r}(1 = {1}/(T)) + 2eX(TYh(D)]/1. (14)

Here, {t} =t — (T)t/(T)] denotes the difference between

t and the largest multiple of (T) equal or less than z. The

long-time limit of Eq. (14) is exact and yields tlim F(t) =
— 0

o0
CV2 <1 +2) ,o,,), which recovers a well-known identity
n=1

for spike trains (Cox and Lewis 1966b).
2.2 Applications

By means of our theory, we now discuss the spiking statis-
tics for three important mechanisms of temporal input
correlations. We consider an excitatory and an inhibitory
population of N¢ = 800 and N7z = 200 presynaptic neu-
rons, respectively. Each input spike generates an exponential
postsynaptic current of the form ji(r) = Jre '/%0(t),
k = &,7 with synaptic time constants t¢ = 4 ms and
7 = 8 ms (A(¢) denotes the Heaviside step function). In
the case of dynamic synapses, the £th synapse has its own
time-dependent coefficient Ji ¢(t) = JiFy(1)Dy(t) with a
constant prefactor J; and facilitation and depression vari-
ables (see Appendix A.6); for static synapses Ji ¢(t) = Ji.
If not stated otherwise, we use the base current Iy = 0.02
(here and in the following, we state all current amplitudes
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and synaptic weights Ji in units of Cp, V1/ms). Note that
the synaptic filter alone leads to a colored noise input even
if input spike trains are uncorrelated (Poissonian) and short-
term plasticity is absent. Most previous studies of colored
noise in neurons (Brunel and Sergi 1998; Fourcaud and
Brunel 2002; Moreno-Bote and Parga 2006; Lindner 2004;
Schwalger and Schimansky-Geier 2008) have investigated
exactly this case of Poissonian input spike trains filtered by
the conductance dynamics of static synapses. In contrast,
we focus in the following on additional sources of input
correlations that have a more drastic effect on postsynaptic
ISI statistics.

2.2.1 Gaussian stimuli with complex temporal statistics

A number of studies have reported membrane potential
fluctuations that indicate synaptic input with a power law
spectrum (Pozzorini et al. 2013; Destexhe et al. 2003).
Direct injection of power-law currents have also been
used to mimic the statistics of natural stimuli (Wang
et al. 2003). How does such a powerlaw statistics shape
the spiking statistics of a neuron? To answer this ques-
tion, we consider Poissonian input with a common rate
modulation (signal). Specifically, the firing rate of the
excitatory input streams is rg(t) = veg(l + es(1)),
where s(#) is a unit-variance Gaussian process with power
spectrum

f7 = A
S(H=NL 7, fi<lfl<fr. ve@©l.
0, Ifl=r
s)

Here, NV is a normalization constant (see Appendix A.4).
The power spectrum exhibits a power-law decay with expo-
nent y in the range between f; and f>, which implies
long-range correlations that decay like r”~!. A standard
calculation yields the total input spectrum Si,(f) (see
Appendix A.4), which is illustrated in Fig. 3A. Although,
strictly speaking, such a scale-free spectrum cannot be
achieved by a finite-dimensional OUP, the input spectrum
can nevertheless be used in our final formulas, provided
the variance is sufficiently small. Figures 3B-D show good
agreement between theory (red lines) and stochastic simula-
tions (circles). The ISI density is significantly more skewed
than an inverse Gaussian density with the same mean and
variance (corresponding to white noise input), as observed
previously for positive input correlations (Schwalger et al.
2010). The signature of the powerlaw correlations in the
input is apparent in the serial correlations of ISIs that decay
like n¥ ~!. Likewise, the Fano factor increases algebraically
like ¢V, resembling “fractal” behavior found in auditory neu-
rons (Lowen and Teich 1992; Peterson et al. 2014). This
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Fig. 3 Firing statistics in response to a complex signal modelled as a
common rate modulation of excitatory presynaptic neurons. (A) The
modulation has a power-law spectrum that scales like 1/f7. (B) The
ISI density is more peaked (simulation — circles; theory — red solid
line) than an inverse Gaussian density with the same mean and variance
(dashed blue line). (C) The serial correlation coefficients (red line —
Eq. (11)) reveal long-range correlations, which decay slowly like n”~!
(dashed blue line). (D) The Fano factor (red line — Eq. (14)) increases
like ¢¥ for an intermediate range of observation times ¢, during which
spikes are counted (dashed line — Eq. (139)). Parameters: y = 0.6,
Je = 0.0015, Jz = —0.003, vz = v¢ = 5Hz, e = 0.5, fi =
10~% Hz, f» = 100 Hz (corresponding to € = o/u = 0.62)

scaling behavior can be understood by an asymptotic analy-
sis of Egs. (13) and (14) (see Appendix A.4).

2.2.2 Presynaptic refractoriness

Even in the absence of correlated stimuli, neuronal spiking
is correlated in time. In contrast to Poisson statistics, neu-
rons cannot exhibit arbitrarily small ISIs due to a refractory
period after each spike. This causes correlations between
subsequent spikes. A simple description of refractoriness
is provided by a renewal point process with reduced prob-
ability for short ISIs (Gerstner and Kistler 2002). Such
processes display often a reduced variability (Cyin < 1),
indicating a spike train that is more regular than a Pois-
son process (Cv,in = 1). In the following, we model
presynaptic input spike trains by renewal processes with
an inverse Gaussian ISI density (Gerstein and Mandelbrot
1964; Cox and Miller 1965), for which the exact form of the
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input power spectrum can be inferred (see Appendix A.S5).
This process can be parametrized by input firing rate and
input CV allowing us to continuously vary the intensity and
regularity of the input.

For regular presynaptic spike trains (Cy in < 1), the spec-
trum of the total synaptic input current exhibits a dip at low
frequencies and a maximum near the firing rate of presynap-
tic neurons (Fig. 4A) — effects of the refractory period that
are seen in a large fraction of cortical cells (Bair et al. 1994,
Franklin and Bair 1995; Compte et al. 2003). In the cor-
responding input correlation function the refractory period
becomes manifest by a negative trough (Fig. 4A). Such
input, as predicted by our theory, yields a less skewed ISI
density than a Poisson-driven neuron (Fig. 4B). Although
the spike correlations in the output does not differ drasti-
cally from the case of Poisson driving (Fig. 4D), correlations
among intervals display pronounced short-term negative
correlations (Fig. 4C) — a feature commonly observed for
neurons with adaptation currents driven by fast (uncorre-
lated) noise (Chacron et al. 2000; Liu and Wang 2001;

A  power spectrum auto-correlogram

Cin(7)
- filtered Poisson processes
o (CVin=1)
— filtered renewal processes
(CVin=0.5)
0 10 20 -200 0 200
frequency [Hz] time lag [ms]
C 0.1+ interval correlation
I
017 #—* Poisson
0.2 O simulation
— theory
¥ T T T T T T 1
0 50 100 150 12 3 45 6 7 8
ISI [ms] lag n
D E \
17\ %
output correlation CV 05 *

+ T v v T
-100 0 100
time lag 7 [ms]

0 20 a0 60
output firing rate [Hz]
Fig. 4 Spiking statistics in response to presynaptic input that is more
regular than Poisson (Cy, i = 0.5), modeling input refractoriness. (A)
Neuron driven by 800 excitatory and 200 inhibitory neurons (inverse
Gaussian renewal processes with rate ve = vz = 5Hz and Cv,in =
0.5). Summed input has a correlation function and power spectrum
as indicated by solid red lines. For comparison: synaptically filtered
Poisson input (blue line and stars). (B) ISI density for Cy,in = 0.5
(red) is less skewed compared to Poisson input (blue). (C) SCCs are
markedly different (theory, solid lines; simulation, symbols). Param-
eters: Iy = 0.016, J¢ = 0.004, Jz = —0.008 (corresponding to
€ = 1.18) (E) With increasing output firing rate (controlled by I), the
CV decreases, the SCC p; changes sign and the ISI density changes

from less (g < 1) to more skewed (ag > 1)

Schwalger et al. 2010; Schwalger and Lindner 2013). How-
ever, here it is entirely due to an ubiquitous property of
presynaptic spike trains, namely, a refractory period.

Effects of refractoriness on the input side are restricted
to small to moderate postsynaptic firing rates. At high out-
put rates the synaptic low-pass filter overshadows refractory
effects and induces positive correlations over multiple ISIs.
Accordingly, our theory predicts a transition from negative
to positive serial correlations and from less to more skewed
ISI distributions (Fig. 4E).

2.2.3 Presynaptic burstiness

Another important source of temporal correlations is burst-
ing activity, which is a widespread phenomenon in the ner-
vous system. Bursting leads to spike patterns that are more
irregular than a Poisson process because of the presence of
short intraburst intervals and long interburst intervals. We
mimic burstiness by a superposition of renewal processes
with CV’ in > 1.

For irregular spike input (here Cy i, = 2.5), the input
spectrum has increased low-frequency power as compared
to the Poisson case (Fig. 5A, red vs. blue line). Such power
spectra are observed in cortical cells (Bair et al. 1994;
Baddeley et al. 1997; Compte et al. 2003). The burst-like
input leads to extended positive input correlations, which,
similar to the case of positive power-law correlations,
result in a more skewed ISI distribution and pronounced

A B

power spectrum  auto-correlogram
Sin(f) Cin(7)

ISI density

o 0-f---- N
T 1 T
0 10 20 -200 0 200
frequency [Hz] time lag [ms] ¢
0 50 100
- filtered Poisson processes (CV,,=1) ISI [ms]
— filtered renewal processes (CV;,=2.5) O simulation
— Poisson input
— theory
c output correlation D interval correlation
Pn #—* Poisson input
O simulation
0.2
0.1

0
time lag 7 [ms]

Fig. 5 Spiking statistics in response to presynaptic input that is
more irregular than Poisson (Cy,in = 2.5), modeling burstiness. (A)
Input exhibits increased power at low frequencies and positive cor-
relations (red lines). While the ISI density (B) and the spike train
auto-correlogram Coyu(7) (C) show only slight differences compared
to a Poisson-driven neuron, the ISI sequence shows pronounced pos-
itive correlations that are largely absent in Poisson-driven case (D).
Parameters: J¢ = 0.003, Jz = —0.006 (corresponding to € = 0.75)
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positive serial correlations (Fig. 5B,D); effects of this are
not pronounced at the level of the spike train output corre-
lation function (Fig. 5C). In contrast, ISI correlations in the
presence of Poisson input are very small — they are still
present due to synaptic filtering.

Our approximations for the moments of the ISI statistics
are based on a Gaussian approximation of the input shot-
noise and on a perturbation expansion for weak noise (¢ <
1). To test the range of validity of the perturbation theory, we
compared the theory for CV and ISI correlations with sim-
ulations for different values of the perturbation parameter
€ = o/u (Fig. 6). Remarkably, we find excellent agreement
even beyond € = 1. As expected, the perturbation theory
becomes worse for even larger input variability (¢ 2> 2).

2.2.4 Neurons with synaptic short-term plasticity

It is known that input spectra can be changed by synap-
tic short-term dynamics (Lindner et al. 2009; Merkel and
Lindner 2010; Rosenbaum et al. 2012; Droste et al. 2013).
In particular, facilitating (depressing) synapses lead to a
low-pass (high-pass) filtering of the input power. Even if we
assume completely uncorrelated presynaptic spike trains,
we thus expect synaptic dynamics to have similar effects as
the presynaptic refractoriness or bursting discussed above.
As an example for the difference in postsynaptic spik-
ing statistics, we inspect the interval correlations that are
induced by dynamic synapses. To this end, we use in our
standard setup synapses endowed with a facilitation (depres-
sion) dynamics, using an established model of short-term
plasticity (Dittman et al. 2000; Merkel and Lindner 2010).
Doing so, we find that for Poissonian spike trains impinging
on facilitating synapses, the postsynaptic cell shows marked

-0.34 . l . | . |

0 1 2 3
e=o/pu

Fig. 6 Range of validity of the weak-noise perturbation theory. Coef-
ficient of variation and ISI correlation coefficient p; for N¢ = 800
excitatory and Nz = 200 inhibitory input spike trains are shown as a
function of the weak-noise parameter € = o/u. Red (violet) lines and
circles (squares) correspond to theory and simulations with regular,
Cv,in = 0.5, (irregular, Cy i, = 2.5) presynaptic input, respec-
tively. Further parameters are the same as in Fig. 5 except for the
synaptic weights J¢ = —Jz/2, which have been varied in the range
Je € [0.0005, 0.0125] for Cv,in = 0.5 and J¢ € [0.0005, 0.0117] for
Cv.in = 2.5 to obtain different noise strength €
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positive ISI correlations (cf. Fig. 7B, red line and cir-
cles) due to the low-pass filtering of the input. Conversely,
depressing synapses cause pronounced negative correla-
tions (Fig. 7B, green line and squares) because depression
reduces input power at low frequencies. Our theory (lines
in Fig. 7B) is in excellent agreement with the simulations
(symbols).

2.3 Beyond the perfect integrate-and-fire model

A crucial assumption that permitted a systematic pertur-
bation solution was the voltage-independence of the mem-
brane current /y. This is justified if the mean drive is so
strong that it dominates any variations of the membrane cur-
rent due to voltage changes. Here, we briefly discuss the
significance of our results if this assumption is relaxed; for a
similar analysis for white-noise-driven IF neurons and neu-
rons endowed with an adaptation current, see Schwalger
et al. (2013). We extend the subthreshold dynamics by a
voltage-dependent term:

V=y%(V)+u+on@. (16)
Spikes are registered when V (¢) reaches the value Vipike >
V1, whereupon V is reset to zero. The nonlinear IF model
Eq. (16) is a more general description of neural dynam-
ics that can accurately model passive membrane prop-
erties (leak) and spike initiation dynamics. In particular,
the exponential integrate-and-fire (EIF) model (Fourcaud-

Trocmé et al. 2003) given by the choice ¥ (V) = —V +
AT exp (VA_:T) fits neural data of many neurons remark-

ably well (Badel et al. 2008).

The model Eq. (16) can operate in two different dynam-
ical regimes: Firstly, if yy¥ (V) + u > O forall V <
Vspike, the deterministic dynamics (o = 0) generates peri-
odic spiking (supra-threshold or mean-driven regime). For
the EIF model, this condition reads y;, < wu/(Vr — Ar).
Secondly, for yr > u/(Vr — Ar), the noiseless dynam-
ics reaches a steady state below threshold, i.e. the neuron
is quiescient unless it is excited by the noise (sub-threshold
or fluctuation-driven regime). We will separately consider
these two cases.

2.3.1 Mean-driven regime

If yr < u/(Vr — Ar), the mean ISI is approximately given
by the deterministic ISI

<T>_/Vspike dv (17)
—Jo ZAZORSTS

Furthermore, the dynamics is associated with a phase-
response curve (PRC) Z(¢') that describes the change of
the ISI 8T = —aZ(t') caused by a weak current pulse
ad(t —1t') at a given time 7’ (“phase”) in the interval (0, (T'))
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A power spectrum
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auto-correlogram
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frequency [Hz]

Fig. 7 Interval correlations caused by short-term synaptic plasticity.
(A) Facilitating (depressing) synapses lead to a low-pass (high-pass)
filtering of the input power, shown by red (green) line, when com-
pared to a setup with static synapses (blue line). (B) For facilitation
(depression), ISIs exhibit positive (negative) correlations. Parameters:

(Ermentrout and Terman 2010). For the nonlinear IF model
the PRC reads

Z(1) =1/ [yr¥ (Vo(1)) + ] (18)

(see, e.g. (Schwalger and Lindner 2013)). Here, Vj(¢) is the
deterministic solution of Eq. (16) with Vp(0) = 0. As shown
in Appendix A.7, the CV and the SCC can be related to the
power spectrum Sj, (f) of a weak colored noise perturbation
on(r) by

C%*OJ/df&mﬂ@UNz (19)

02 ~ .
ou > T 47 SuDIZGPPHITN =1 o)
\%

Here, Z(f) = %fom dr Z(1)e*™/t. Note that for the

PIF model (ie. y, = 0), we obtain |Zpr(f)> =
sinc?(f/r)/u?. This exactly recovers the leading-order
terms of CV and SCC, Egs. (9) and (13).

Figure 8 shows the estimation of the CV and p; using
the PRC Z(¢), which agrees well with simulation data. We
have also tried an even simpler approximation in this case
by using the formulas for an effective PIF model with the
same mean ISI given by Eq. (17) (see also Schwalger et al.
(2013)). This approximation (dashed lines in Fig.7) already
yields a good agreement. Most importantly, the effect of a
presynaptic refractory period on postsynaptic variability and
ISI correlations remains qualitatively the same as for the PIF
neuron (cf. Fig. 4E and Fig. 8B): with increasing output fir-
ing rate, ISI correlations turn from negative to positive and
output variability decreases.

2.3.2 Fluctuation-driven regime
To see whether similar effects of non-Poissonian stimuli

also hold in the fluctuation-driven (excitable) regime, we
performed simulations of the EIF model with subthreshold

B interval correlation

0.2 —— facilitating synapses
’ —— depressingsynapses

lag n

tp = 100ms, tp = 200ms, ve = vz = 10Hz, J¢ = 0.005, Jz =
—0.010. Fp = 0.05, A = 0.175, D¢(t) = 1 (facilitation, € = 0.37);
Fo = 04, F,(t) = Fy (depression, ¢ = 0.39). Amplitudes of
static synapses are tuned to the average amplitudes of the depressing
synapses (Jg = 0.00062, Jz = —0.00125)

currents u < u* = yr (Vr — Ar) (Fig. 9). In contrast to the
mean-driven regime, where the firing rate is mainly deter-
mined by the deterministic ISI, Eq. (17), the firing rate in the
fluctuation-driven regime may also depend on the properties
of the noise. To study the sensitivity of the spiking statistics
to regularity of the input spike trains, we again model input
spike trains by inverse Gaussian renewal processes with
varying Cv, in and fixed firing rates. Figure 9A (left panel)
shows that the firing rate in this setup depends only weakly
on the regularity of the input, whereas the base current u has
a much stronger effect. The weak increase of the firing rate
with Cy, iy is caused by an increasing low frequency power
due to higher input irregularity (cf. Fig. 4A and Fig. 5A).
According to our main focus, we further investigated effects
on higher-order ISI statistics at different values of u < u*.
To avoid trivial effects of the firing rate, we chose for each

rate [Hz]
° ¢
P
o

20 40 60
output firing rate [Hz]

0.05 0.1
v, [kHz]

o4

Fig. 8 ISl statistics for the exponential integrate-and-fire (EIF) model,
Eq. (16), in the mean-driven regime. The neuron is driven by inverse
Gaussian renewal processes each with r = 5Hz and Cy = 0.5
(cf. Fig. 4). Solid red lines depict the theory, Egs. (19, 20). The
black dashed line shows the PIF-theory using an effective base cur-
rent e = Vr/(T), where (T) is given by Eq. (17). A The leak
yr is varied from y;, = 0 (limit of the PIF model) to the maximal
value, at which the dynamics becomes subthreshold. (J¢ = 0.005,
Jr = —0.01, u = 0.1 Vy/ms; corresponding to € = 0.24) B The out-
put firing rate is varied by the parameter 1 (Jg = 0.004, Jz = —0.008,
yL = 0.01111571). Other parameters: Ay = 0.1 Vp, Vipike = 2 VT,
Te = 4ms, 7 = 8ms
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Fig. 9 Firing rate, ISI density and serial correlation coefficient of the
EIF model, Eq. (16), for the fluctuation-driven regime, u < u* =
yL(Vr — Ar). The neuron receives balanced excitatory-inhibitory
inputs modeled as inverse Gaussian renewal processes. A The firing
rate depends only weakly on the regularity Cv, i, of the input spike
trains. Left: Firing rate for different p and constant synaptic weights
Je = 0.01. Right: To obtain comparable firing rates for different u in
panel B-D, J¢ was chosen such that the firing rate was about 10 Hz at
Cy,in = 2.5. B-D ISI density (left) and SCC (right) for Poisson input
(blue lines and symbols, Cy in = 1) or inverse Gaussian input with
Cy.in = 0.5 (dashed black lines) or Cv,in = 2.5 (red, solid lines).
Note the logarithmic axis scaling in the left panels. A ISI statistics at
the bifurcation point u© = u* = 0.09Vy/ms (Jg¢ = 0.003 correspond-
ing to €(Cv,in = 0.5) = 0.16, €(Cvy,in = 2.5) = 0.17). Below the
bifurcation point: B u = 0.07Vr/ms, Jg¢ = 0.01 (¢(Cv,in = 0.5) =
0.68, €(Cy.in = 2.5) = 0.72); Cu = 0.05Vr/ms, Jg¢ = 0.015
(e(Cv,in = 0.5) = 1.42, €(Cy,in = 2.5) = 1.50). Other parameters:
yL = 0.lms™!, Ay = 0.1V, Vipike = 2V1, Te¢ = 4ms, 17 = 8ms,
veg = vz = 5Hz, Ng = 800, Nz = 200, Jz = —2J¢

value of u synaptic weights that yielded comparable firing
rates (Fig. 9A (right panel)). Directly at the bifurcation point
@ = p* from sub- to suprathreshold firing, the ISI densities
were unimodal and more (less) skewed than the case of Pois-
son input for irregular (regular) input (Fig. 9B) — similar to
the findings for the mean-driven firing regime. Furthermore,
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Table 1 Values of the modified skewness a; corresponding to the ISI
densities shown in Fig. 9B-D

base current Cyin=0.5 Cyin=1(Poisson) Cvy,in=2.5
nw=pu*=0.09 0.84 0.98 1.13
wn=0.07 0.68 0.73 0.85
w=0.05 0.65 0.67 0.79

Note that o5 increases with input CV. Decreasing p leads to a transition
from an inverse Gaussian distribution (e = 1) to a gamma distribution
(a5 =2/3)

the ISI sequence showed significant correlations that were
positive over several lags for irregular input (Cy,in = 2.5)
and was negative at lag one for regular input (Cy,in = 0.5).
Poisson input did not result in any significant serial correla-
tions. Qualitatively, these results persist in the subthreshold
case, u < p*. In addition, we also observed that the ISI
density can become bimodal for regular input (Fig. 9C, D).

The ISI densities become more skewed with increasing
input irregularity, which is confirmed by the corresponding
values of o (Table 1). Furthermore, the skewness of the
ISI density under Poisson stimulation approaches the value
oy = 2/3 for decreasing p. This corresponds to a gamma
distribution, which is expected far below the bifurcation
point, u < u*, where the ISI statistics becomes Poissonian.

3 Discussion

In this paper, we put forward a theory for the spiking statis-
tics of a mean-driven neuron stimulated by an arbitrary
colored Gaussian noise. Within the developed framework,
all statistics (ISI density, auto-correlogram, CV, skewness
and SCC) can be expressed as nonlinear functions of two
simple integrals of the input correlation function or, equiv-
alently, of the input power spectrum. The leading order of
the theory permits to understand the interaction between
input time scales (e.g. the correlation time of the input stim-
ulus) and the postsynaptic firing rate. We confirmed the
theory for different scenarios and found excellent quanti-
tative agreement as long as output CVs were below 0.6.
Our theory unites and simplifies previous results for spe-
cial cases of input statistics (Lindner 2004; Schwalger et al.
2010; Bauermeister et al. 2013). For the SCC and CV, we
can extend our theory to non-perfect IF models in the mean-
driven regime, replacing the sinc function in our formulas
by a filter function that is determined by the phase-response
curve of the respective IF model. Furthermore, simulations
of the fluctuation-driven (excitable) regime indicate pro-
nounced effects of non-Poissonian stimuli. How to extend
the theory to the fluctuation-driven regime thus constitutes
an important open problem.
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Applying our theory, we found that distinct sources of
input correlations can lead to similar ISI statistics, all show-
ing pronounced differences to the case of a purely Pois-
sonian drive. For instance, both presynaptic refractoriness
and synaptic short-term depression lead to negative inter-
val correlations and less skewed ISI distributions than with
Poisson input. Conversely, rate-coded stimuli, presynaptic
bursting, and synaptic facilitation cause positive ISI correla-
tions and more skewed ISI densities. Our theory thus shows
clearly the limitations for inferring neural dynamics from
spike statistics only. Negative correlations, for instance,
have often been found for neurons driven by fast fluctua-
tions and adaptation currents, but, as we have shown, can be
caused already by a much more basic feature, namely, presy-
naptic refractoriness. Despite this ambiguity, our formulas
may still be applicable to draw conclusions about stimuli
and neural parameters (see Bauermeister et al. (2013) and
Fisch et al. (2012) for examples from the sensory periphery).

In a recent study (Peterson et al. 2014), negative ISI
correlations observed in auditory nerve fibres have been
attributed to synaptic depression of the ribbon synapse that
generates the input to a nerve fibre. In that case, the spike
train was modeled as a thinned-out version of stochastic
transmitter release events of the synapse. The transmitter
release events already carried negative inter-event interval
correlations, which were inherited by the thinned-out spike
train. Our theory for negative correlations due to synap-
tic depression provides an alternative explanation based on
the temporal structure of synaptic input and its effect on a
dynamic spike generator.

Relations between input and output spike statistics as
developed in this paper may be also instrumental for novel
approaches to recurrent neural networks. In the simple sit-
uation of a completely homogeneous and sparse network,
the statistics of the postsynaptic spike train (forming the
input to other cells) has to coincide with the statistics of
presynaptic spike trains (Lerchner et al. 2006; Dummer
et al. 2014). Specifically, in our theory one should be able
to find a solution for which Cj,(tf) = Cou(t). For het-
erogeneous and non-sparse networks, more self-consistency
conditions should be met, not only for the auto- but also
for the cross-correlation functions among neurons. In this
sense, our paper constitutes only a first step in a theory of
neural networks that incorporates the correlation statistics
more accurately than the classical approach that uses the
diffusion approximation.
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Appendix A

A.1 Gaussian approximation of the synaptic input
current

We would like to approximate the synaptic input current
N

L) =Y 3" et — 1) Q1)

k=10

by a Gaussian process with the same mean and correlation
function as Isyn(¢). To this end, let us rewrite Eq. (21) in

terms of the delta-spike trains xz () = Z;F")<, ) (t _ ti(k)>’

k=1,..., N (where tl.(k) denotes the i-th spike time at the
k-th synapse):

N
Iyn() =Y f Jet = )x(d) de'. (22)
k=1

In the case of stationary input, mean and correlation func-
tion are given by

N
(Iyn()) =Y i / Jk(t)dt. (23)
k=1
and
N N
Cro=y > / dt; Cra(n) f diy ji(ta + T)js(t1 + 12).
k=1 1=1
(24)

Here, vi = (xx(¢)) is the stationary firing rate of the k-
th input spike train and Cy;(t) is the correlation function
between spike trains defined by

Cr(t) = (i (D)x (¢ + 1)) — vy (25)

It is convenient to formulate Eq. (24) in the Fourier domain.
Defining the power spectrum as the Fourier transform of the
correlation function

51(0) = [ dremirees@) 26)
we find
N N . .
SI(N) =Y DI HSu () 27)
k=1 I1=1

Here and in the following, ~ and * denote Fourier trans-
form and complex conjugation, respectively. Using these
approximations, we can write the current balance Eq. (1) as

V=pn+@), (28)
where
1 N
w=o (10 +) vkjk«))) (29)
m k=1
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and ¢ () being a zero mean Gaussian process with power
spectrum

1
Se(f) = C—ZSz(f)- (30)

If S; (f) is not constant, ¢ (t) will be referred to as colored
noise (in contrast to white noise, which has a flat power
spectrum).

A.2 Derivation of the interspike interval statistics

Our approach assumes that the colored noise can be rep-
resented as ¢(tr) = b - Y(z), where b is a constant
d-dimensional vector and Y(¢) is a d-dimensional Ornstein-
Uhlenbeck. Specifically, the neuron model can be written as

V=wu+b-Y (31a)

Y = AY + B£(1) (31b)

with the additional fire-and-reset rule that V is reset to
V = 0 whenever V reaches the threshold V1. A and B are
drift and diffusion matrices, respectively. The eigenvalues
of A must have negative real part and £(¢) is a vector of
Gaussian white noise processes that obey (&; (¢)&; ) =
8;,j8(t — t). Furthermore, we assume that the elements of
b have the same physical dimensions as u and that Y has
non-dimensional units.

The variance of ¢(r) is given by 0> = bT X'b, where X
is the covariance matrix of the OUP with elements

X = (Y;Y;). (32)
The covariance matrix is related to the drift matrix A and
the diffusion matrix

11
D= EB B (33)

by the Lyapunov equation (see e.g. Risken 1984; van
Kampen 1992)

AX + XAT = —2D. (34)

This system of linear equations can be used to solve for the
elements of the covariance matrix X;;.

Non-dimensional model

It is useful to non-dimensionalize the model Eq. (31) by
measuring time in units of the mean ISI Vr/u and volt-
age in units Vr. This corresponds to the introduction of
dimensionless variables

14 iz

V=—, f=212¢ 35
Ve Vi (35)
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and dimensionless parameters

~ b ~V N V-
b==-, A=A  B=|IB (36)
o % %
This yields the non-dimensionalized Langevin equation
V=1+¢eb-Y, (37a)
Y = AY + B£(r). (37b)
The non-dimensional firing threshold is ‘7T = 1. To

make the small parameter in our perturbation calculation
explicit, we have introduced the dimensionless parameter
€ = o/u < 1. In the following, the non-dimensional
model Eq. (37) will be considered. For notational simplic-
ity, we will omit in the following the hats on top of the
non-dimensional quantities.

The stationary auto-correlation function of the noise
n(t) =b-Y(¢) is for > 0 given by (see e.g. (Risken 1984))

Cin(1) = (n(O)n(t + 7)) = b e A b, (38)

where ™ is the matrix exponential defined by its series
representation ™ = Y72, %(rA)k. Note that by our
rescaling of b, Eq. (36), the variance of n(t) is Ci,(0) =
(n%) = 1. Furthermore, taking the Fourier transform of the
correlation function yields the input power spectrum

Sin(f) = —2bT [A2 +Qn f)z]Id]_l AXh, (39)

where [; is the d x d identity matrix.
Fokker-Planck equation

The stochastic dynamics (37) with fire-and-reset rule can be
reformulated in terms of probability currents and densities.
The probability current that describes the drift of V (¢) is
given by

‘]U(U7Ya t)=(1+€bY)p(v»ya t)’ (40)

where p(v,y,t) = (§(v — V(¢))§(y — Y(¢))) is the proba-
bility density of V (¢) and Y (¢) at time ¢. The d-dimensional
OUP corresponds to d probability currents

d

0

Jiw,y,0) =) (Aijyj = Dijm—)p@,y,1) (41)
j=1 Vi

Here,i = 1,...,d and the non-dimensionalized diffu-

sion matrix is defined by D = %ETQ Because trajectories
cannot leave the system, the probability is conserved, which
can be expressed by the continuity equation

d
0 0J. 0J;
Ly 2 gLy, DI8) — 8 — D). (42)
or v =y
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The right hand side represents the reinjection and outflux
of probability at the reset v = 0 (source) and the threshold
v = 1 (sink), respectively, corresponding to the reset of tra-
jectories. With the definition of the currents, Egs. (40) and
(41), the last equation can be written as a partial differential
equation for p(v,y, t). Because the source and sink terms
are sharply localized, we can omit these terms in the regions
v <0,0 <v < 1landv > 0and we arrive at the Fokker-
Planck equation (FPE), Eq. (3) with non-dimensionalized
parameters 4 = 1 and o = €. The source and sink terms can
be realized by imposing appropriate boundary conditions at
v = 0 and v = 1. The sink term at v = 1 ensures that no
probability can be found beyond the threshold and thus there
is no backflux of probability from above the threshold, i.e.
Ju(1,y,t) =0for 1 +€b-y < 0. With Eq. (40) this implies
the condition (cf. (Brunel and Sergi 1998))

p(l,y,t)=0  Vy:1l+eb-y<0. (43)

Furthermore, integration of Eq. (42) fromv = —stov = ¢
(and letting ¢ — 0), reveals that J, (v, y, t) suffers a jump at
v = 0 by an amount J,(1,y, 7). With Eq. (40) this implies
the condition

p(0+7 Y, t)_P(O_v Y, t):p(lv Y, t)’ (44)

where v = 0— and v = 0+ denote the left- and right-sided
limits. Finally, probability should not leak across infinite
boundaries and the probability density must be normalized:

lim p(v,y,t) =0, lim p(v,y,t) =0, 45)
v—>—00 yi—+oo

/dv/ddyp(v,y, 1 =1. (46)

In addition to the boundary conditions, the FPE must be
supplied with an initial condition. Because we aim at the
statistics of the interspike intervals, it is advantageous to
consider an ensemble of neurons that have just fired a spike
at time ¢ = 0. This corresponds to preparing the system in
a state, in which the membrane potential has been reset to
zero, i.e. V(0) = 0, and the OUP is distributed according
to the distribution of Y sampled at the moments of firing. If
we denote this distribution by pgpike (y), the initial condition
for the FPE must be of the form p(v,y, 0) = §(v) pspike (¥)-

Distribution upon firing

In order to determine pypike(y), we first seek the stationary
solution p; (v, y) of the FPE. Setting dp/dt = 0, we obtain

the stationary FPE
8% ps
Dij——),
dyidy;

(47)

d
dps 0
0= (14+eb" » (Aj—0jpo) -
(1+€b'y) 8v+ 1( ,,ayi(y/ps)

inj=

which is still difficult to solve analytically due to the dis-
continuous boundary condition (43) at v = 1. However, for
weak noise, € < 1, the velocity 1 4 €b -y, is practically
always positive, so that the boundary condition (43) can be
safely ignored. A positive velocity also precludes trajecto-
ries from entering the region v < 0. As a consequence, the
system is restricted to the region 0 < v < 1 and has the
periodic boundary condition

ps(0,y) = ps(1,y), y € R? (482)
lim ps(v,y) =0, v e [0, 1] (48b)
yiaioo
1
/ddyf dv ps(v,y) = 1. (48¢)
0

A solution of Eq. (47) is given by the stationary distribu-
tion of the OUP, i.e.

Pe(0.Y) = po(¥) = —————exp(—2¥" Ty (49)
V2me || 2
which clearly fulfills the boundary conditions (48).

The distribution upon firing pspike(y) is proportional
to the stationary probability current Jlfs)(l,y) = 1+
€b - y)ps(1,y) across the threshold (Lindner 2004). In
fact, the probability per unit time that a trajectory crosses
the threshold through the surface element dS(y) at the
point y on the hyperplane defined by v = 1 is given
by Jlfs) (1,y)dy1 - - - dyg. Thus, the probability density upon
firing must be proportional to Jlg‘y)(l, y). The factor of pro-
portionality can be found from the normalization condition,
which yields pspike(y) = (1 +€b - y)ps(1, y) and hence the
initial distribution

p.y,0) =8w)(1 + €b - y)ps(y). (50)

Interspike interval density

An interspike interval is equivalent to the first-passage-time
(FPT) with respect to the threshold Vr = 1, i.e. the time a
system that has been prepared according to a spike at t = 0
needs to reach the threshold for the first time. A standard
approach to obtain the probability density of the FPT (i.e.
the ISI density) is to consider an ensemble in which trajec-
tories are not reset upon threshold crossing but are taken out
of the system. As a consequence, the probability to find a
trajectory with v < 1,

1
am=/¥yf dv p(v, y, 1), (51)
—00
is the probability that a trajectory survives until time ¢. Here,

p(v,y,t) is the time-dependent solution of the FPE, for
which the reset condition (44) has been dropped now. The
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FPT density is given by P(t) = —dG/d¢, or

1
P(t) = —/ddy/ dvd; p(v,y, 1). (52)

Using the continuity Eq. (42) and the natural boundary
conditions (45) yields

P(t) = /ddy Jy(1,y, 1) =P, 1), (53)
where
P, v) = / dy (1 + ebTy)p(v. y. 1) (54)

is the FPT density with respect to a general threshold V1 =
v. Eq. (53) simply expresses that the FPT is equal to the total
probability current through the threshold at time ¢. The ISI
density can be rewritten as

. (35)

v=1

1 R
P(t) = —fdee—'“P(z,t)
2

where P(t, ) = f dv e!P(t, v) is the Fourier transform
with respect to v. Using Eq. (54), we thus have

P(t,0) = /dve"“/d"y(l +ebTy)p(v, y, 1). (56)

This function can be further related to the characteristic
function

gtk 1) = / dvel® / dly e*Yp(v,y, 1), (57)

where k is a d-dimensional vector with elements k;, i =
1,...,d. Indeed, comparing (56) with (57), we find the
relation

P(t,0) = g,k 1) —ie[Vig(€,k, )b o’ (58)

where Vkgq denotes the gradient of g with respect to K,
i.e Vkg is a vector with elements d;q = dq/dk;. Thus,
if the characteristic function g (¢, k, t) is known, one can
derive the ISI density via (55) and (58). In order to com-
pute g (¢, Kk, 1), it is not necessary to calculate the probability
density p(v,y, t) explicitly from the FPE, which does not
permit a closed form solution for the initial conditions (50).
However, applying the Fourier transform to the FPE directly
yields a first-order differential equation for ¢ (¢, Kk, t):

3q — (K'A + etb")Vig = (—K'Dk + if)q (59)
with initial condition
g€, k,0) = (1 +ieb" k) exp(—k"Dk). (60)

This equation can be solved by the method of characteristics
(see e.g. (Kamke 1965)). The characteristic equations are

k=—ATk — etb (61)
G = (—k'Dk +il)q. (62)
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The solution of the first equation is

t
k(t,¢) = e A'c — et / e’ e~ t—1ATp, (63)
0
which can be solved for the initial vector ¢:
t
et k) = Ak + et / e’ e"A'b. (64)
0

The solution of Eq. (62) is given by
q(t,¢) = Qo(c)
I T .
X exp _Ek Yk +ilt

t
—etb'y / dt’k(t’,c)), (65)
0

where the Lyapunov equation (34) has been used. The pref-
actor Qo(c) can be determined from the initial condition
(60) as Qo = 1 + ieb! Zc. The integration in Eq. (65) has
to be performed using the expression (63), followed by a re-
substitution of the vector ¢ = ¢(¢, k) according to Eq. (64).
As aresult we obtain the characteristic function

gk, 1) = (1 +iebT T Ak +ic20g(r))
1
X exp (—EkTZJk +ilt
t
—etbTy / dr' "Nk — ezeZh(t)>,
0
where
t t t"
gt) = f dt'Cin (1) h(t) = f dt” f dt’ Cin (1),
0 0 0
(66)
Using Eq. (58) leads to
P(t, 0) = [14+€2Cin(1)+2i2Lg (1) —* 12 g2 (1) ]/~ 1),
and

P(t) =

e[4S0
2/4me2h3 (1) o =0)
{ [(1 —1)g(t) + 2h(t)]?
2h(t)

e [g(0) = 2h()Cin1)] } : (67)

which constitutes the final result for the ISI density. Let us
provide two alternative expressions for i (¢) and g(¢). First,
if A is invertible we can write these functions in terms of the
drift matrix:

h(t) = bT 5 (AT)2 [e’AT — AT — ]Id]b (68)

¢(t) = BT (AT)! [e'AT - ]Id]b. (69)



J Comput Neurosci (2015) 39:29-51

43

Second, using the power spectrum of the noise

Sin(f) = / s Cin(7)e*™/7, (70)

—00

we find

2 e’}
ho = % / df Su(fsin (f1),

—00
o
¢0) =1 [ df Supsine2fo)
—0o0
where sinc(x) = sin(wx) /(7 x).
Cumulants of the n-th order intervals

Apart from the ISI density the ISI statistics can be charac-
terized by its cumulants (semi-invariants). We will calculate
these cumulants also for the nth-order intervals because they
will be used to find an expression for the SCC and the calcu-
lation does not pose any extra difficulties. In fact, as argued
in the main text, the time #, of the n-th threshold crossing,
i.e. the nth-order interval, is equal to the first-passage time
of the free process with respect to the nth-fold threshold
Vr = n (given the same noise realization). The probability
density of the nth-order interval is thus given by P (¢, n) (cf.
Eq. (54)). The k-th cumulants of the nth-order intervals is
given by (van Kampen 1992)

P

k n

Kk(n) = (_1) dSk o ) (7])

where

_ 0

P,(s) =f dr e S"P(t, n). (72)
0

is the Laplace transform of the n-th-order interval den-
sity, which plays the role of a moment generating function.
Introducing the Laplace-Fourier transform of the probability
density

o

o(v, K, 5) :/ dte*”/ddy X Ypu,y, 1), (73)
0

the moment generating function can be rewritten as

Py(s) = [¢ — i€b - Vi@l - (74)

The function ¢ satisfies the transformed FPE

kT Tk
9,9 — k'AVip =—(s + k'DK)g + §(v) exp <— 5 )

. 2T _kTEk
+ ieb” | 9, Vkop + 6(v) Xkexp 7 . (75

The mixed derivative 9, Vkg makes an exact solution infea-
sible. However, using the perturbation expansion

0 =00 4ee® 4 2@ 4 ... (76)

yields a hierarchy of first-order partial differential equa-
tions for the coefficients (p(k)(v,k, s). Specifically, we
obtain

9,0 —K'AVke"™ = —(s + K'DK)p™ + I,,, (77)

where the the inhomogeneities [, are given by

k' Tk
Iy = §(v)exp (— 3 > (78)

kT Tk
11:ibTBUngo(O)+i8(v)bTZ‘kexp(— > ) (79)

Iy = ibT 3, VoD, m > 2. (80)

If we insert the ansatz (76) into the formula (74), we
obtain a perturbation series for the moment generating
function:

Pu(s) = PO(s) + PV () + PP () +---,. (8D
where [_’,1(0) (s) = 9D, 0,s) and

P (s) = [0 = ibTVip ™| (82)
k=0,v=n

for m > 1. Equation (77) can be again solved by the
method of characteristics. To this end, the solution sur-
face (v,k, go(m)(v,k, s)) is parametrized by a parameter
T and d initial constants ¢;, i = 1,...,d. The total
derivative of ¢ with respect to T is then dp™ /dr =
g—g&vgo(m) + %ngo(m). Comparison with Eq. (77) yields
the characteristic equations

dv
— =1, 83
i (83)
dk .
& ATy, (84)
dr

do™m

fl — —(s +KTDK)p™ + I,,. (85)
T

The integration of the first two equations results in
T
k=e¢T""¢c. (86)

V=T,

To solve the third equation, we make the ansatz

e (1, ¢) = exp (—st — %kT2k> v (7, 0). (87)

Using this ansatz in Eq. (85) yields

dy ™
dr

- (kTDk - li(1<T>:k)> v 41, (T, ¢) (88)
2drt
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where fn(t, ¢) = I,exp <S‘L’ + %kTZ‘k>. In terms of the

lower-order functions ¥"~!, the inhomogeneous parts can
be written as

Iy = (1), (89)

I = ib" |8, Vi @ — Tka,y @
Vi © — 21«/;“”) n 5(1)21(] (90)

—S

L

[
(
ibT [,y 1 — Tk, Y
—s (ka(’”‘” — zkwm“))], m=>2. (Ol

In order to regard these expressions as functions of t and
T

¢, the vector k has to be understood as k(z, ¢) = e ™A ¢,

It turns out that in Eq. (88), the prefactor in front of y )

vanishes because in light of Egs. (34) and (84)

d . .
d—(kTEk) =k'Zk+k'Tk = —(kKTAZk + k' ZATk)
T

= —k'(AY + ¥ADk = 2k'Dk. (92)
Thus, ¥ can be easily integrated:
T
vM(z,¢) = / dt’ I,(t', ¢). (93)
—0o0

For the evaluation of this formula, the derivatives of the
lower-order functions w(m’l)(r, ¢) with respect to v and k
are needed. To this end, it is useful to apply the chain rule:
for a given scalar function f(t, ¢) we can write

T T
(Vi) = [0: f VT + (VkOVe fTT = (Ve )™ (94)
and
Wf=0f+Vef) Ale. (95)

In Eq. (94), we made use of Vkt = 0 and Ve =

T
T . . .
(eTA ) = ™, where Vkc is a matrix with elements

(Vke)ij = dc;/dk;. In Eq. (95), the relation dy¢ =
Bve“ATk = ATc was employed.

For m > 1, the perturbation coefficient 13,1("1)(&) can be
expressed in terms of v =D (, ¢) by using Egs. (82), (93)
and (95):

Is,fm)(s) — e—sn I:w(m) _ ibTka(m_l)]

c¢=0,7=n ’
T
= {[ de'ib" [9, Vi Y — sV V|
—0Q
—ibTVkl//(m_l)} ,
c=0,7=n
n
= —ise™*" [ f dT’bTVkI//(m_l)(‘L’/,C)i| . (96)
0 c=0

Zeroth-order For m = 0, we obtain from Eq. (93)
v O (z,¢) =0(2). 97
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Equation (87) then yields the leading-order of the moment-
generating function

PO(s) = O (n,0,5) =" (98)
The derivatives of ¥ simply read

W@ =80, Wy©®=o0. (99)

First-order Because the gradient in Eq. (96) equals zero
for m = 1 (Eq. (99)), the first-order contribution to P, (s)
vanishes:

PV (s)=0. (100)

From Eqgs. (90) and (93) we obtain
T
v (z,¢) = i@(r)sf dry bTze ™A ¢, (101)
0
Using Eq. (94), the gradient of ¢ (! reads
T T AT
(vkw”) - i9(t)sf dr; BT Zen AT, (102)
0

Furthermore, the derivative with respect to v is

3,y = i6(n)s (sze—fATc
T T
+ / dr bl e 1A ATc>
0
= i6(r)sb' Tec.
and the mixed derivative takes the form

T
(vkav¢<1>) = i0(1)sbTz ™A (103)

Second-order For m = 2, we find the first non-vanishing
correction of the moment-generating function due to noise:

_ n (%)
PP (s) = s2e™s" / dr, / dz; Cin(11). (104)
0 0

Here, Cj,(¢) is the noise correlation function as defined in
Eq. (38). Furthermore, we obtain

v® = —G(I)s/
0
- (sze—szTc) ®Tzc)
%) T
—s [/ dr; b xe™ b
0

»
—(bTxe*szTc) / danEe”ATc]} (105)
0

T T
dr, {bT):esz b
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and the gradient

T T
(vw@)) = —0(1)s / dr, {— (bT Ze)bT ZeT—AT
0
— (bTZ‘efszTc) bl xe™A
+s (sze*szTc) /  dry T Zer—mAT
0

153
+5 (/ dr sze—flATc> (bT2e<’—f2>AT)} .(106)
0

The derivative with respect to v is more involved: using
Eq. (95) first leads to

3@ = —6(0)s {Cm(r) - (bT):e—fATc) ®Tze)
! T AT ' T AT
-5 [/ dry Cin(t — 11)— (b Ye T c)/ dryb Xe ™0 c:|
0 0
T
+ f dny {— bTZobT Ze A ATe
0
- (bT):e—szTc) bTzATe
©
+s (bTZ‘e*”ATc)/ dr; pT e 1AT ATc
0

1) - N
+s ( / dr bTEe’”Alc) (BT ZemA! ATc)“ . (107)
0

—tAT AT _ _d ¢

. . . T . .
Using the identity e I-€ A" and integrating

by parts simplifies the expression to
W@ = —6(1)s {bTxefATb — (bTz¢)?
T T
—TzA"o) / dry (b7 ze ™ e)
0
T T
—s [/ dryb"Zem b
0

T
—b"xe) / dry bTZeﬂATc]} .
0

Taking the derivative of the last equation with respect to k
results in

(108)

Vids v @) = —0(1)s { — 2" Ze)bT z A
' T —7 AT T T AT
+ / dr T Ze 1A e | b E(s]ld—A )ef
0

T
+ (sz (s]Id - AT) c) / dr bTZ‘e”AT} . (109)
0
where [; denotes the d x d identity matrix.

Third-order Because the gradient Vi ® vanishes for ¢ =
0, we find

P3O (s) =0. (110)

Using the derivatives in Egs. (106), (108) and (109) we
obtain the third-order perturbation solution

T
O = —ie(z)%/ dn; {—2(bT>:c)Cm(r3)
w* Jo
73
+ ( / dr sze*flATc) (sz (2st - AT) ef3ATb)
0
3
+(pTx (251, — AT) ¢ (f dr; G (rl))
("= ( ) ([ ancn
- (bTZ‘e_T3ATc) [Cm(m — Tz

3
—0™zaATe) | dy (bTxe—flATc)
0

73 & T
—s (/ dty Cin(11) — (bTEc)/ dr b xe 04 c)]
0 0
3 1]
- 52/ dm, [(bTEe‘”ATc> / dty Cin(t3 — T1)
0 0

1)
+ (/ dry bTEe*”ATC) Cin(t3 — fz)]
0

3
+s (bTEe_T3ATc> / dny |:Cin(r2) - (bTxe—szTc) ®T ze)
0

(%) L)
—s ( / 7y Cin(71) — (bTxe—szTc) / dr sze—flATc>] } .
0 0

(111)

Differentiating this expression with respect to k, setting
¢ = 0, and taking the scalar product with the vector b leads
to

(Vk¢(3>)Tb

=i9(f)5[ drs {2C1n(f3)Cin(t)
=0 0
3
+ Cin(r — T3)Cin(f3)+[) dr [Cin(t— 1) C}, (3) + Cin(11)C, (T) ]
—25/ 3dfl [Cin(t —71) Cin(t3) + Cin(71) Cin (t) + Cin (71) Cin (t — 13)]
0
+5? /Q do, /rz dr [Cin(T — ©2)Cin(T3 — T1)
0 0
+Cin(t — 11)Cin(13 — ©2) + Cin(t — 13)Cin(12 — T1)] } (112)

Here, C{n(t) denotes the derivative of the correlation
function with respect to t.

Fourth-order Finally, using Egs. (96) and (112) yields the
second non-vanishing correction:

_ n 74
BO(s) = &2 f dn f dr3 {2cin<r3)cin<r4>
0 0

3

+ Gl =) () + [ A [Cir4= 1) Cha(72)+ Cin (1) (1)
0

3
—25/ dty [Cin (T4 —71) Cin(73) + Cin (1) Cin (t4) + Cin (t1) Cin (14 — 73) ]

0

T3 12
+S2/ drp / dry [Cin(ta — 12)Cin(73 — 1)

0 0

+Cin(t4 — 11)Cin(13 — 2) +Cin(14 — 13)Cin(12 — 71)] } . (113)
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To summarize, the moment-generating function reads up
to fourth order in €:

_ n (%) _
Pa(s)=e" <1+62s2 [ aw [ “an Cin<n>)+e4P,§“>(s>.
0 0
(114)

This formula satisfies the general property P,(0) = 1 of a
moment-generation function, which expresses the normal-
ization fooo dr P, (t) = 1 of the nth-order interval density.

Cumulants. Knowing the moment-generating function,
Eq. (114), we can compute the cumulants of the nth-order
intervals by means of Eq. (71) up to fourth-order in €. As
expected, the first cumulant, or mean nth-order interval, is
given by

Kin = (ta) = n, (115)

which is consistent with the fact that (¢,) = (T1) +
-+ (T,) = n(T;) = n (recall that (T;) = 1 in the
non-dimensionalized system).

The second cumulant is equal to the variance (At,f) of
the nth-order intervals, where Af, = t, — (T;). From the
formula for the cumulants, Eq. (71), it can be seen that only
the coefficients of the quadratic terms s> in Eqs. (113) and
(114) enter the expression for the second cumulant (P,(s)
has no linear terms). Thus, we find

n rz
Kopn= (At,%) = 262[) dry /0 dzq Cin(71)

n T4

+264/ du/ dzs {Zcin(TS)Cin(T4)
0 0

+Cin(t4—13)Cin(13)

73
—l—/o dry [Cin(ta—11)Ciy (13) + Cin(fl)C{n(m)]}

= 22h(n) + 2¢* [gz(n) n Cin(n)h(n)] . (116)

The third cumulant only involves the cubic terms in
Eq. (113), hence

n 3 1%
K30 = (ML) =12¢* / dr3 / dny / d71 [Cin(z3 — 71)Cin(72)
0 0 0

+Cin(11)Cin(73) + Cin(71)Cin (13 — 12)]
12e*g(m)h(n).

(117)

Coefficient of variation and serial correlation coefficient
Formulas for a given noise correlation function The

coefficient of variation is given by the ratio of standard devi-
ation and mean of the 1st-order interval (i.e. ISI). If we take
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into account that we measure time in units of the mean ISI,
we find
(Ar})

oy Vb

where «3 1 is given by Eq. (116) with n = 1. Further-
more, we can compute the SCC by using formula (116) for
arbitrary n:

(Ar2 ) = 2(A12) +(A2_))
2(At}) ’
If we further restrict ourselves to the leading order, we can
derive a much simplified expression for the SCC in terms
of the noise correlation function. In fact, writing (At,%) =
262f0"d12 fom dty Cin(11) + O(€*) and accounting for the
symmetry of Ci,(7), we obtain from Eq. (119)
 Jodr fydt Cn(n + 7 — 7))
Jodt [y dt’ Cin(x — 1))
In terms of the noise power spectrum, Eq. (70), this expres-
sion can be rewritten as

[ df Sin(f)sinc?(fe 2T
Jdf S(f)sinc?(f)

Cv=

(118)

On = (119)

+ O(e?). (120)

n

+ O(?).

(121)

n

Formulas for a given matrix representation of the
Ornstein-Uhlenbeck process To elucidate the general
structure of serial correlations, it is instructive to express the
SCC in terms of the drift matrix A and covariance matrix
X of the OUP. In leading order of €, the variance of the
nth-order intervals reads

(A7) =267 (bTE(AT)_2 [e"AT —nAT - Hd] b)+(9(64),

where we assume that the drift matrix A is invertible. Setting
n = 1, we obtain the squared coefficient of variation:

€2 =2 3 (AT) 2 [eAT _ AT ]Id] b+ O@Eh. (122)
Using Eq. (119), the leading order of the SCC can now be

written as
2
bT 5 (AT)2 (]Id _ eAT> o(n—DATY
pn = ; +0(e?). (123)
2bT 5 (AT)—2 [eA _ AT — I[d] b

Apparently, the SCC has the simple exponential structure
Pn = clTe(”_l)ATcz with constant vectors ¢; and ¢;. That
means that the SCC is a linear combination of the entries
in the matrix exponential function e("_l)AT. In fact, let Q
be the constant matrix made up by the (generalized) eigen-
vectors of AT. Then, AT can be diagonalized (or, or more
generally, transformed into its Jordan normal form) through
the representation AT = QJQ'. Thus, the SCC can be

rewritten as

pn = €;Qe" QT ey = dje" My, (124)
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where the vectors di = Qc; and dy = Q_lcz are constant.
In the special case, where AT is diagonalizable (i.e.AT pos-
sesses d linearly-independent eigenvectors corresponding
to the eigenvalues A;, i = 1,...,d), the matrix exponen-
tial e~ D7 is diagonal with the diagonal elements e’ "~ 1.
Thus, the SCC is simply a superposition of the exponentials
¢*"=1 Real eigenvalues contribute to exponential decays
with “rate” 1/A;. On the other hand, complex eigenvalues
lead to damped oscillations, which, however, might appear
rather irregular as ¢’ "~ 1 is sampled at discrete integer val-
ues (Bauermeister et al. 2013). In any case, the SCC decays
to zero for n — o0 because, by assumption, the real parts
of the eigenvalues of the drift matrix are negative.

Cumulative correlations and Fano factor

The exponential structure of the SCC, Eq. (123), also allows
us to calculate the cumulative effect of serial correlation as
expressed by the sum of all SCCs. Applying the formula for

—1
the geometric series, Y oo ; e(n=DAT _ (Hd — eAT) , We
find
00 bT 2 (AT)2 (Hd - eAT) b

pn = : +0(e?). (125)
—~ 2bT 5 (AT)-2 [eA _ AT — I[d] b

This sum also determines the long-term variability of the
spike train. Indeed, the fundamental relation (Cox and
Lewis 1966a)

(0.¢]
Jim F () = (T) Jim Sou(f) = C (1 + 2le”> (126)

n=
relates the Fano factor F(¢) of the spike count or the power
spectrum Sou(f) of the output spike train to the second
order ISI statistics as expressed by the CV and the sum of
SCCs. The Fano factor is defined as the variance to mean
ratio of the spike count N(¢) in the time window (0, t),
ie. F(t) = (AN@)?)/(N(t)) (note that, in this defini-
tion, the origin of the time window is arbitrary; it does not
have to coincide with a spike time). The power spectrum
of the output spike train xouc(f) = Y ; 8(t — ;) is defined
as the Fourier transform of the spike train auto-correlation
function, i.e. Sou(f) = [dr eV (xou ()Xot + T)).
Using the expression for the squared CV, Eq. (122), and the
summed SCC, Eq. (125), the long-time limit of the Fano
factor is

Jlim F(1) = 22T (AT 'b + O(eH). (127)

In order to obtain an approximation for the Fano fac-
tor for arbitrary length of the time window ¢, we follow
(Middleton et al. 2003): If ¢ is large and ¢ <« 1, the
spike count N (¢) can be approximated by the free mem-
brane potential V (¢) with V(0) € [0, 1). Indeed, for weak

noise we can assume V(t) > 0, so that the n-th spike
time 7, is equivalent to the crossing of the n-fold thresh-
old, i.e. V(#,) = n. This implies that the deviation 6V (¢) =
V(t) — N(¢) is bounded (in fact, 0 < §V (¢) < 1) and hence,
N(t) = V(t) + O(1). This relation still holds if we assume
the specific initial condition V(0) = 0. The trajectory of
V (¢) can then be obtained by integrating Eq. (37a):

t
V() =t+6/ dr’' n(@)). (128)
0

Thus, the mean and variance are
(V) =1,
t t
(AV()?) = ezf dt’/ dt” Cin(t' — t") = 2€h(2),
0 0

where /(¢) has been defined in Eq. (66). For large times, the
Fano factor is hence given by

_ (AvV®?) Ny 1)
Fla.rge(t) = V) + 0@ ) &~ 2 ;
(AT)—Z I:elAT_tAT_Hd:I

t

=2p'y

b. (129)

In the exact limit 1 — 0o we re-obtain the leading-order
term of Eq. (127), which shows the consistency of the two
approaches.

For small time windows, the spike train can be regarded
as periodic given the weakness of the noise. This argument
holds irrespective of the specific correlation function of the
noise, which allows us to apply the same approximation as
in (Middleton et al. 2003):

{r}(d —{t})

Fsmal](t) = P

(130)

where {t} = t — |t] is the difference between ¢ and the
largest integer | ¢ | not exceeding ¢ (sawtooth function). Fol-
lowing (Middleton et al. 2003), a uniform approximation on
the whole range of 7 can be obtained by adding the small
and large time approximations of the Fano factor:

F(t) = Fsman(?) + Flarge(t)~ (131)

A.3 Model of the synaptic input current

To test our theory (Figs. 3-9), we assume that the pool of
presynaptic neurons can be split up into Ng excitatory and
N7 = N — N¢ inhibitory neurons. Furthermore, the postsy-
naptic synaptic currents induced by each spike are modeled
by the exponential impulse response functions jg(t) =
Jee T (t) and jz(t) = Jre /™2 (r) with synaptic time
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constants tg and t7 (synaptic filtering). This corresponds to
the simple first order kinetics

N;

vl =1+ Jiw in,k(f)» i=&7 (132)
k=1

where xg/7, (1) = Zj 8 (t - t;g/I'k)> is the spike train

arriving at the k-th excitatory/inhibitory synapse. Jg and
J7 denote the synaptic efficacies. The mean synaptic cur-
rent is thus (Isyn (1)) = NeJeteve + Nz JzT7V7, Where we
assumed that excitatory and inhibitory neurons fire with rate
ve and vz, respectively.
In frequency domain, the synaptic filter becomes
T2 S}

i (HOI7 = m
for i = £,7. In the special case, where the single presy-
naptic spike trains are independent and have power spectra
Se(f) and Sz (f), respectively, we find the power spectrum
of the synaptic current from Eq. (27):

S1(f) = Nelje(HIPSe(f) + Nzljz(HIPSz(f).

(133)

(134)

A.4 Signal encoded in a common rate modulation of
Poissonian inputs

To model the encoding of a continuous signal s(z), we
assume that s(¢) represents the rate modulation of an inho-
mogeneous Poisson process. Specifically, we assume that
the k-th presynaptic spike train is a Poisson process with rate

re(t) = (e () = v (1 + &gs(2)).

Here, s(¢) is common to all inputs and is modeled as a mean-
zero Gaussian process with power spectrum S, (f). For the
correlation matrix, Eq. (25), we find

Sk1(f) = vidki + exervicviSs (f).

The power spectrum S;(f) of the total input current is then
given by Eq. (27), and the normalized spectrum is Si,(f) =
S1(f)/ [df Si(f). Specifically, we find for homogeneous
excitatory and inhibitory neurons, where only the excitatory
population carries a signal (g = ¢ > 0, e7 = 0):

(Isyn) = NeJetgve + NzJzT7vVL

S1(f) = Nevelje (O + Novzljz(f)?

+e20ENE e ()18, (/). (135)

Powerlaw signal A signal spectrum with a powerlaw decay
can be modeled by Eq. (15) (cf. (Sobie et al. 2011)), where

N = %(1 —-y)/ <f21_y - yfll_y) is a normalization con-
stant ensuring unit variance, i.e. [df S;(f) = 1. The
steepness of the decay is quantified by the exponent y.

@ Springer

For y = 0, we recover a flat spectrum, i.e. white noise
with a cut-off frequency f>. For y = 1, we obtain 1/f-
noise (flicker noise), which possesses strongly increased
power at low frequencies. For the sake of the following cal-
culations, we restrict y to the range [0, 1). Furthermore,
we assume the lower cut-off to be small, fj <« 1. Note
that in the limit fi — 0, we have to require y < 1 in
order to have a signal with a finite-variance. Taking this
limit allows us to analytically derive the statistical proper-
ties of the spike train on long times ¢ in the range 1 <«
r < fl_l. Nevertheless, in simulations we keep a small
lower cut-off f; > 0 in order to resolve the low-frequency
components.
We are interested in the asymptotic behaviors

F(t) = €%t / df Sin(f)sinc?(f1) (136)

Pn X f df Sin(f)sinc?(f)e2mi/n (137)

for ]l € t K ff], and 1 € n K ffl, respectively. We
will exploit the property that sinc®(x) is negligibly small for
x > 1. Thus, in Eq. (136) only frequencies f < 1 contribute
to the integral. Similarly, we can exploit the fact that for
large n, the term e~ 27/ oscillates rapidly for f > 1. Thus,
only small frequencies f <« 1 contribute to the integral in
Eq. (137). This allows us to make the following approxi-
mations: First, if f, > 1, we can replace the upper cut-off
frequency by infinity, i.e. fo — oo, without changing the
integrals in Egs. (136) and (137). Secondly, if we assume a
time scale separation between spiking and fast synaptic fil-
tering dynamics, tg, 77 < 1, we can replace the synaptic
filter by

2.2

- J,
(I = — kT

- i e
14+ Qrr f)? kT

k=E&1I, f<l
because only frequencies f < 1 matter in the above inte-
grals. From Eq. (135) then follows that the normalized
spectrum has the form

28, S,
Sin(f) — Lz)—i_o

o

(138)

with oy = egJeteNgve and So = ) ;¢ 7 J,?r,?Nkvk.
Using Eqgs. (136) and (138), we find for the Fano factor

2262t [ S

Fy = 2% / Sy (frsinc(fr) df + €222

oy 0 o;

2 2 R o2 i 2
220 2tN sinc”(ft) Jot sinc*(frydf » S0
~ B df+ 7 +e€ >
or 7 Ir i or
1

2¢262N 00
~ %ﬂ/ xsinc2(x)dx + O(1), > 1.
o fit
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If the lower cut-off frequency fi is still small enough such
that fit < 1, we can set the lower integration boundary to
zero. This yields

2e202NCy
2
or

F(t) ~ "+ O(1), <t < 1/f1, (139)

where Cj = 2(27)" I T (=1 — ) sin (Z).

To get the behavior of the SCC for large lags n, we can
again set f to zero. Ignoring prefactors we find

pn / Tar [025,(f) + S| sine®(f) cos @ fn)
0

[0 /Oodfffysincz(f)cos(ann)
0
o (n+ DY — 20 4 (n — DY

For large n, we can approximate (n & 1)1+ ~ n!*7 £ (1 4
ynY + Mﬂy’l, hence

Pn X n? 1, l«Knk fl_l.

A.5 Inverse Gaussian input

To model non-Poissonian input spike trains with a CV
smaller or larger than unity, we assume presynaptic spike
trains to be renewal processes with an inverse Gaussian ISI
density:

T — 1)2}
P(T;v,Cy) = ————|. (140

1
————¢xXp 5
,/2nC\2,vT3 |: 2CyvT
This distribution is parametrized by the rate v and the coef-
ficient of variation Cy. The spike train power spectrum is
given by (Stratonovich 1967)

1—[P(f;v, Cy))?

S v, Cy) = = ,
G O = T o e

where P( f; v, Cy) is the Fourier transform of the inverse
Gaussian, Eq. (140), given by

1—/1—4riC% f/v

o

IS(f; v, Cy) = exp

(Holden 1976; Bulsara et al. 1994; Chacron et al. 2005). The
power spectrum of the synaptic current is then, according to
Eq. (27):

S1(f) = Nelje()I*Sig(f; ve, Cv)
+Nzliz(H)I*S16(f; v, Cv).

A.6 Synapses with short-term plasticity

Following (Dittman et al. 2000; Merkel and Lindner 2010),
we use a deterministic model for the synaptic dynamics.
A presynaptic spike at the ¢th synapse causes a postynap-
tic response with the history-dependent weight A,;(t) =
Fy(t)Dy(t), where facilitation is governed by

Fi(t) = Fo+ (1 — Fo)™' + Fg ™",
Feo(t) = —Feu/tr + A - x(0),
and where depression dynamics obey
De(t) = (1 = De(1)/tp — Fe(tT) D7) - xe(0).

Here, x¢(¢) is the presynaptic spike train, Fy is the intrinsic
release probability, A quantifies the strength of facilitation
and tr (trp) is the timescale of facilitation (depression).
Above, we have compared the limit cases of pure facilitation
and pure depression, which corresponds to setting Dy (f) =
1 (pure facilitation) or F;(t) = Fp (pure depression).

A.7 Nonlinear integrate-and-fire models

Using the PRC, Eq. (18), the deviation of the ith ISI from
its mean is given by

(T)
S8T; Eﬂ—(T}:—G/ dt Z(t)n(ti—1 +1).
0

This allows us to compute the serial correlations:

(8T8 T; 1)

(T) (T)
62/ dt/ dt' ZWOZ& Y ti—1+ 00 tisk—1+1"))
0 0

(1) (1)
to dt/ dt’ Z(OZ()Cin(tiyk—1—ti—1 +1' — 1)
0 0

(T) (T)
= 02/ dz/ dt' ZOZA)Cin(tx + 1 — 1).
0 0

If Cin(¢) does not change rapidly, we can approximate #; ~
k(T) in the last equation. Hence

(8TidT; 1x)
Ty )
%02/ dtf dt' Z(O Z(t)Cin k(T) + 1 — 1)
0 0
= (1) / Af Sn(PIZ(f)Pe 2Dk
where Z(f) = 7 JE dr Z(#)e? i1, From this follow

Egs. (19) and (20).
The sum of all SCCs evaluates to

o 1 {027(0)2 )
on=x|—5-50)-1],
; 2 ( C2(T)

where Z(0) is equal to the average PRC obtained by averag-
ing over the interval [0, (T)]. Furthermore, using Eq. (126)
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we obtain the long-time limit of the Fano factor or, equiva-
lently, the spike train power spectrum in the zero-frequency
limit as follows

027(0)2

5(0).
) )

tlln(;lo F(t) = (T) }ii“o Sout(f) =

This equation implies that for any neural oscillator driven
by weak colored noise, the spike count diffusion coefficient
Dett = Sou(0)/2 is proportional to the intensity D, =
S(0)/2 of the input noise, irrespective of the nonlinearity.
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