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Abstract We derive nonparametric tests of symmetry using asymmetric kernels with
either vanishing or fixed bandwidths. The idea is to split the sample around the sym-
metry point and then test whether the distributions to the right and to the left are
the same. We show how to extend the approach to examine conditional symmetry by
deriving conditions under which our tests are applicable to residuals from semipara-
metric models with a (sufficiently smooth) nonparametric link function. The latter
setting is general enough to entertain as a particular case a unknown symmetry point,
which we duely estimate by the sample median. The conditions we derive ensure that
the resulting estimation error is asymptotically negligible. Simulations show that the
asymptotic tests perform well even in very small samples, entailing better size and
power properties than some of the existing symmetry tests.
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1 Introduction

Symmetry and conditional symmetry play an important role in numerous situations.
Conditional symmetry is part of the stochastic restrictions on unobservable errors used
in semiparametric modeling. See, for instance, Powell (1994) for further discussion
and references. It also implies constant conditional mean and median, and aids in the
identification of models that can be symmetrized in their error terms. Further, adaptive
estimation sometimes relies on the assumption of conditional symmetry. Bickel (1982)
shows that, under conditional symmetry of the error term, it is possible to estimate
adaptively the slope coefficients in linear regression models. Newey (1988) builds an
adaptive estimator based on the generalized method of moments under the assumption
of conditional symmetry. In macroeconomics, the symmetry of innovations also plays
an important role (Campbell and Hentschel 1992). Determining whether positive and
negative shocks are equiprobable has crucial economic policy implications. In finance,
knowing whether returns and risk factors exhibit symmetry may help in the choice
of an adequate risk measure for the portfolio and risk management (Gouriéroux et al.
2000). These few examples illustrate the relevance of contriving consistent tests of
symmetry and conditional symmetry.

There are a number of nonparametric tests available in the literature. Fan andGencay
(1993) and Ahmad and Li (1997) propose a nonparametric test of symmetry based on
Ahmad and Belle (1974) affinity measure between two probability density functions.
Fan and Gencay (1995) extend their result to deal with linear regression residuals,
but fall into the same problem of requiring an arbitrary constant to avoid asymptotic
degeneracy of the test statistic. Zheng (1998) derives tests of conditional symmetry by
checking whether the conditional cumulative distribution function satisfies the restric-
tions imposed by symmetry. Bai and Ng (2001) show how to test whether residuals of
nonlinear time-series models are symmetric, whereas Fan and Ullah (1999) propose a
test of symmetry for weakly dependent data by gauging the closeness between f (u)

and f (−u), where f is the stationary distribution of the process {Xt , t > 0}. More
recently, Delgado and Escanciano (2007) propose a test for conditional symmetry
based on empirical processes within a dynamic context.

Our testing strategy is somewhat different. Symmetry around zero implies that the
shape of the density function to the right of the origin is a mirror image of the shape
to the left of the origin. Using the nonnegative data to estimate the density of the
right part and the absolute value of the nonpositive data to estimate the density of
the left part, we then check whether symmetry holds by looking at the closeness of
these two probability density functions. To handle density functions whose supports
are bounded from below, we rely on asymmetric kernels (Chen 2000; Scaillet 2004).
These estimators are nonnegative, boundary-bias free, and achieve the optimal rate of
convergence for themean integrated error. Further, as opposed to the previous tests that
use fixed kernels, our testing procedures do not require the continuity of the derivatives
of the density function at the origin. Bouezmarni and Scaillet (2005) analyze the
convergence of the asymmetric kernel estimator when the density is unbounded at
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Testing for symmetry and conditional symmetry using asymmetric kernels 651

the origin. Recent empirical applications of asymmetric kernel density estimators in
economics and finance include Fernandes andGrammig (2005), Hagmann and Scaillet
(2007), and Gustafsson et al. (2009). These papers also report Monte Carlo results
showing the nice finite-sample properties of asymmetric kernel estimation and testing.

We develop the asymptotic theory for the above tests considering both vanishing
and fixed bandwidths. In the first case, we show that the integrated squared difference
between the density estimates of the positive and the absolute value of the nonpositive
data is a V-statistic. The asymptotic distribution is driven by a degenerate U-statistic
that weakly converges to a Gaussian distribution with zero mean. The additional term
that marks the difference between the V-statistic and the corresponding U-statistic
gives way to the asymptotic bias in the limiting distribution of the V-statistic. We
construct symmetry tests based on both V- and U-statistics within the context of
vanishing bandwidths. In turn, our tests with fixed bandwidth rest on the V-statistic,
weakly converging to a weighted sum of chi-squared random variables as in Anderson
et al. (1994) and Fan (1998). Finally, we extend our approach to examine conditional
symmetry by deriving conditions under which our tests are nuisance parameter free
and hence applicable to residuals. This is important becausewe do not know in practice
whether the symmetry point is indeed at the origin. The conditions are mild, allowing
us to test the symmetry of residuals resulting even from semiparametric models that
feature a (sufficiently smooth) nonparametric link function. This setup not only nests
the case of a unknown symmetry point, but is also somewhat more general than the
parametric settings that Zheng (1998), Bai and Ng (2001) and Lambert et al. (2012)
consider for testing conditional symmetry.

We investigate through Monte Carlo simulations the performance of our condi-
tional symmetry tests in small samples. In particular, we consider the gamma-kernel
tests with vanishing bandwidths resulting from both V- and U-statistics. The latter has
the advantage of avoiding the estimation of the asymptotic bias of the V-statistic. The
results are encouraging, with the test based on the U-statistic improving considerably
on the test rooted in the V-statistic. In stark contrast to many nonparametric tests,
empirical size is very close to nominal size in most situations, even for sample sizes as
small as 50 observations. This is particularly impressive in view that splitting the data
into positive and negative values actually reduces the effective sample size by half. In
addition, our tests also entail excellent power against a wide array of asymmetric dis-
tributions. Our methodology easily outperforms (Zheng 1998) conditional symmetry
test, whereas it competes well with the nonparametric tests put forth by Bai and Ng
(2001) for sample sizes of at least 100 observations. This holds despite the fact that
the latter tests display faster rates of convergence.

The outline for the remainder of the paper is as follows. Sections 2 and 3 derive the
tests of symmetry and conditional symmetry, respectively. In particular, we show that
our test statistic weakly converges to a standard normal distribution if the smoothing
parameter shrinks to zero as the sample size grows. On the other hand, our test statis-
tic weakly converges to an infinite sum of weighted Chi-square variables for a fixed
smoothing parameter. Section 4 reports someMonte carlo experiments addressing size
and power in small samples.We focus on the nonparametric test of conditional symme-
try based on a gamma kernel with a vanishing bandwidth. Section 5 offers some con-
cluding remarks, whereas the Appendix collects the assumptions and technical proofs.
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2 Testing symmetry

We check whether symmetry holds by looking at the closeness of the probability
density distributions of the positive values and negative values. More formally, we
derive a test statistic from the �2-distance with respect to the Lebesgue measure:

I =
∫ ∞

0
[ f (u) − g(u)]2 du

=
∫ ∞

0
f (u) dF(u) +

∫ ∞

0
g(u) dG(u) − 2

∫ ∞

0
f (u)g(u) du, (1)

where f and g are the density functions to the right and to the left of the origin,
respectively. We impose without any loss of generality that the symmetry point is
at the origin.1 The integrated square distance that we adopt is convenient because it
entails a consistent test, since it is always nonnegative, and takes value zero if and only
if the null hypothesis holds, namely H0 : f (u) = g(u) almost everywhere. Bickel
and Rosenblatt (1973), Aït-Sahalia et al. (2001, 2009) rely on similar squared distance
measures, though one could alternatively employ entropic pseudo-distance measures
(Robinson 1991; Hong and White 2004).

From a random sample of N observations, it is straightforward to estimate the
unknown density functions f and g using asymmetric kernel estimators. We first split
the sample into a subsample with the nonnegative values {Xi ; i = 1, . . . , n1} and
another subsample with the absolute values {Yi ; i = 1, . . . , n2 = N − n1} of the
negative observations of the original sample. Next, we estimate the densities of X and
Y using asymmetric kernels, so as to avoid the boundary bias that plagues fixed-kernel
density estimation. For ease of exposition, we start with the simplifying assumption
that n = n1 = n2 = N/2, so that

f̂ (u) = 1

n

n∑
i=1

Ku(Xi , b) and ĝ(u) = 1

n

n∑
i=1

Ku(Yi , b),

where Ku(·, ·) is either the gamma kernel as in Chen (2000) or the (reciprocal) inverse
Gaussian kernel as in Scaillet (2004), and b is a bandwidth tuning the amount of
smoothing.

Let
∫
denote the integral over the support [0,∞). A sample analog of (1) is

In =
∫

f̂ (u) dFn(u) +
∫

ĝ(u) dGn(u) −
∫

f̂ (u) dGn(u) −
∫

ĝ(u) dFn(u),

1 It is without any loss of generality only because we show in Sect. 3 that estimating the symmetry point
by means of the sample median entails no asymptotic impact in the limiting distribution of the test statistic.
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where Fn(·) and Gn(·) are the empirical distribution functions based on the sample
data {Xi , i = 1, . . . , n} and {Yi , i = 1, . . . , n}, respectively. Using the fact that

∫
M(u) dFn(u) = 1

n

n∑
j=1

M(X j ) and
∫

M(u) dGn(u) = 1

n

n∑
j=1

M(Y j ),

and omitting the dependence of K on the bandwidth, it follows that

In = 1

n2

n∑
i=1

n∑
j=1

[
KX j (Xi ) + KYj (Yi ) − KYj (Xi ) − KX j (Yi )

]

= 1

n2

n∑
i=1

[
KXi (Xi ) + KYi (Yi ) − KYi (Xi ) − KXi (Yi )

]

+ 1

n2
∑

1≤i �= j≤n

[
KX j (Xi ) + KYj (Yi ) − KYj (Xi ) − KX j (Yi )

]

≡ I1n + I2n .

It turns out that I1n is a bias term, contributing only to the mean of the asymptotic
distribution of the test statistic (see Lemma 3 in the Appendix). This means that I2n
drives the limiting distribution of In and hence it requires the application of a suitable
central limit theorem. We first show that I2n is a degenerate U-statistics by observing
that I2n ≡ 1

n2
∑

i< j Hn(Zi , Z j ), where Hn(Zi , Z j ) ≡ hn(Zi , Z j ) + hn(Z j , Zi ) with
Zi = (Xi ,Yi ) and hn(Zi , Z j ) ≡ KX j (Xi ) + KYj (Yi ) − KYj (Xi ) − KX j (Yi ). Note
that Hn(Zi , Z j ) is symmetric in Zi and Z j , and that E[Hn(Zi , Z j ) | Zi ] = 0 under
the null. Accordingly, we may apply Koroljuk and Borovskich (1994) central limit
theorem to show that if, for some k > 1,

E
[
Mk

n (Z1, Z2)
] + n1−k

E
[
H2k
n (Z1, Z2)

]
{
E

[
H2
n (Z1, Z2)

]}k → 0, (2)

where Mn(Z1, Z2) = E[Hn(Z1, Z3)Hn(Z2, Z3)], I2n is asymptotically normal with
mean zero and variance 1

2n2
E[H2

n (Z1, Z2)]. The latter reduces under the null to

2E[X−τ/2 f (X)], with τ = 1 for the gamma and reciprocal inverse Gaussian ker-
nels and τ = 3 for the inverse Gaussian kernel (see Lemma 4 in the Appendix). We
must choose the rate at which the bandwidth converges to zero so as to ensure that
condition (2) holds. In particular, Fernandes and Monteiro (2005) show that it suffices
to consider a bandwidth b of order o(n−4/9) if one restricts attention to the gamma
kernel (see Lemma 5 in the Appendix for more details). The next result documents
the asymptotic theory for the n = n1 = n2 case. As noted in the Appendix, it follows
trivially from Lemmata 3 to 5 and the Slutsky theorem under some mild assumptions.

Proposition 1 Assume that the bandwidth b is of order o(n−4/9) and that f and g
are twice continuously differentiable, such that

∫ [x3 f ′′(x)]2 dx and
∫ [x3 g′′(x)]2 dx
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are finite. Under the null H0, it follows that

(i) (n b1/4 In − b−1/4 μ̂1)/σ̂
d−→ N (0, 1)

(ii) n b1/4 I2n/σ̂
d−→ N (0, 1),

where μ̂1 is any consistent estimator of μ1 ≡ E(I1n) satisfying
∣∣μ̂1 − μ1

∣∣ =
op(b1/4) and σ̂ 2 is any consistent estimator of the asymptotic variance σ 2

0 ≡
2π−1/2

E{X−τ/2 [ f (X) + g(X)]}.
Imposing the null hypothesis yields σ 2

0 ≡ 4π−1/2
E[X−τ/2 f (X)]. We now turn

our attention to the general case in which the number of observations differs in the
two subsamples (i.e., n1 �= n2). A sample analog of (1) then is

In1,n2 = 1

n21

n1∑
i=1

n1∑
j=1

KX j (Xi ) + 1

n22

n2∑
i=1

n2∑
j=1

KYj (Yi )

− 1

n1n2

n1∑
i=1

n2∑
j=1

KYj (Xi ) − 1

n1n2

n2∑
i=1

n1∑
j=1

KX j (Yi )

= I1n1,n2 + I2n1,n2 ,

with I1n1,n2 and I2n1,n2 , respectively, analogous to I1n and I2n . The differences in
the summation indexes does not affect the limiting distribution since the underlying
U-statistic remains degenerate. Further, to establish asymptotic results for n1 → ∞, it
suffices to assume that λn ≡ n1/n2 → λ in the limit, where 0 < λ < ∞ is a constant.
In addition, the null of symmetry actually implies that λ = 1 and so the asymptotic
distribution does not change under the null.

Proposition 2 Assume the conditions inProposition1hold.Under the null hypothesis,
both (n1 b1/4 In1,n2−b−1/4 μ̂1)/σ̂ andn1 b1/4 I2n1,n2/σ̂ weakly converge to a standard
Gaussian distribution.

We derive Propositions 1 and 2 under the assumption that the smoothing parameter
vanishes asymptotically. It is well known that asymptotic kernel-based tests are quite
sensitive to the choice of the smoothing parameter; see e.g., Scaillet (2007) and the
references therein. Thus, we state the corresponding asymptotic results for the fixed
smoothing parameter case in the next two propositions. The limiting distribution fol-
lows readily from the results by Anderson et al. (1994) and Fan (1998). Since the
asymmetric kernels are bounded, absolutely integrable and admit nonsingular Fourier
transforms, the regularity conditions of Anderson et al. (1994) are automatically met.

Proposition 3 Under the null H0, n In
d−→ ∑∞

k=1 wk Z2
k and n1 In1,n2

d−→∑∞
k=1 wk(Z1k−λ1/2Z2k)

2 as the sample sizes grow, where Z1, Z2, . . . , Z11, Z12, . . . ,

Z21, Z22, . . . are independent standard normal random variables, and the weights wk

are the eigenvalues corresponding to an orthogonal expansion in the eigenfunctions
of the kernel Hn with respect to f .
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Finding asymptotic-valid critical values requires the derivation of an infinite num-
ber of eigenvalues as the solution of integral equations. Accordingly, there are very
few instances in which Proposition 3 yields feasible asymptotic-valid critical values.
This means that, in general, we must rely on resampling methods as in Fan (1998) and
Scaillet (2007).

We next study the asymptotic power of the above tests against a sequence of local
alternatives H(n)

1 . For simplicity, we entertain only the case in which n = n1 = n2. In

particular,we assume thatH(n)
1 : g(y) = f (y)+εn h(y), with h satisfying

∫
h(y) dy =

0 and 0 <
∫
h2(y) dy < ∞. The next result considers how our tests behave according

to the rate at which the perturbation εn converges to zero.

Proposition 4 Let Ẑn denote either (n b1/4 In − b−1/4 μ̂1)/σ̂ or n b1/4 I2n/σ̂ . Under
the conditions in Proposition 1, it follows under the local alternative H

(n)
1 that, for

any two-sided standard normal quantile zα ,

Pr
(
|Ẑn| > zα

)
=

⎧⎨
⎩
1, if εn/b2 → ∞
1 − βα, if εn/b2 → c
0, if εn/b2 → 0

for some 0 < βα = βα(c, h) < 1, with c constant.

This means that our tests have asymptotic power against local alternatives of the
form H

(n)
1 : g(y) = f (y) + εn h(y) as long as εn converges to zero at the same rate

or faster than b2. In particular, this implies consistency against fixed alternatives (i.e.,
εn = 1 regardless of the sample size). Indeed, under H1 : g(y) = f (y) + h(y), our
tests reject the null hypothesis with probability approaching one as the sample size
grows without bound.

3 Conditional symmetry tests

In this section, we show how to extend our results to deal with tests for conditional
symmetry of V1 ∈ R given V2 ∈ R

q within a semiparametric context. Given a para-
meter space 
1 and a function ξ1 : R

q × 
1 → R, it suffices to check whether
the conditional density function of V1 given V2 is symmetric around ξ1(V2; θ01 ) for
some θ01 ∈ 
1. This is equivalent to test whether there exists θ01 ∈ 
1 such that the
conditional density of V = V1 − ξ1(V2; θ01 ) given V2 is symmetric around zero.

To avoid the estimation of conditional densities (see the excellent discussion
in Delgado and Escanciano 2007), we assume that there exists a parameter space

2 and a function ξ2 : R

q+1 × 
2 → R such that the marginal distribution of
U = ξ2(V, V2; θ02 ) is symmetric around zero for some θ02 ∈ 
2. Given the depen-
dence of V (and hence ofU ) on the parameter vector θ1, it is convenient to summarize
our semiparametric setup by considering a suitable parameter space 
 and function
ξ : R

q+1×
 → R such that the marginal density ofU = ξ(V1, V2; θ0) is symmetric
around zero for some θ0 ∈ 
. This setup is well in line with Zheng (1998) and Bai
and Ng (2001), for instance.

123



656 M. Fernandes et al.

We next propose a two-step procedure in which we estimate ξ(·, ·; θ) in the first
step and then check whether the marginal density of Û = ξ̂ (V1, V2; θ̂ ) is symmetric
around zero in the second step. We believe that this approach is general enough in
that we do not assume a particular functional form for ξ and hence it dwells in a
semiparametric setting. It thus remains to derive the conditions under which the first-
step estimation of (ξ, θ) does not affect the limiting distributions in Propositions 1 to
3, that is to say, the conditions under which the test is nuisance parameter free. The
next result shows that this amounts to establishing the rate at which (̂ξ , θ̂ ) converges to
(ξ, θ0) in the first step. As a by-product, we prove the consistency of the asymmetric
kernel estimator of the derivative of the density function in Lemma 6 used for the
proof of Proposition 5 in the Appendix.

Proposition 5 The symmetry tests in Propositions 1 to 3 are nuisance parameter free
as long as (̂ξ , θ̂ ) converges to (ξ, θ0) at a rate no slower than n4/9.

The choice of the semiparametric estimation method obviously depends on the
problem under consideration, though the unknown function ξ should have enough
derivatives if one hopes to find a nonparametric estimator θ̂ that meets the above
convergence rate. For instance, if θ̂ converges at (Stone 1982) optimal global rate, then
it would suffice to require ξ to have at least 4 derivatives. See also Shen and Wong
(1994) and Shen (1997) for a more general discussion based on sieve estimation.

4 Monte Carlo study

Propositions 1 to 5 establish results of asymptotic nature. Typically there exists a
large discrepancy between the empirical and nominal sizes of kernel-based tests. This
reveals that asymptotic normality does not always providemuch information about the
finite-sample distribution of nonparametric test statistics. Also, it is well known that
the performance of nonparametric tests in finite samples is sometimes very sensitive
to the bandwidth choice (Fan 1995).

We thus investigate in what follows how our nonparametric test of conditional
symmetry fairs in small samples. We carry out Monte Carlo simulations to assess the
size and power features for sample sizes of 50, 100, 200, and 400 observations. We
draw 1,000 replications from both symmetric and asymmetric distributions and then
evaluate our testing procedure using the asymptotic 5 and 10 % critical values. For
simplicity, we consider only tests using a gamma kernel with a vanishing bandwidth.

We generate the data as follows. Let yt = 1 + xt + et , where et and xt denote two
independent random variables. The regressor xt is standard normal, whereas the error
term et may come from different symmetric and asymmetric distributions according
to the particular specification. The null hypothesis of interest corresponds to the condi-
tional symmetry of yt given xt , which essentially boils down to testing the least-squares
residuals êt for symmetry once we impose the linear regression structure. To ensure
fair comparison between the different distributions, we standardize the least-squares
residuals before running the nonparametric test in Proposition 2. The asymptotic crit-
ical values come from a standard normal distribution given that Proposition 5 ensures
that the test is nuisance parameter free.
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Table 1 Distributions in the Monte Carlo study

Distribution Skewness Kurtosis

S1 Standard normal 0.000 3.00

S2 t student with 10 degrees of freedom 0.000 4.00

S3 Lambda with λ = (0, 0.1666667, 1, 1) 0.000 1.80

S4 Lambda with λ = (0, −0.0141264,−0.08,−0.08) 0.000 5.99

A1 Lambda with λ = (−12.601,−0.00980045,−0.11,−0.0001) −2.924 19.52

A2 Lambda with λ = (9.7726, 0.0151878,−0.001,−0.13) 3.160 23.80

A3 Lambda with λ = (−7.84595,−0.0223643,−0.15,−0.001) −3.478 30.24

A4 Lambda with λ = (6.43871, 0.00317949,−0.001,−0.17) 3.880 40.70

The quantile function of the lambda distribution with parameter vector λ = (λ1, λ2, λ3, λ4) is F−1(u) =
λ1 + [uλ3 − (1 − u)λ4 ]/λ2

For comparison purposes, we employ exactly the same distributions as in Zheng
(1998) to study the size and power of our testing procedures. Among the symmetric
distributions, we sample et from the standard normal, t student with 10 degrees of free-
dom, and two symmetric lambda distributions, whereas we consider four asymmetric
lambda distributions to assess power. The lambda distribution family nests awide array
of symmetric and asymmetric distributions by defining the inverse of the cumulative
distribution as F−1(u) = λ1 + [uλ3 − (1 − u)λ4 ]/λ2. The interesting feature of the
lambda family of distributions is that it covers a broad spectrum of skewness and kur-
tosis values. This is particularly important for applications in economics and finance.
Table 1 lists the parameter vectors of all distributions and their corresponding skewness
and kurtosis.We take the parameter values for all distributions fromZheng (1998). The
parameter values are somewhat different in Bai andNg (2001) essentially because they
normalize λ1 to zero. However, the resulting lambda distributions have similar, if not
the same, skewness and kurtosis. The second symmetric lambda distribution in Table 1
is equivalent to their second symmetric lambda distribution, whereas A1, A2, and A4
correspond to their last three asymmetric lambda distributions. This allows for direct
comparison with the Monte carlo results by Zheng (1998) and Bai and Ng (2001).

In the context of nonparametric testing, the choice of the kernel bandwidth normally
plays a major role in the finite-sample properties of the test. There is an extensive
literature on the optimal selection of the smoothing parameter (Silverman 1986). To
maximize power, we employ two different bandwidths, one for the estimation of the
distribution of the nonnegative data and one for the estimation of the distribution of the
absolute value of the nonpositive data. In both instances, we select the gamma-kernel
bandwidths by means of a generalized cross-validation criterion. In view that the latter
should yield a bandwidth of order O(n−2/5

j ) for asymmetric kernels (Bouezmarni and

Rombouts 2010), wemultiply the resulting bandwidth by n−2/45
j / ln n j so as to ensure

that b j = o(n−4/9
j ) for j = 1, 2. Further analysis shows however that test results are

not very sensitive to variations in the bandwidth (namely, either dividing ormultiplying
the resulting bandwidth by two). Monte Carlo results reported in other studies related
to asymmetric kernels also show that weak sensitivity.
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Table 2 Performance of the gamma-kernel symmetry test using In with vanishing bandwidth

Distribution 50 100 200 400

5 % 10 % 5 % 10 % 5 % 10 % 5 % 10 %

S1 0.048 0.090 0.060 0.090 0.067 0.139 0.090 0.155

(0.052) (0.086) (0.057) (0.101) (0.070) (0.093)

[0.037] [0.051] [0.049]

S2 0.048 0.108 0.063 0.081 0.072 0.120 0.156 0.210

(0.069) (0.114) (0.089) (0.134) (0.070) (0.103)

S3 0.100 0.166 0.125 0.195 0.174 0.267 0.181 0.284

(0.034) (0.069) (0.039) (0.061) (0.029) (0.055)

S4 0.093 0.145 0.073 0.107 0.109 0.168 0.093 0.163

(0.068) (0.101) (0.074) (0.131) (0.078) (0.125)

[0.078] [0.087] [0.075]

A1 0.185 0.315 0.435 0.625 0.870 0.933 0.996 0.999

(0.149) (0.229) (0.320) (0.439) (0.474) (0.616)

A2 0.176 0.314 0.450 0.621 0.875 0.944 0.993 0.997

(0.168) (0.257) (0.363) (0.479) (0.541) (0.645)

[0.932] [0.999] [1.000]

A3 0.195 0.334 0.457 0.654 0.889 0.951 0.996 0.997

(0.184) (0.286) (0.400) (0.513) (0.560) (0.692)

A4 0.194 0.320 0.491 0.671 0.895 0.952 0.993 0.995

(0.215) (0.303) (0.436) (0.541) (0.610) (0.722)

[0.961] [1.000] [1.000]

We report the rejection frequency of the asymptotic test based on In within 1,000 replications. In particular,
we test whether the standardized least-squares residuals of a linear regression with both intercept and
slope coefficients equal to one are symmetric for sample sizes of 50, 100, 200, and 400 observations. We
select the bandwidth by means of a cross-validation approach. To assess size and power, we draw the error
term from both symmetric and asymmetric distributions. In particular, we consider the standard Gaussian
(S1), t student with 10 degrees of freedom (S2), two symmetric lambda distributions (S3 and S4), as well
as four asymmetric lambda distributions (A1–A4). We also report within parentheses and brackets the
corresponding values for Zheng (1998) and Bai and Ng (2001), respectively. See Table 1 for the values of
the parameters in the above distributions

Table 2 reports the finite-sample performance of the gamma-kernel test based on In .
It exhibits very little size distortions at the 5 and 10 % levels for the standard normal
and t-distributions. In contrast, there is significant size distortions for the symmetric
lambda distributions, especially for the specification with negative excess kurtosis.
This is consistent with most nonparametric symmetry tests in the literature, whose
size depends heavily on kurtosis (Randles et al. 1980). As for statistical power, the
results are also promising. In line with the asymptotic theory, power increases with
the sample size. It is also very stable across the different asymmetric lambda distribu-
tions we consider. Moreover, our test seems not only to entail more power than Zheng
(1998), but also to stack up well with the nonparametric tests by Fan and Gencay
(1995) and Bai and Ng (2001) for sample sizes with at least 200 observations. This
is very encouraging not only because the latter tests have faster rates of convergence,
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Table 3 Performance of the gamma-kernel symmetry test using I2n with vanishing bandwidth

Distribution 50 100 200 400

5 % 10 % 5 % 10 % 5 % 10 % 5 % 10 %

S1 0.054 0.084 0.030 0.090 0.055 0.091 0.048 0.096

(0.052) (0.086) (0.057) (0.101) (0.070) (0.093)

[0.037] [0.051] [0.049]

S2 0.048 0.072 0.051 0.093 0.042 0.072 0.060 0.138

(0.069) (0.114) (0.089) (0.134) (0.070) (0.103)

S3 0.073 0.107 0.093 0.149 0.096 0.175 0.108 0.190

(0.034) (0.069) (0.039) (0.061) (0.029) (0.055)

S4 0.060 0.096 0.046 0.074 0.061 0.111 0.056 0.107

(0.068) (0.101) (0.074) (0.131) (0.078) (0.125)

[0.078] [0.087] [0.075]

A1 0.324 0.449 0.715 0.820 0.984 0.994 0.999 0.999

(0.149) (0.229) (0.320) (0.439) (0.474) (0.616)

A2 0.332 0.450 0.674 0.805 0.980 0.990 1.000 1.000

(0.168) (0.257) (0.363) (0.479) (0.541) (0.645)

[0.932] [0.999] [1.000]

A3 0.337 0.464 0.712 0.821 0.985 0.994 1.000 1.000

(0.184) (0.286) (0.400) (0.513) (0.560) (0.692)

A4 0.346 0.480 0.731 0.831 0.989 0.995 0.998 0.999

(0.215) (0.303) (0.436) (0.541) (0.610) (0.722)

[0.961] [1.000] [1.000]

We report the rejection frequency of the asymptotic test based on I2n within 1,000 replications. See Table 2
for more details

but also because splitting the data into negative and positive values actually reduces
the effective sample size by half.

Table 3 documents the size and power properties of a variant of the test that hinges
on degenerate U-statistic I2n . The idea is to avoid estimating the asymptotic bias of In
due to I1n , which is likely to be the source of the size distortions for the lambda dis-
tributions S3 and S4. The results indeed show a huge improvement. Size ameliorates
for every distribution, with distortions shrinking substantially for the leptokurtic dis-
tribution S4. In particular, the difference between nominal and empirical size remains
significant only for the platykurtic lambda distribution S3. This is in contrast to the
extant nonparametric tests, whose size deteriorates with excess kurtosis as well. This is
very reassuring given that it is uncommon, if not rare, to encounter data in economics
and finance with negative excess kurtosis. Power also improves a lot especially for
the smaller samples, with improvements of about 50 % for n = 50 and n = 100. As
a result, our nonparametric test starts comparing well with Bai and Ng (2001) test of
conditional symmetry even for the samples of 100 observations. Moreover, adjusting
power for size should also work in our favor given that our test displays less size
distortion in the presence of high kurtosis.
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5 Conclusion

This paper develops tests of symmetry using asymmetric kernels. The idea is to take
benefit from the shape of the density function to the right of the symmetry point being
a mirror image of the shape to the left. We thus gauge the closeness between density
functions of the positive data and of the absolute value of the nonpositive data. We
employ asymmetric kernels not only because they are nonnegative and free of bound-
ary bias, but also because they usually entail tests with better finite-sample properties
than fixed kernels (Fernandes and Grammig 2005). One interesting feature of our tests
is that they do not require the continuity of the derivatives of the density function
at the symmetry point. Further, we also derive the conditions under which our tests
are nuisance parameter free. It turns out that the conditions are mild in that we may
apply our symmetry test to residuals from semiparametric models with a (sufficiently
smooth) nonparametric link function. This is important because it allows us to test for
conditional symmetry in a setting somewhat more general than in Fan and Gencay
(1995), Zheng (1998), and Bai and Ng (2001).

We spell out the asymptotic theory considering both fixed and vanishing band-
widths. In the first case, we document that the corresponding V-statistic weakly con-
verges to a weighted sum of Chi-squared random variables as in Anderson et al.
(1994). As for the latter, we show that the test statistic we propose is a V-statistic,
whose asymptotic normality is driven by a degenerate U-statistic with zero mean.
Monte Carlo simulations reveal that symmetry tests based on the U-statistic outper-
form the tests based on the V-statistic most likely because they avoid the estimation
of the asymptotic bias term. Their performance is also very promising relative to the
extant tests in the literature. We find little size distortions for symmetric distributions
with nonnegative excess kurtosis even for sample sizes as small as 50 observations.
In addition, our test entails excellent power against asymmetric lambda distributions.
The power is actually very robust in that it does not vary much with the parameter
values we consider. All in all, employing asymmetric kernels pays off dearly as our
tests entail clearly more power than Zheng (1998). Our testing procedures are also
competitive relative to Bai and Ng (2001) nonparametric tests, even though the lat-
ter tests display faster rates of convergence. This is particularly impressive in view
that splitting the data into positive and negative values actually reduces our effective
sample size by half.

Appendix

We start by stating the assumptions we require on (Z1, . . . , Zn), f and g; and then
collect some intermediate results in a sequence of technical lemmata. Lemmata 1 and
2 group the main identities we use throughout the Appendix, whereas Lemmata 3 to 5
establish some intermediate results we employ in the proof of Proposition 1. Finally,
Lemma 6 gives the consistency of the asymmetric kernel estimator of the derivative
of the density function we require in the proof of Proposition 5.
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Assumption (I I D) The random variables Z1, . . . , Zn are independent and identi-
cally distributed.

(BD) Densities f and g are (a.e.) bounded with bounded derivatives.
(NM) Random variables X and Y satisfyE[X−τ/2] andE[Y−τ/2] are bounded, where

τ ≥ 1.
Assumptions (I I D) and (BD) are standard in the literature and require no further

explanation. Assumption (NM) requires existence of negative moments. Khuri and
Casella (2002) discuss conditions under which the latter holds for τ = 2. A simple
modification of their result leads to the following necessary and sufficient condition:

lim
c→0+

∫ b

a
x−τ/2 f (x) dx = 0, with c > b > a > 0.

A simpler, but stronger, condition is to require that there exist a > 0 and α > 0
such that for any 0 < x < a, f (x) < α xτ/2. It then follows directly from (BD)
that E[ f (X)2] is bounded and from both (BD) and (NM) that E[ f (X)X−τ/2] is also
bounded. The next result requires these negative moment conditions.

Lemma 1 Let X and Y denote independent random variables with bounded, differ-
entiable density functions f and g, respectively. Assume g(x) = f (x) + εnh(x) for
some real-valued function h satisfying

∫
h(x) dx = 0 and 0 <

∫
h(x)2 dx < ∞. Let

(X1, X2) and (Y1,Y2) denote independent copies of X and Y , respectively. It then
follows that:

(a) E[Kv(X)] = f (v) + O(b) and E[Kv(Y )] = g(v) + O(b), for any fixed v > 0.
(b) E[KY (X)] = E[g(X)] + O(b), E[KX (Y )] = E[g(X)] + O(b), E[KX1(X2)] =

E[ f (X)] + O(b), and E[KY1(Y2)] = E[g(X)] + O(εn + b).
(c) E[K 2

Y (X)] = (4πb)−1/2
E[X−τ/2g(X)],E[K 2

X (Y )] = (4πb)−1/2
E[X−τ/2g(X)],

E[K 2
X1

(X2)] = (4πb)−1/2
E[X−τ/2 f (X)], andE[K 2

Y1
(Y2)]=(4πb)−1/2

E[X−τ/2

g(X)] + O(εnb−1/2).
(d) E[KX1(X2)KX1(Y )] = E[ f (X)g(X)] + O(b) = E[ f 2(X)] + O(εn + b) and

E[KY1(Y2)KY1(X)] = E[g2(X)] + O(b).
(e) E[KX1(X2)KY (X2)] = 1

2 E[g2(X)] + {1 + o(1)} and E[KY1(Y2)KX (Y2)] =
1
2 E[ f (X)g(X)]{1 + o(1)} = 1

2 E[ f 2(X)]{1 + o(1)} + O(εn).
(f) E[KY (X1)KX1(X2)] = E[ f (X)g(X)] + O(b) = E[KX1(Y )KX2(X1)] and

E[KX (Y1)KY1(Y2)] = E[g(X)2] + O(b) = E[KY1(X)KY2(Y1)].
Proof We derive the results only for the gamma kernel, though it is straightforward to
consider the inverse Gaussian and reciprocal inverse Gaussian kernels as well. Note
that, in most results, we employ the following identities: E[ f (Y )] = E[g(X)] =
E[ f (X)] + εnE[h(X)] and E[g(Y )] = E[g(X)] + εnE[h(Y )].

(a) Denote ζ a gamma random variable with parameters v/b + 1 and b (and so
with mean v + b). The result follows by noting that E[Kv(X)] = E[ f (ζ )] = f (v) +
[ f ′(v)+O(1)]E[ζ −v] = f (v)+O(b) provided that f ′(x) = ∂ f (x)/∂x is bounded.

(b)Given thatE[KX (Y )] = EY {E[Ku(X)|Y = u]}, applying the previous identities
yield the result.
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(c) It follows from Chen (2000) and Scaillet (2004) that

E [KY (X)]2 =
∫ ∫

K 2
y (x) f (x) dx dG(y)

= 1

2
√

π b

∫
x−τ/2
2 [ f (x2) + O(b)] dG(y)

= 1

2
√

π b
E

[
Y−τ/2 f (Y )

]
,

where τ = 1 for the gamma and reciprocal inverse Gaussian kernels and τ = 3 for
the inverse Gaussian kernel.

(d) As X1 and X2 are independent copies of X ,

E
[
KX1(X2)KX1(Y )

] = E [E [Ku(X2)|X1 = u]E [Ku(Y )|X1 = u]]

= E [( f (X) + O(b)) (g(X) + O(b))]

= E [g(X) f (X)] + O(b)

= E

[
f (X)2

]
+ εnE [ f (X)h(X)] + O(b).

The corresponding result for Y follows similarly.
(e) For the gamma kernel, it suffices to apply Fernandes and Monteiro (2005,

Lemma A.4) to see that

E
[
KX2(X1) KY (X1)

] =
∫ ∫ ∫

Kx2(x1) Ky2(x1) dF(x1) dF(x2) dG(y)

=
∫ ∫ ∫

Bb(x2, y) K(x2+y)/b+1,b/2(x1) dF(x1) dF(x2) dG(y)

=
∫ ∫

Bb(x2, y)

[∫
f (x1) dK(x2+y2)/b+1,b/2(x1)

]
dF(x2) dG(y)

=
∫ ∫

Bb(x2, y)

[
f

(
x2 + y

2

)
+ O(b)

]
dF(x2) dG(y)

= 1

2
E

[
f (Y )2

]
{1 + o(1)}

= 1

2

{
E

[
f (X)2

]
+ εnE [ f (X)h(X)]

}
{1 + o(1)} ,

where

Bb(x2, y2) = �[(x2 + y2)/b + 1]
�(x2/b + 1) �(y2/b + 1)

b−1

2(x2+y2)/b+1
.

The same holds true for the two other asymmetric kernels as well as for the second
part relating to Y .

(f) The first identity results from
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E
[
KY (X1)KX1(X2)

] =
∫ ∫ [∫

f (x2)Kx2(x1) dx2

]
Ky(x1) f (x1) dx1g(y)dy

=
∫ ∫

[ f (x1) + O(b)] Ky(x1) f (x1) dx1g(y)dy

= E

[
f 2(Y )

]
+ O(b)

= E [ f (X)g(X)] + O(b).

The remaining identities follow along the same line as above, completing the proof.
��

Lemma 2 Let X and Y have bounded density functions f and g on [0,∞), respec-
tively. It then follows that �b = E[KX (Y ) KY (X)] = 1

2
√

π b
EX [X−τ/2g(X)].

Proof In the following, we derive the result only for the gamma kernel, though it
is straightforward to consider the inverse Gaussian and reciprocal inverse Gaussian
kernels. The Stirling approximation states that

�(x + 1) = √
2π xx+

1
2 exp(−x),

which implies that

�b = 1

2 b π

∫ ∞

0

∫ ∞

0
(x/y)

y−x
b

f (x) g(y)√
x y

dx dy.

We then split the integral over y into four pieces, giving way to

�b = 1

2 b π

∫ ∞

0

[∫ (1−t)x

0
+
∫ x

(1−t)x
+
∫ (1+t)x

x
+

∫ ∞

(1+t)x

]
(x/y)

y−x
b

f (x) g(y)√
x y

dy dx

= �
(1)
b + �

(2)
b + �

(3)
b + �

(4)
b ,

with 0 < t < 1. We next compute coincident upper and inferior bounds for each one
of the above nonnegative terms, so as to obtain the result. These bounds depend on
the fact that

exp

[
− (y − x)2

x b

]
≤ (x/y)

y−x
b ≤ exp

[
− (y − x)2

x b
+ (y − x)3

2 x2 b

]
, if y > x,

whereas

exp

[
− (y − x)2

x b
+ (y − x)3

2 y2 b

]
≤ (x/y)

y−x
b ≤ exp

[
− (y − x)2

x b

]
, if y < x .

It then follows that

�
(1)
b = 1

2 b π

∫ ∞

0

∫ (1−t)x

0
(x/y)

y−x
b

f (x) g(y)√
x y

dy dx
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≤ 1

2 b π

∫ ∞

0

∫ (1−t)x

0
exp

[
− (y − x)2

x b

]
f (x) g(y)√

x y
dy dx,

whence we substitute for z = y−x√
x b

yielding

�
(1)
b ≤ 1

2π
√
b

∫ ∞

0

∫ −t
√
x/b

−√
x/b

e−z2 f (x) g(x + z
√
x b)√

x + z
√
x b

dz dx = 0,

as b → 0, by Lebesgue dominated convergence theorem. This ultimately means that
�

(1)
b = 0 given that it is nonnegative. We now turn our attention to the second term

for which we derive the following upper limit:

�
(2)
b = 1

2 b π

∫ ∞

0

∫ x

(1−t)x
(x/y)

y−x
b

f (x) g(y)√
x y

dy dx

≤ 1

2 b π

∫ ∞

0

∫ x

(1−t)x
exp

[
− (y − x)2

x b

]
f (x) g(y)√

x y
dy dx

= 1

2π
√
b

∫ ∞

0

∫ 0

−t
√
x/b

e−z2 f (x) g(x + z
√
x b)√

x + z
√
x b

dz dx

= 1

4
√

π b
E

[
X−1/2 g(X)

]
,

where the last equality holds by Lebesgue dominated convergence theorem (as b → 0)
and by the fact that

∫ ∞
0 e−z2 dz = √

π/2. As for the inferior bound, observe that

�
(2)
b ≥ 1

2 b π

∫ ∞

0

∫ x

(1−t)x
exp

{
− (y − x)2

x b

[
1 − (y − x)x

2y2

]}
f (x) g(y)√

x y
dy dx

≥ 1

2 b π

∫ ∞

0

∫ x

(1−t)x
exp

[
− (y − x)2

x b
(1 + ξ)

]
f (x) g(y)√

x y
dy dx,

where ξ = (1 − t)−2 t/2. Substituting for z = (y − x)
√

1+ξ
x b then results in

�
(2)
b ≥ 1

2π
√
b

∫ ∞

0

∫ 0

−t
√

1+ξ
x b

e−z2 f (x) g(x + z
√
x b/(1 + ξ))√

x + z
√
x b/(1 + ξ)

√
1 + ξ

dz dx

= 1

4
√

π b
E

[
X−1/2 g(X)

]
(1 + ξ)−1/2.

It then suffices to let t shrink to zero to appreciate that

lim inf
b→0

b−1/2 �
(2)
b ≥ 1

4
√

π
E

[
X−1/2 g(X)

]
,
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and hence �
(2)
b = 1

4
√

π b
E[X−1/2 g(X)] since the upper and lower limits are equal.

Applying the same argument to �
(3)
b and �

(4)
b shows that they coincide with �

(2)
b

and �
(1)
b , respectively. This means that �b = �

(2)
b + �

(3)
b = 1

2
√

π b
E[X−1/2 g(X)],

which completes the proof. ��

Lemma 3 Under the nullH0, I1n is such that E(I1n) = 2(2πb)−1/2 n−1
E(X−τ/2)+

O(n−1) and Var(I1n) = O(b−1n−3), respectively.

Proof We derive the result only for the gamma kernel, but we can apply the same
method to the (reciprocal) inverse Gaussian kernel. For the gamma kernel, one can
derive using the Stirling approximation that Ku(u) = (2πbu)−1/2. Hence

E[I1n] = n−1(2πb)−1/2
E

[
X−1/2 + Y−1/2

]
− n−1

E [g(X) + f (Y )] + O(bn−1)

= n−12(2πb)−1/2
E

[
X−1/2

]
+ n−12(2πb)−1/2εn

{∫
h(x)x−1/2 dx

}

−n−12E[g(X)] + O(bn−1)

= n−12(2πb)−1/2
E

[
X−1/2

]
+ O

(
n−1(1 + b−1/2εn)

)
.

To calculate the variance of I1n , set l(Z , Z) = [KX (X) + KY (Y )] − [KX (Y ) +
KY (X)] and write In = n−2 ∑

i hn(Zi , Zi ).

E[I1n]2 = n−4
n∑

i=1

E [hn(Zi , Zi )]
2 + n−4

∑
i �= j

E
[
hn(Zi , Zi )hn(Z j , Z j )

]

= n−3
E

[
h2n(Z , Z)

]
+ n−2

E
2 [hn(Z , Z)]

= n−3
E

[
h2n(Z , Z)

]
+ E

2 [I1n]

= O(n−3b−1) + E
2 [I1n] .

The last line follows by writing

E

[
hn(Z , Z)2

]
= E

[
(KX (X) + KY (Y ))2

]
+ E

[
(KX (Y ) + KY (X))2

]

−2E [(KX (X) + KY (Y ))(KX (Y ) + KY (X))]

= E

[
K 2

X (X)
]

+ E

[
K 2
Y (Y )

]
+ 2E [KX (X)]E [KY (Y )]

+E

[
K 2

X (Y )
]

+ E

[
K 2
Y (X)

]
+ 2E [KY (X)KX (Y )]

−2E [KX (X)KX (Y )] + 2E [KY (Y )KY (X)]

−2E [KX (X)KY (X)] + 2E [KY (Y )KX (Y )]

= O(b−1),
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where the last line follows by Lemmata 1 and 2, and the Stirling approximation. Note
that we implicitly require E[X−τ + Y−τ ] < ∞. This means that

Var(I1n) = E [I1n]
2 − E

2 [I1n]

= O(b−1n−3),

proving the result. ��
Lemma 4 Assume that f and g are bounded density functions on [0,∞). Under the
nullH0, the variance of I2n is Var(I2n) = n−2 b−1/2 π−1/2

E{X−τ/2 [ f (X)+g(X)]}.
Proof It follows from Lemma 1 that the expected value of I2n is O(εn). To compute
the asymptotic variance of I2n , observe that

E [Hn(Z1, Z2)]
2 = E [hn(Z1, Z2) + hn(Z2, Z1)]

2

= E [hn(Z1, Z2)]
2+E [hn(Z2, Z1)]

2+2E [hn(Z1, Z2) hn(Z2, Z1)]

= 2 E [hn(Z1, Z2)]
2 + 2 E [hn(Z1, Z2) hn(Z2, Z1)] , (3)

because both Z1 and Z2 are distributed with density f (x)g(y). The squared-term in
the righthand side of (3) decomposes into

E [hn(Z1, Z2)]
2 = E

[
KX2(X1) + KY2(Y1) − KX2(Y1) − KY2(X1)

]2
= E

[
KX2(X1)

]2 + E
[
KY2(Y1)

]2 + E
[
KX2(Y1)

]2 + E
[
KY2(X1)

]2
+ 2 E

[
KX2(X1) KY2(Y1)

] + 2 E
[
KX2(Y1) KY2(X1)

]
− 2 E

[
KX2(X1) KY2(X1)

] − 2 E
[
KX2(Y1) KY2(Y1)

]
− 2 E

[
KX2(X1) KX2(Y1)

] − 2 E
[
KY2(Y1) KY2(X1)

]
.

Applying Lemmata 1 and 2, we conclude that,

E [hn(Z1, Z2)]
2 = 2√

π b
E

[
X−τ/2 f (X)

]
+ O(n−2b−1/2εn).

Now, it remains to bound the cross-term in (3), which under the null reads

E [hn(Z1, Z2) hn(Z2, Z1)] = E
[
KX1(X2)KX2(X1)

] + E
[
KY1(Y2)KY2(Y1)

]
+2E

[
KX1(X2)

]
E

[
KY1(Y2)

]
+2E [KX (Y )KY (X)] + 2E [KX (Y )]E [KY (X)]

−2E
[
KX1(X2)KX2(Y )

] − 2E
[
KY (X2)KX2(X1)

]
−2E

[
KY1(Y2)KY2(X)

] − 2E
[
KX (Y2)KY2(Y1)

]
.

We bound the right-hand side using Lemmata 1 and 2. It then ensues that,

Var(I2n) = 2 n−2 b−1/2 π−1/2
E

{
X−τ/2 [ f (X) + g(X)]

}
+ O

(
n−2b−1/2εn

)
,
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completing the proof. ��
Lemma 5 Let An = ∫ [ f̂ (x) − f (x)]2 dx. Assume also that the bandwidth b is
of order o(n−4/9) and that f is twice continuously differentiable and such that∫ [x3 f ′′(x)]2 dx < ∞. It then follows that nb1/4An − b−1/4

2
√

π
E(X−τ/2)

d−→ N (0, σ 2
f ),

where σ 2
f ≡ (2π)−1/2

E[X−τ/2 f (X)].
Proof It readily follows along the same lines as in the proof of Theorem 1.1 in Fer-
nandes and Monteiro (2005). ��
Lemma 6 Let the random sample (X1, . . . , Xn) have a bounded density function f
on [0,∞). Suppose that limx→∞ K ′

u(x, b) f ′(x) = 0, where K ′
u(x, b) and f ′(x) are

the first derivatives with respect to x, and that the bandwidth is such that b → 0

and n b3/2 → ∞. It then follows that
∥∥∥ f̂ ′(u) − f ′(u)

∥∥∥ = Op(n−1/2 b−3/4), where

f̂ ′(u) = 1
n

∑n
i=1

∂
∂u Ku(Xi , b).

Proof In the following, we derive the result only for the gamma kernel, though it
is straightforward to consider the inverse Gaussian and reciprocal inverse Gaussian
kernels. We first observe that

∂

∂u
Ku(x, b) = Ku(x, b)

ln(x/b) − ψ(u/b + 1)

b
,

where ψ(·) is the digamma function, i.e., the logarithmic derivative of the gamma
function (Abramowitz and Stegun 1972, pp. 258–259). It then ensues that

f̂ ′(u) = 1

n

n∑
i=1

∂

∂u
Ku(Xi , b)

= 1

n

n∑
i=1

Ku(Xi , b)
ln(Xi/b) − ψ(u/b + 1)

b
.

Taking expectations then yields

E

[
f̂ ′(u)

]
= 1

n

n∑
i=1

E

[
Ku(Xi , b)

ln(Xi/b) − ψ(u/b + 1)

b

]

= b−1
∫ ∞

0
Ku(x1, b) [ln(x1/b) − ψ(u/b + 1)] f (x1) dx1.

The digamma function satisfies

ψ(z + 1) = ln z + 1

2z
−

∞∑
j=1

B2 j

2 j z2 j
,

where B2 j are the Bernoulli numbers (Abramowitz and Stegun 1972, pp. 804–806),
and so
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E

[
f̂ ′(u)

]
= b−1

∫ ∞

0
Ku(x1, b)

[
ln(x1/b) − ln(u/b) − b/(2u)+O

(
b2

)]
f (x1) dx1

= b−1
∫ ∞

0
Ku(x1, b) ln(x1/u) f (x1) dx1

−
∫ ∞

0
Ku(x1, b) f (x1) dx1 {1/(2u) + O(b)}

= b−1
Eζ

[
h̃(ζ )

]
− Eζ [ f (ζ )] {1/(2u) + O(b)},

where h̃(ζ ) ≡ ln(ζ/u) f (ζ ) and ζ has a gamma distribution G(u/b+1, b), with mean
u + b and variance (u + b)b. A third-order Taylor expansion then yields

Eζ

[
h̃(ζ )

]
= h̃(u) + b

[
h̃′(u) + 1

2
h̃′′(u) u

]
+ O(b2)

= [
f ′(u) + f (u)/(2u)

]
b + O(b2),

given that h̃(u) = 0, h̃′(u) = f (u)/u, and h̃′′(u) = 2 f ′(u)/u − f (u)/u2. It follows
from a second-order Taylor expansion that Eζ [ f (ζ )] = f (u) + O(b). It thus ensues
thatE[ f̂ ′(u)] = f ′(u)+O(b). It now remains to compute the variance of the derivative
estimator so as to prove convergence in the mean square sense. The variance of the
derivative estimator is at most of the same order of its second moment, viz.

E

[
f̂ ′(u)2

]
= n−1b−2

∫ ∞

0
K 2
u (x1, b) [ln(x1/u) + O(b)]2 f (x1) dx1

= n−1b−2
∫ ∞

0
K 2
u (x1, b) [ln(x1/u)]2 f (x1) dx1 {1 + O(b)}

= n−1b−2 Bb(u)Eη

{
[ln(η/u)]2 f (η)

}
{1 + O(b)},

where η is a random variate with gamma distribution G(2u/b + 1, b/2), and

Bb(u) = �(2u/b + 1)/b

22u/b+1�2(u/b + 1)

as in Fernandes andMonteiro (2005). It then follows from the properties of the standard
gamma distribution that the above expectation is of order O(b), whereas Chen (2000)
shows that

√
b u Bb(u) ≤ 1/(2

√
π). This means that

E

[
f̂ ′(u)2

]
≤ n−1 b

−5/2 u−1/2

2
√

π
O(b) {1 + O(b)} = O

(
n−1 b−3/2

)
.

This shows that the derivative estimator that employs the gamma kernel is consistent
as long as b → 0 and n b3/2 → ∞. ��
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Proof of Proposition 1 Note that we may write the test statistic as

n b1/4 In − b1/4 μ̂1

σ̂
=

[
n b1/4 I1n − b−1/4 μ1

σ0
+ b−1/4 μ1 − μ̂1

σ0

]
σ0

σ̂
.

The second term within brackets is op(1) given the assumption that μ̂1 − μ1 =
op(b1/4), whereas the consistency of σ̂ ensures that σ0/σ̂ converges to one in proba-
bility. Altogether, this means that

n b1/4 In − b1/4 μ̂1

σ̂
= n b1/4 In − b1/4 μ1

σ̂
+ op(1)

by Slutsky theorem. It then follows from Lemmata 3 to 5 that the first term on the
right-hand side converges to a standard Gaussian distribution, completing the proof
of (i). It is easy to show that (ii) holds along the same lines. ��
Proof of Proposition 2 The result follows along the same lines as in Proposition 1 by
noting that λn → 1 under the null as the sample sizes grow. ��
Proof of Proposition 3 This is a particular case of the general results in Anderson et
al. (1994). ��
Proof of Proposition 4 It follows from the proof of Lemma 4 that under the local
alternative hypothesis H(n)

1 : g(y) = f (y) + εnh(y), E[nb1/4 I2n] = n b1/4 εn μh

and Var[n b1/2 I2n] = σ 2
0 + σ 2

h . As in Lemma 5, this implies that n b1/4 I2n −
n b1/4 εnμh

d−→ N (0,
√

σ 2
0 + σ 2

h ). The result then follows trivially by replacing

n = o(b−9/4). ��
Proof of Proposition 5 By assumption, there exists Û = U (̂ξ , θ̂ ) = ξ̂ (V1, V2; θ̂ ) that
converges in probability to U = ξ(V1, V2; θ0) at a rate Nd , with d ≥ 4/9. The test
is nuisance parameter free if the statistic evaluated at (̂ξ , θ̂ ) converges to the same
distribution of the statistic evaluated at (ξ, θ0). For ease of exposition, we assume in
what follows that n1 = n2 = n. The test statistic then reads

In (̂ξ , θ̂ ) = 1

n2

n∑
i=1

n∑
j �=i, j=1

KX̂ j
(X̂i ) + 1

n2

n∑
i=1

n∑
j �=i, j=1

KŶ j
(Ŷi )

− 1

n2

n∑
i=1

n∑
j �=i, j=1

KŶ j
(X̂i ) − 1

n2

n∑
i=1

n∑
j �=i, j=1

KX̂ j
(Ŷi ),

where (X̂1 . . . , X̂n) and (Ŷ1 . . . , Ŷn), respectively, correspond to the nonnegative
values and the absolute value of the nonpositive values of (Û1 . . . , ÛN ),withn = N/2.
A second-order Taylor functional expansion of In (̂ξ , θ̂ ) around (ξ, θ0) yields

In (̂ξ , θ̂ ) − In(ξ, θ0) = �1(ξ, θ0)(̂ξ − ξ) + �2(ξ, θ0)(θ̂ − θ0) + Rn(ξ∗, θ∗),
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where �1(ξ, θ0) and �2(ξ, θ0), respectively, denote the functional derivative of In
with respect to the first and second arguments evaluated at (ξ, θ0), and Rn(ξ∗, θ∗)
denotes the residual term of the expansion. The latter depends on the second functional
derivative of In evaluated at (ξ∗, θ∗), with ξ∗ ∈ [ξ, ξ̂ ] and θ∗ ∈ [θ0, θ̂ ], and on both
(̂ξ −ξ)2 and (θ̂ −θ0)

2. The limiting distributions of n b1/4 In (̂ξ , θ̂ ) and n b1/4 In(ξ, θ0)

then coincide if and only if

�1(ξ, θ0)(̂ξ − ξ) + �2(ξ, θ0)(θ̂ − θ0) = op
(
n−1 b−1/4

)
= op

(
n−8/9

)
,

given that b is of order o(n−4/9). Both �1 and �2 depend linearly on the product of
the density functions f and g and their first functional derivatives. In addition, they are
equal to zero under the null hypothesis. The norm of the density estimation error is of
order Op(n−1/2 b−1/2), whereas Lemma 6 shows that the norm of the first-derivative
estimation error is of order Op(n−1/2 b−3/4). This means that both �1 and �2 are of
order Op(n−1 b−5/4) = op(n−4/9) and hence

�1(ξ, θ0)(̂ξ − ξ) + �2(ξ, θ0)(θ̂ − θ0) = op
(
n−4/9−d

)
.

We now move to the residual term of the expansion. It is straightforward to show
that the supremum of the second functional derivative of In over a neighborhood of
(ξ∗, θ∗) is also of order O(n−1 b−3) and so n b1/4 Rn(ξ∗, θ∗) = Op(n−2d b−11/4) =
op(n−2d+11/9). The latter condition is not binding in view that d must already exceed
4/9. ��
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