
THEORETICAL REVIEW

Using Bayesian hierarchical parameter estimation
to assess the generalizability of cognitive models of choice

Benjamin Scheibehenne & Thorsten Pachur

Published online: 19 August 2014
# Psychonomic Society, Inc. 2014

Abstract To be useful, cognitive models with fitted parame-
ters should show generalizability across time and allow accu-
rate predictions of future observations. It has been proposed
that hierarchical procedures yield better estimates of model
parameters than do nonhierarchical, independent approaches,
because the formers’ estimates for individuals within a group
can mutually inform each other. Here, we examine Bayesian
hierarchical approaches to evaluating model generalizability
in the context of two prominent models of risky choice—
cumulative prospect theory (Tversky&Kahneman, 1992) and
the transfer-of-attention-exchange model (Birnbaum &
Chavez, 1997). Using empirical data of risky choices collected
for each individual at two time points, we compared the use of
hierarchical versus independent, nonhierarchical Bayesian es-
timation techniques to assess two aspects of model generaliz-
ability: parameter stability (across time) and predictive accu-
racy. The relative performance of hierarchical versus indepen-
dent estimation varied across the different measures of gener-
alizability. The hierarchical approach improved parameter
stability (in terms of a lower absolute discrepancy of param-
eter values across time) and predictive accuracy (in terms of
deviance; i.e., likelihood). With respect to test–retest correla-
tions and posterior predictive accuracy, however, the hierar-
chical approach did not outperform the independent approach.
Further analyses suggested that this was due to strong corre-
lations between some parameters within both models. Such
intercorrelations make it difficult to identify and interpret

single parameters and can induce high degrees of shrinkage
in hierarchical models. Similar findings may also occur in the
context of other cognitive models of choice.
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A popular approach in cognitive science to describe and under-
stand behavior is to develop mathematical models with free
parameters that can be estimated from empirical data
(Busemeyer & Diederich, 2010; Lee & Wagenmakers, 2013;
Lewandowsky & Farrell, 2010). The model parameters repre-
sent aspects of the assumed underlying psychological processes,
which can thus be isolated and quantified. Computational
modeling is often used to study individual differences between
people and between experimental conditions (e.g., Berkowitsch,
Scheibehenne, & Rieskamp, 2014; Pachur & Olsson, 2012) as
well as to relate isolated psychological processes to basic cog-
nitive capacities (e.g., working memory; Lewandowsky, 2011;
Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007) or
other individual variables (e.g., aging; Dutilh, Forstmann,
Vandekerckhove, & Wagenmakers, 2013).

For illustration, consider cumulative prospect theory (CPT;
Tversky & Kahneman, 1992), one of the most prominent
models of decision making under risk. According to CPT,
responses to risky alternatives (which lead to different out-
comes with some probability) are a function of several factors,
including a person’s sensitivity to outcome and probability
information and his or her relative weighting of losses and
gains (“loss aversion”). In the model, the degrees of outcome
and probability sensitivity and the amount of loss aversion can
be quantified by free parameters, and several studies have
fitted CPT parameters to investigate how differences in age
(Harbaugh, Krause, & Vesterlund, 2002), gender (e.g., Fehr-
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Duda, De Gennaro, & Schubert, 2006), delinquency (Pachur,
Hanoch, & Gummerum, 2010), or affect (Pachur, Hertwig, &
Wolkewitz, 2014) influence risky decision making. For such
applications of computational modeling, it is often essential to
obtain a set of parameter estimates for each individual.

Using and interpreting individually fitted parameters relies on
the assumption of model generalizability—that is, the assump-
tion that the fitted model for a person generalizes beyond the
circumstances at data collection. For instance, to the extent that
the fitted parameters capture stable characteristics of an individ-
ual, they should remain relatively invariant across short periods
of time or similar contexts, and thus allow prediction of the
individual’s behavior in those circumstances (e.g., Yechiam &
Busemeyer, 2008). However, multiparameter models also run
the risk of adjusting, at least in part, to unsystematic variability
(i.e., noise). If so, models might overfit the data, meaning that
seemingly precise parameter estimates become less meaningful,
and consequently “provide less insight and explanation of the
cognitive processes they address and are less capable of making
accurate predictions when generalized to new or different situa-
tions” (Lee & Webb, 2005, p. 606).

The generalizability of a cognitive model for empirical data
depends on several factors, including the model’s parameter-
ization and the interdependence between its parameters (Li,
Lewandowsky, & DeBrunner, 1996), genuine changes in the
individual across time, and (unsystematic) error in estimation
and measurement. A critical factor influencing this amount of
error is the statistical procedure applied to estimate the
parameters.

The traditional approach for parameter estimation treats
each participant as unique and identifies the best-fitting set
of parameter values independently for each individual in a
sample. In a second step, these independent estimates can then
be aggregated across participants to make inferences about the
population from which the individuals were drawn (Gelman
& Hill, 2007). As an alternative to this “independence” ap-
proach, hierarchical Bayesian procedures have recently grown
in popularity (e.g., Gelman & Hill, 2007; Lee &
Wagenmakers, 2013; Lee & Webb, 2005; Nilsson,
Rieskamp, & Wagenmakers, 2011; Scheibehenne,
Rieskamp, & Wagenmakers, 2013). A key characteristic of
hierarchical procedures is that they exploit group-level distri-
butions to inform individual-level estimations.

One advantage of hierarchical techniques over the conven-
tional independence approach is their potential to provide param-
eter estimates that are less prone to measurement error, and thus
more stable (Atkinson & Nevill, 1998). This advantage is well
justified on theoretical grounds (Gelman&Hill, 2007; Rouder &
Lu, 2005), and the hierarchical approach has also proved suc-
cessful when applied to empirical data (e.g., Rouder, Lu, Morey,
Sun, & Speckman, 2008; Scheibehenne & Studer, 2014).

The goal of this article is to rigorously test and compare the
potential of hierarchical techniques over an independence

approach when assessing parameter stability and the general-
izability of decision models across time. This comparison will
contribute to a better understanding of what can be gained by
using hierarchical techniques and how conclusions regarding
the generalizability of a cognitive model that are based on
empirical data can be affected by the statistical method ap-
plied. One key insight will be that interdependence between
model parameters, which is an issue in many cognitive models
(e.g., Li et al., 1996; Nosofsky & Zaki, 2002; van
Ravenzwaaij, Dutilh, & Wagenmakers, 2011; Wetzels,
Vandekerckhove, Tuerlinckx, & Wagenmakers, 2010), can
lead to substantial differences between the results of
hierarchical and independent estimation techniques.

Using data by Glöckner and Pachur (2012), we conducted a
series of analyses comparing hierarchical against nonhierarchi-
cal (i.e., independent) Bayesian procedures within two promi-
nent models of risky choice: cumulative prospect theory (CPT;
Tversky & Kahneman, 1992) and the transfer-of-attention-ex-
change model (TAX; Birnbaum & Chavez, 1997). We focused
on risky choice, because multiparameter models are highly
popular in this domain and because it is often assumed that
people’s responses in risky choice tasks reflect stable individual
preferences (Yechiam & Ert, 2011), making it important to
know how these potential invariants can best be captured. We
compare the results derived from hierarchical and nonhierar-
chical parameter estimation in terms of two important aspects
of model generalizability: (a) the stability of the model param-
eters—that is, the extent to which estimates remain invariant
across time—and (b) the models’ predictive accuracy—that is,
their ability to predict new data (i.e., data that were not used to
inform the parameter estimates).

In the next section, we give an overview of the hierarchical
approach to parameter estimation, followed by a formal de-
scription of CPTand TAX.We then compare conclusions about
the models’ generalizability that arise from hierarchical and
independent parameter estimationwith respect to parameter
stability over time and the accuracy when predicing new data.

Hierarchical versus independent parameter estimation

Hierarchical Bayesian techniques assume that individual pa-
rameter values stem from group-level distributions, which are
estimated simultaneously with the individual-level parameters.
This offers several advantages over the traditional indepen-
dence approach. In particular, the hierarchical approach natu-
rally lends itself to the hierarchical data structure inherent in
many psychological experiments, in which a single individual
provides multiple observations and researchers aim to draw
conclusions on the aggregate or group level (Gelman, Carlin,
Stern, & Rubin, 2004). Unlike independent estimation,
Bayesian hierarchical techniques take into account the similar-
ity between individuals and the fact that some individuals might
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allow more precise estimates than others; as a consequence,
hierarchical techniques can yield more consistent and accurate
estimates overall, and thus provide higher statistical power
(Rouder & Lu, 2005). This is achieved through partial pooling
of the individual estimates on the group level, with the degree
of pooling being determined by the data. The purpose of partial
pooling is to find an optimal compromise between the extremes
of complete pooling and complete independence; the imposed
group-level structures simultaneously inform the individual
level, such that the individual estimates can borrow strength
from the information available about the other individuals in a
sample (Gelman et al., 2004).

As was pointed out by Nilsson et al. (2011), this borrowing
of strength should increase the reliability of parameter esti-
mates for individual participants, and thus provide more ro-
bust results (see also van Ravenzwaaij et al., 2011). In the
hierarchical approach, individual parameter estimates that are
deemed unlikely given the overall distribution of parameter
values (because they are located at the periphery of the distri-
bution) are “corrected” by pulling them closer toward the
group mean. This property, sometimes referred to as
shrinkage, prevents potentially unreliable information from
having a disproportionate influence on the group level
(Kruschke, 2011). For these reasons, it has been argued
that hierarchical methods provide a more thorough and
efficient evaluation of models in cognitive science (Shiffrin,
Lee, Kim, & Wagenmakers, 2008; van Ravenzwaaij
et al., 2011).

For illustration, consider the study by Nilsson et al. (2011)
on CPT. On the basis of a model recovery study, they found
that “the hierarchical Bayesian method recovered the data-
generating parameters somewhat more accurately than [non-
hierarchical maximum likelihood estimation]” (p. 89). In ad-
dition, the hierarchical approach led to less variable estimates,
suggesting greater reliability (and thus generalizability) of
CPT. Although these results provide support for the superior-
ity of hierarchical techniques when estimating cognitive
models of choice, Nilsson et al.’s (Study 1) simulations were
based on the assumption that individuals shared the same set
of parameter values. In empirical data, however, parameter
estimates often vary greatly between individuals. It is less
clear to what degree the shrinkage induced through hierarchi-
cal Bayesian modeling will generally yield more reliable
estimates in this context. Specifically, it is possible that rather
extreme parameter values, which are subject to more shrink-
age in the hierarchical approach, represent genuine (and thus
stable) characteristics of a person.

To investigate this issue, the data set by Glöckner and
Pachur (2012) is particularly suited, because here each partic-
ipant provided choices between monetary lotteries in two
experimental sessions, thus allowing for a genuine test of
generalizability (for details, see below). Next we describe
CPT and TAX, the two models that we fit to these data.

Cumulative prospect theory

CPT (Tversky & Kahneman 1992) aims to describe how
people evaluate risky alternatives that lead to one or
several outcomes with some probability. For instance,
consider whether you would prefer to play a lottery
with a 90 % chance of winning $100 (otherwise noth-
ing) or a lottery with a 10 % chance of winning $1,000
(otherwise nothing). CPT represents a mathematical
specification and elaboration of its predecessor, prospect
theory (Kahneman & Tversky, 1979), and assumes that
the possible consequences of a risky option are per-
ceived as gains or losses relative to a reference point. The
overall valuation Vof a lottery Awith outcomes xm > . . . ≥ x1 >
0 > y1 > . . . > yn and corresponding probabilities pm . . . p1 and
q1 . . . qn is given by:

V Að Þ ¼
X
i¼1

m

v xið Þπþ
i þ

X
j¼1

n

v y j

� �
π−
j ; ð1Þ

where v is a value function satisfying v(0) = 0; π+ and
π– are the decision weights for gains and losses, respec-
tively, which result from a rank-dependent transforma-
tion of the outcomes’ probabilities. The decision weights are
defined as:

πþ
m ¼ wþ pmð Þ

π−
n ¼ w− qnð Þ

πþ
i ¼ wþ pi þ…þ pmð Þ−wþ piþ1 þ…þ pm

� �
for 1≤ i < m

π−
j ¼ w− qj þ…þ qn

� �
−w− q jþ1 þ…þ qn

� �
for 1≤ j < n ;

ð2Þ

with w+ and w– being the probability weighting functions for
gains and losses, respectively (see below). The weight for
each positive outcome is based on the marginal contri-
bution of the outcome’s probability to the probability of
obtaining a strictly better outcome; the weight for each
negative outcome is based on the marginal contribution
of the outcome’s probability to the probability of obtaining a
strictly worse outcome.

Several functional forms of the value and weighting
functions have been proposed (see Stott, 2006, for an
overview). In our analyses, we use the power value
function suggested by Tversky and Kahneman (1992), which
is defined as

v xð Þ ¼ xα
þ

v yð Þ ¼ −λ −yð Þα− : ð3Þ

Values smaller than 1 are usually found for α+ and α–,
yielding a concave value function for gains and a convex
value function for losses. The parameter λ reflects the relative
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weighting of losses versus gains and is often found to be larger
than 1, indicating loss aversion. In our implementation of
CPT, we set α+ = α– (and thus had only one α parameter),
because Nilsson et al. (2011) found that estimating α+ and α–

separately can lead to a serious misestimation of λ.
The weighting function has an inverse S-shaped curvature,

indicating overweighting of unlikely events (i.e., those with a
small probability) and underweighting of likely events (i.e.,
those with a moderate to high probability). Here, we use the
two-parameter weighting function originally proposed by
Goldstein and Einhorn (1987), which separates the curvature
of the function from its elevation (see Gonzalez & Wu,
1999)1:

wþ pð Þ ¼ δþpγ
þ

δþpγþ þ 1−pð Þγþ

w− qð Þ ¼ δ−qγ
−

δ−qγ− þ 1−qð Þγ−
: ð4Þ

γ+ and γ– (both <1) govern the curvatures of the weighting
function in the gain and loss domains, respectively, and indi-
cate the sensitivity to probabilities. The parameters δ+ and δ–

(both >0) govern the elevations of the weighting function for
gains and losses, respectively, and can be interpreted as the
attractiveness of gambling. The elevation of the weighting
function thus also indicates a person’s risk attitude, with
higher (lower) values on δ+ (δ–) representing higher risk
aversion in gains (losses; see Qiu & Steiger, 2011).

In addition to these core components of CPT, a choice rule
is required when applying CPT to derive predicted choice
probabilities; we used an exponential version of Luce’s choice
rule (also known as softmax; Sutton & Barto, 1998), such that
the probability that a lottery A is preferred over a lottery B is
defined as:

p A;Bð Þ ¼ eθ⋅V Að Þ

eθ⋅V Að Þ þ eθ⋅V Bð Þ ; ð5Þ

where θ is a choice sensitivity parameter, indicating how
sensitively the predicted choice probability reacts to differ-
ences in the valuations of lotteries A and B. A higher θ
indicates more deterministic behavior; with θ = 0, choices
are random. To summarize, CPT as implemented here has
seven free parameters: outcome sensitivity (α), loss aversion
(λ), separate probability sensitivities for gains and losses (γ+,
γ–), separate elevations for gains and losses (δ+, δ–), and
choice sensitivity (θ).

Transfer-of-attention-exchange model

TAX (Birnbaum & Chavez, 1997) provides an alternative
model to CPT that can account for some empirical violations
of CPT (for a summary, see Birnbaum, 2008). According to
TAX, the valuation of a lottery is a weighted average of the
utilities of the outcomes; the weight that each outcome re-
ceives depends on its rank among all possible outcomes (the n
outcomes being ordered such that x1 < x2 < x3 < . . . xn) and its
probability. To account for the typically observed risk aversion
(risk seeking) in gains (losses), the model assumes that atten-
tion (i.e., weight) is “transferred” from better (worse) to worse
(better) outcomes. Specifically, the valuation Vof lottery A is
calculated as

V Að Þ ¼

X
i¼1

n

t pið Þ þ δ

nþ 1

Xi¼1

j¼1

t p j

� �
−

δ

nþ 1

X
j¼1

n

t pið Þ
" #

u xið Þ

X
i¼1

n

t pið Þ
; ð6Þ

where δ is a free parameter governing the attention shift
from higher to lower outcomes (or vice versa); with 0 <
δ < 1, attention is shifted from higher (lower) to lower
(higher) outcomes in gains (losses); with 0 > δ > –1,
the opposite occurs. In the equation, u(x) is the utility
function

u xð Þ ¼ xβ if x > 0
u xð Þ ¼ − −yð Þβ if x ≤ 0

ð7Þ

transforming objective outcomes into subjective utilities. The
free parameter β indicates the curvature of the value function
and reflects the decision maker’s sensitivity to outcome
information (with lower values of β indicating lower
sensitivity). Finally, t(p) is the probability-weighting function,
transforming objective into subjective probabilities, and
equals

t pð Þ ¼ pγ : ð8Þ

where γ is a free parameter reflecting the decision maker’s
sensitivity to probability information (with lower values of γ
indicating lower sensitivity). As for CPT, the predicted prob-
ability that lottery A is preferred over lottery B is derived
using the softmax rule (Eq. 5). To summarize, TAX as imple-
mented here has four free parameters: attention shift (δ),
outcome sensitivity (β), probability sensitivity (γ), and choice
sensitivity (θ).

Overview of the analyses

We applied both CPT and TAX to model the data reported in
Glöckner and Pachur (2012). These data offer an expedient

1 Note that Nilsson et al. (2011) used Tversky andKahneman’s (1992) one-
parameter probability-weighting function, which does not disentangle
elevation and curvature.

394 Psychon Bull Rev (2015) 22:391–407



context for assessing model generalizability, because partici-
pants gave responses to a large and varied set of lottery
problems, allowing parameter estimation for each participant.
Moreover, each participant provided responses at two exper-
imental sessions, allowing us to examine parameter stability
and predictive accuracy. At each session (t1 and t2, respec-
tively, which were separated by one week), each of 64 partic-
ipants (39 female, 25 male; mean age 24.7 years) were pre-
sented with 138 two-outcome monetary lotteries covering
pure-gain, pure-loss, and mixed outcomes. All of the lotteries
were drawn from three sets of lottery problems used in
previously published studies. Thirty-eight of the prob-
lems were shown at both sessions; the other 100 were
drawn in equal proportions from the three sets. The
outcomes of the lotteries ranged from –€1,000 to
€1,200. At the end of each session, one of the chosen
lotteries was picked randomly, played out, and the par-
ticipant received payment proportional to the outcome
(according to a specific exchange rate).

Using a maximum likelihood estimation procedure
and the independence approach, Glöckner and Pachur
(2012) found that CPT’s parameters were relatively sta-
ble (as measured by test–retest correlations) across the
two experimental sessions; moreover, CPT predicted the
individual choices across time rather well (as measured
by the percentage of correct predictions). Extending
these analyses, we used both hierarchical and indepen-
dent Bayesian techniques to estimate the parameters of
CPT and TAX to compare the conclusions on two key
aspects of model generalizability. First, we compared
both estimation approaches on two prominent measures
of parameter stability—namely, test–retest correlations
and coefficients of variation. Second, we tested the
extent to which the estimation approaches yielded pa-
rameter sets that differed in their ability to predict new
data (including both posterior predictive accuracy and
accuracy in out-of-sample predictions). To conduct these
comparisons, we implemented both hierarchical and indepen-
dent Bayesian versions of CPT and TAX, which are outlined
next.

Model specification and Bayesian parameter estimation
using BUGS

The free parameters of CPT and TAX were estimated using
Bayesian versions of each model implemented in the BUGS
programming language (Lunn, Spiegelhalter, Thomas, &
Best, 2009).2 Bayesian procedures require a detailed specifi-
cation of a model, including its respective likelihood function

and the prior probability distributions of all estimated param-
eters. For the independent versions of CPT and TAX, we
specified the models on the basis of Eqs. 1–5 and Eqs. 5–8,
respectively. The priors for the free parameters were set to
uniform probability distributions spanning a reasonable range
that excluded theoretically implausible values and allowed
ample space to include parameter values obtained in previous
research. For CPT, the priors ranged from 0 to 5 for θ, λ, δ+,
and δ–, and from 0 to 1 for α, γ+, and γ– (see Glöckner &
Pachur, 2012; Rieskamp, 2008). For TAX, the priors ranged
from –2 to 2 for δ and from 0 to 5 for β, γ, and θ (Birnbaum,
personal communication, 19th of July 2012).

In the hierarchical versions of CPT and TAX, we
used the same functions as in the independent versions,
but partially pooled the individual parameters through
group-level distributions. Priors in the hierarchical ver-
sion were set such that the range and the (uniform)
shape of the prior distributions on the individual level
matched those in the independent version. Toward that
goal, normally distributed group-level parameters were
linked to the individual level through probit transforma-
tions to achieve a uniform distribution from 0 to 1
(Rouder & Lu, 2005). To extend the range of these
distributions on the individual level from –2 to 2 for δ
and from 0 to 5 for β, γ, and θ, we interposed an
additional linear linkage function. All hierarchical
group-level means were assumed to be normally distrib-
uted with a mean of 0 and a variance of 1 (yielding uniform
distributions on the individual level). The priors on the group-
level standard deviations were uniformly distributed, ranging
from 0 to 10 (thus avoiding extreme bimodal distributions on
the individual level).

For both the individual and the hierarchical models, we
estimated the joint posterior parameter distributions using
Monte Carlo Markov chain methods implemented in JAGS,
a sampler that utilizes a version of the BUGS programming
language (version 3.3.0; Plummer, 2003) that was called from
the R statistics software (version 2.14.0; R Development Core
Team, 2012). A total of 40,000 representative samples were
drawn from the posterior distributions after a “burn-in” period
of 1,000 samples. The sampling procedures were efficient, as
indicated by low autocorrelations of the sample chains, the
Gelman–Rubin statistics, and visual inspections of the chain
plots.

Parameter estimates

Both the independently and the hierarchically estimated pa-
rameter values were well within the bounds of the assumed
prior range. The posterior distributions of the independent
estimates were more dispersed than the hierarchical ones,
which is not surprising, given that the independent estimates

2 The BUGS programming code for each model implementation is avail-
able in the online supplementary materials.
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were not partially pooled through hierarchical group-level
distributions.

Figure 1 shows the hierarchically estimated group-level
means of the parameters for both CPT and TAX in the first
experimental session (i.e., t1) of Glöckner and Pachur (2012).
The independently estimated mean and median parameter
values are shown in Tables 1 and 2. Overall, the results are
comparable to previously obtained parameter estimates (see
Fox & Poldrack, 2008, and Birnbaum, 2008, for CPT and
TAX, respectively), and the independently estimated parame-
ters also approximate those from Glöckner and Pachur’s anal-
ysis based on maximum likelihood estimation. Both CPT and
TAX show the typical pattern of reduced outcome sensitivity
(with α and β both being <1) and probability sensitivity (with
γ+/γ– <1 and γ <1).

Comparisons of the hierarchical and independent estimates
reveal some notable differences. First, for CPT, the hierarchi-
cal approach leads to lower values of the loss aversion param-
eter λ. Second, the hierarchical approach suggests a different
amount of risk aversion: The elevation of CPT’s weighting
function (as indexed by δ+ and δ–) is lower than that from the
independent approach, indicating lower risk aversion in gains
and higher risk aversion in losses. The same holds for TAX,
with a lower attention shift parameter δ than in the hierarchical
estimates. Third, for both CPT and TAX, the hierarchical
estimates suggest a lower choice sensitivity, as indicated by

lower estimates of the θ parameter.3 We will come back to this
difference in θs when assessing the predictive accuracy of the
models.

Figure 1 further indicates that, for both models, some
parameters were substantially correlated on the group level.
This makes it difficult to interpret parameter values indepen-
dently (see Li et al., 1996). Correlations were particularly high
between the group-level means of the choice sensitivity pa-
rameter θ and the outcome sensitivity parameters, for both
CPT (α; r = –.92) and TAX (β; r = –.82). On theoretical
grounds, these interdependencies seem plausible, because the
sensitivity parameter scales the subjective valuations Vof the
available options (see Eqs. 3 and 7), whereas θ determines
how sensitive decision makers are to differences between
these valuations (in the softmax choice rule in Eq. 5, V is
multiplied by θ). Thus, if subjective valuations increase, a
smaller θ value would be required to maintain the predicted
choice probabilities. As will be elaborated later in this article,

Fig. 1 Hierarchically estimated posterior parameter distributions for
cumulative prospect theory (CPT, left plots) and the transfer-of-atten-
tion-exchange model (TAX, right plots) on the group level. Each square
displays the joint posterior distributions for any pair of parameters along

with the respective product-moment correlation coefficients. Grey dots
are 1,000 random samples from the posterior distribution. The error bars
at the top and right margins indicate the group-level mean and 95 %
highest posterior density interval (HDI95) for each parameter

3 Because Nilsson et al. (2011) employed a different weighting function
in their comparison of independent and hierarchical parameter estima-
tions for CPT, our results are not directly comparable with theirs.
Nevertheless, note that Nilsson et al. also found the hierarchical approach
to yield a lower choice sensitivity. Interestingly, they obtained a pattern of
results opposite to ours with regard to loss aversion, with the hierarchical
approach yielding a higher λ.
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these parameter interdependencies are critical for the compar-
ison of hierarchical and independent estimation approaches.

Do hierarchical estimates lead to higher parameter
stability?

To the extent that the parameters of a cognitive model capture
stable characteristics of individual participants, the individual
participants’ parameter values should be invariant across
time—at least for relatively short time intervals and under
comparable measurement conditions (Bland & Altman,
1986). To test whether the Bayesian hierarchical approach
gives rise to more stable parameter estimates than does the
independent approach, we calculated two measures of param-
eter stability: test–retest correlations and the coefficients of
variation.

Test–retest correlation

Perhaps the most common way to quantify stability (or reli-
ability) is to calculate correlations between two measurement
points in time (see Hopkins, 2000). To assess this test–retest
reliability for the parameters of CPT and TAX, we computed
Pearson’s product-moment correlations across t1 and t2 for the
posterior means of all individual parameters. To compare the
two estimation procedures, we conducted the reliability anal-
ysis once for the hierarchically estimated parameters and once
for the independently estimated parameters. The correlations
were calculated using Bayesian techniques implemented in
BUGS (which avoid many problems inherent in traditional
frequentist procedures that rely on null-hypothesis signifi-
cance testing; Kruschke, 2011).4

Figure 2 displays the test–retest correlations, r, for the
parameters of CPT (left plot) and TAX (right plot). As can
be seen, for most parameters the highest posterior density
intervals (HDI95) overlap, indicating no credible difference
between the correlations of the hierarchically and the inde-
pendently estimated parameters; this holds for both CPT and
TAX. If anything, the correlations are slightly lower for the

hierarchical estimates, and in two cases (the θ parameters of
CPTand TAX), they are even credibly lower. A similar picture
emerged when we used Spearman’s rank correlations as a
measure of reliability (not shown). Thus, with respect to
test–retest correlations, we found no consistent advantage of
hierarchical over independent techniques.

Coefficient of variation

Although correlations are a popular measure of association,
they provide only a relative measure of reliability; they do not
capture the extent to which two variables agree in absolute
terms (Atkinson & Nevill, 1998). For example, two measures
can be perfectly correlated even when the absolute differences
between them are large. Furthermore, correlational measures
can be difficult to interpret because they are sensitive to
heterogeneity among participants and to the range of the
values (Hopkins, 2000). One way to quantify the reliability
of a parameter in absolute terms is to calculate the standard
deviation (across participants) of the differences between each
participant’s parameter values at t1 and t2. To obtain an
interpretable standardized measure, this standard deviation
can be divided by the average parameter value (across partic-
ipants). Expressed as a percentage, this index is referred to as
the coefficient of variation (CV; Hendricks & Robey, 1936).
Thus, the CV can be seen as a measure of the similarity of two
measurements (see also Hopkins, 2000). Applied to the pres-
ent case, a CVof 30 % would indicate that, on average across
all participants, the two parameter values differed by 30 % of
the mean. In contrast to alternative distance measures, such as
root-mean-squared deviation, the CV has the advantage of
being scale-independent (i.e., its magnitude does not depend
on the absolute parameter values). This makes it possible to
compare the stability of parameters that differ in magnitude.
To compare the two estimation procedures on the basis of CV,
we used Bayesian techniques implemented in BUGS and
calculated the CVs separately for the hierarchically estimated
and the independently estimated parameters.

As is shown in Fig. 3, for both CPT and TAX the hierar-
chically estimated parameters show credibly lower CVs (in-
dicating higher reliability) than the independently estimated
parameters. Thus, hierarchical techniques seem to yield

4 See the online supplementary materials for the BUGS programming
code.

Table 1 Independent parameter estimates for cumulative prospect theo-
ry, shown separately for the two experimental sessions (t1 and t2) in
Glöckner and Pachur (2012)

α λ γ+ γ– δ+ δ– θ

t1 M .53 1.30 .68 .67 0.95 2.38 0.72

Md .52 1.12 .69 .70 0.84 2.46 0.46

t2 M .55 1.21 .63 .67 0.87 2.38 0.70

Md .57 1.20 .64 .75 0.69 2.22 0.44

Table 2 Independent parameter estimates for the transfer-of-attention-
exchange model, shown separately for the two experimental sessions
(t1 and t2) in Glöckner and Pachur (2012)

β δ γ θ

t1 M 0.56 0.42 0.71 0.58

Md 0.57 0.35 0.57 0.33

t2 M 0.55 0.48 0.74 0.69

Md 0.55 0.43 0.53 0.35
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parameter estimates that are more reliable in absolute terms,
such that estimates taken at two different points in time will
differ less relative to the parameters’ mean.

Why did the hierarchical approach impact primarily
on absolute measures of parameter stability?

The results indicate that hierarchical techniques lead to more
similar parameter estimates in absolute terms (as measured by
the CV), but not consistently to higher test–retest correlations.
The latter result may seem surprising, because the supposed
advantages of hierarchical techniques, which borrow strength
from distributional information on the group level, should
generally yield more reliable parameter estimates on the indi-
vidual level.

Lower correlation due to shrinkage

To gain a better understanding of this result, we examined the
distributions of the individual parameter estimates more close-
ly. Figure 4 displays the posterior means of the β parameter in
the TAXmodel for a subset of 20 representative participants.5

Here, the independently estimated parameter values at t1 and
t2 are plotted along the upper and lower rows; the hierarchi-
cally estimated parameters at t1 are displayed along themiddle
row. The estimates for each participant are connected by a
line. As can be seen, the partial pooling of the hierarchical
approach led to a clearly lower dispersion of the estimates than
for the individually estimated parameters (the same holds for
the hierarchical estimates at t2, which are not shown). Figure 4
further shows that shrinkage is particularly strong for extreme
parameter estimates—that is, for those that are far away from

the group-level mean. The reason is that these estimates
appear rather unlikely, given the group-level distribution,
and are thus implicitly treated as extreme values in the hierar-
chical model. Importantly, Fig. 4 also shows a fairly close
correspondence between the independent estimates at t1 and
t2, even for participants with rather extreme parameter values.
That is, individuals who score high on the β parameter at t1
also tend to score high at t2; the same applies for small β
values. This indicates that, for the present data, extreme esti-
mates can reflect meaningful and reliable characteristics of the
individuals.

To illustrate the consequences of the shrinkage induced by
the hierarchical approach for the test–retest correlations, Fig. 5
displays a scatterplot for the θ parameter in the TAX model
separately for the independent and the hierarchical estimates
(this example is instructive because, as is shown in Fig. 2, the
difference between the correlations for the individual and the
hierarchical estimates was particularly large here). As can be
seen, the high correlation for the independent estimates (upper
plot) is partly due to some individuals who have high values
on the θ parameter at both t1 and t2. Inspection of the distri-
bution of the hierarchically estimated parameters (lower plot)
shows, due to shrinkage, a considerably narrower value range
than in the case of the independent estimates (note that the axis
scales in Fig. 5 were adjusted to facilitate display of the data).
The result is a lower (linear) correlation between the two
measurement points than in the case of the independently
estimated parameter values (which left the extreme parameter
values intact).6

5 See the online supplemental materials for similar plots of the other
parameters.

6 Note, however, that this would not necessarily be the case. It is possible
to conceive of situations in which shrinkage reduces the variance but
retains the (linear) relationship between the individual parameters; in such
cases, the test–retest correlations would not be lower for hierarchically
estimated parameters, as they indeed are not for most of the parameters in
Fig. 2.
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Figures 4 and 5 also hint at why the hierarchical approach
nevertheless leads to an improvement of absolute reliability,
such as the CV. As can be seen from the figures, the variance
of the independently estimated parameters is considerably
higher than that of the hierarchically estimated parame-
ters (which scatter closely around the group-level
mean). The higher variance in the independent case is
further increased by a few extreme estimates. These
extreme cases presumably boost the estimate of the variance
more than they boost the mean, and consequently lead to a
higher CV.

Higher shrinkage for interdependent model parameters

Although in our analysis the shrinkage imposed through hier-
archical modeling led to a lower test–retest correlation overall,
the same did not apply to all parameters. As can be seen in
Fig. 2, for some parameters the correlations were slightly
higher for the hierarchical than for the independent estimates
(e.g., δ+ in CPTand γ in TAX).Whatmight determinewhether
or not the hierarchical approach decreases a test–retest corre-
lation? One key factor may be the degree of interdependence
between parameters: Those parameters for which the discrep-
ancy between the hierarchical and independent estimates was
most pronounced were also those showing the strongest inter-
correlation (Fig. 1)—namely, the choice sensitivity parameter
(θ) and the outcome sensitivity parameter (i.e., α and β for
CPT and TAX, respectively). High correlations between pa-
rameters imply that different combinations of these parameters
are about equally probable and that the marginal posterior
distribution of each single parameter is rather dispersed. As
a consequence, when estimated hierarchically, these parame-
ters may be more susceptible to shrinkage toward the group-
level mean. In support of this hypothesis, when we
reestimated a reduced version of TAX in which the values of
the individual θ parameters were fixed to the (previously
estimated) posterior means, the shrinkage of the β parameter
was far less pronounced.

In summary, we found that hierarchical Bayesian tech-
niques do not necessarily yield higher test–retest correlations
than do individually estimated parameters. This seems to hold
particularly for parameters that show strong interdependence,
highlighting the important role of the formal architecture of a
model when pursuing a hierarchical estimation approach. As
we will outline in the next section, the effect of shrinkage in
the hierarchical approach also has consequences for a model’s
predictive accuracy.
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Fig. 4 Mean posterior estimates of the β parameter of TAX, shown
separately for each individual at t1 and t2 (upper and lower row), and
the hierarchically estimated parameters at t1 (middle row). For illustrative
purposes, the dark points highlight a subset of 20 participants
across the data range. The gray dots represent the remaining participants
within the sample
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Do hierarchically estimated models make better
predictions?

Although the stability of parameter estimates across time is an
important aspect of a model (Glöckner & Pachur, 2012), a
further and perhaps more direct test of model generalizability
is the degree to which it makes correct predictions. The abilities
of CPTand TAX to predict new data can be tested by comparing
participants’ choices at t2 against predictions based on the
parameters obtained at t1. To the extent that hierarchical tech-
niques reduce error variance in the parameter estimates, using
these parameters should lead to more accurate predictions than
using independently estimated parameters. In the following, we
compare hierarchical and independent estimates in terms of two
aspects of predictive accuracy: (a) predictions across time for
the same individual and (b) out-of-sample predictions for “new”
individuals based on themean parameters on the group level. As
measures of predictive accuracy, we estimated the posterior
predictive accuracy as well as the deviance.

Posterior predictive accuracy

Posterior predictive checks were applied using a two-step
approach (Gelman et al., 2004, pp. 157ff). First, we generated
model predictions for each individual by randomly sampling
4,000 parameter values from the respective joint posterior
distributions obtained at t1. In a second step, we estimated
the mean probability with which the model predicted the
actually observed choices at t2 for the same individual across
all parameter samples. This fit measure is sometimes referred
to as the posterior predictive probability (p; Gelman et al.,
2004). Here, p = 1 indicates perfect predictive accuracy,
whereas p = .5 indicates accuracy no better than chance.

Figure 6 plots for each participant the posterior predictive
probability calculated from independently estimated parame-
ters (x-axis) against those estimated hierarchically (y-axis),
shown separately for CPT (left plot) and TAX (right plot).
As can be seen, the posterior predictive probability is higher
than .5 for all participants, indicating that the predictive accu-
racy of both models was above chance level. Furthermore, the
points scatter equally around both sides of the diagonal, indi-
cating that the proportions of correct predictions for the hier-
archical and independent approaches were comparable.
Across participants, the mean differences between the ap-
proaches (calculated as pindependent minus phierarchical) were
–.0028 (SD = .02) for CPT and .0037 (SD = .02) for TAX.
Both differences are rather small and not significantly differ-
ent from zero [CPT: t(63) = 1.13, p = .262, BF01 = 5.4 (i.e., the
Bayes factor indicates that the data was 5.4 times more likely
under the null hypothesis); TAX: t(63) = 1.49, p = .141, BF01
= 3.4]. Taken together, hierarchical and independent estima-
tion techniques yielded comparable accuracy when we used
the estimated models to predict new data for individual deci-
sion makers on the basis of their choices at a previous point in
time on similar lottery problems.

Out-of-sample predictions from group-level estimates

As a further measure of predictive accuracy, we examined the
models’ abilities to predict the choices of an individual par-
ticipant on the basis of observed data from other participants
in the sample. Thus, in contrast to the previous analysis, in
which we tested the predictive accuracy for choices observed
at t2 on the basis of parameters estimated at t1 for the same
individual, the goal was now to predict choices of a randomly
drawn participant at t2 on the basis of the group-level means
estimated at t1. Here, the question was whether hierarchically
estimated group-level means or simply the arithmetic mean of
the independently estimated parameters lead to better out-of-
sample predictions.

One possible advantage of using hierarchical estimation for
out-of-sample predictions is that it may yield more reliable
parameter estimates on the group level. Unlike in the context
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of the arithmetic mean—where each individual value contrib-
utes equally—parameters in (Bayesian) hierarchical models
that are estimated with less precision (i.e., that have higher
variance) and parameters that are farther away from the group-
level mean receive less weight. Because of this, hierarchical
means can be considered more representative of the group as a
whole, and may thus be superior when predicting the behavior
of new, previously unobserved group members.

To test this prediction, we first tested the hierarchical ap-
proach by calculating the posterior predictive probability for
each individual participant at t2 on the basis of the posterior
group-level parameters estimated at t1 for both CPTand TAX.
For the independent approach, the procedure was similar, but
the parameter values were obtained from the arithmetic means
of the respective individual parameters, calculated across par-
ticipants at t1. For each individual prediction, the participant
whose choices were predicted at t2 was excluded from the
averaging of the independently estimated parameters at t1.7

For CPT and TAX, the mean posterior predictive probabil-
ities for the hierarchical predictions were 4.1 (SD = 2.6) and
4.5 percentage points (SD = 1.9), respectively, lower than
those for the independent predictions; both differences are
statistically significant, as indicated by conventional t tests
[for CPT, t(63) = 12.7, p < .001, BF10 > 10,000 (i.e., the Bayes
factor indicates that the data are over 10,000 times more likely
under Hypothesis 1); for TAX, t(63) = 18.4, p < .001, BF10 >
10,000]. A similar picture emerged when we made single-
point predictions based on the means of the respective group-

level parameters rather than drawing many representative
samples from the posterior group-level distributions.

Predictive accuracy measured by deviance

An alternative criterion for assessing predictive accuracy is in
terms of likelihood, defined as the product of the probabilities
of the actually observed data at t2 for a given parameterization
of the model based on t1. Because multiplying probabilities
often yields very small values, a common approach is to report
likelihood in terms of deviance, defined as –2 times the sum of
the logarithms of each likelihood. In general, the larger the
discrepancies between the predicted and the observed choices,
the higher the deviance will be (indicating a lower likelihood).
To compare the abilities of hierarchical and independent esti-
mation to predict new group members in terms of deviance,
we took an approach similar to the one in the analysis above:
We first generated model predictions for the observed indi-
vidual choices at t2 based on the parameter estimates at t1; we
then calculated the deviance by comparing the observed
choices against the probabilistic predictions of each model.

When we predicted individuals’ choices at t2 on the basis of
their parameter values at t1, the independent and hierarchical
approaches yielded comparable results for TAX. Here, the
mean deviance based on the independent parameter estimates
was 149 (SD = 18.3), as compared to 146 (SD = 16.9) based on
the hierarchical estimates, t(63) = 2.17, p = .034, BF10 = 0.9.8

For CPT, the mean deviance of the independent predictions
(149, SD = 29.2) was higher than that of the hierarchical

7 For pragmatic reasons, in the hierarchical case all participants, including
those predicted at t2 at any one time, were included in the parameter
estimation. This may have yielded a small advantage for the hierarchical
approach over the independent approach.

8 Bayes factor estimates were calculated from conventional t-test outputs
on the basis of the template by Rouder, Speckman, Sun, Morey, and
Iverson (2009), assuming the Jeffrey–Zellner–Siow prior and r = 1.

0.5 0.6 0.7 0.8 0.9 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

CPT

p
independent

p h
ie
r
a
r
c
h
ic
a
l

0.5 0.6 0.7 0.8 0.9 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

TAX

p
independent

p h
ie
r
a
r
c
h
ic
a
l

Fig. 6 Mean posterior predictive probabilities of individual parameter distributions that were estimated independently (x-axis) or hierarchically (y-axis).
The left plot displays results for CPT, and the right plot displays results for TAX. Dots below the diagonal indicate higher predictive accuracy for
independent estimates

Psychon Bull Rev (2015) 22:391–407 401



predictions (141, SD = 23.2), indicating higher predictive ac-
curacy for the latter, t(63) = 5.43, p < .001, BF10 > 10,000. For
both TAX and CPT, the mean deviance was clearly lower than
191, the deviance expected under random choice.

For out-of-sample predictions (i.e., predicting a partici-
pant’s choices at t2 on the basis of the mean posterior param-
eters across the other participants at t1), the advantage of the
hierarchical approach in terms of deviance was even more
pronounced. As is shown by Fig. 7, which plots the deviance
of the predictions based on the mean of the independent
parameter estimates against the deviance of the hierarchical
mean parameter estimates, the deviance is generally smaller
(indicating better fit) for the hierarchical parameter estimates.
(Note that, in contrast to Fig. 6, a larger value here means
poorer performance.) For CPT, the mean deviance based on
the hierarchical parameters is 187 (SD = 57.9), as compared to
147 (SD = 25.3) based on the independent parameters, yield-
ing a difference of 41. For TAX, the means are 151 (SD =
20.2) and 209 (SD = 51), yielding a difference of 58. Both
differences are statistically significant, as indicated by con-
ventional t tests [for CPT, t(63) = 8.9, p < .001, BF10 > 10,000;
for TAX, t(63) = 13.9, p < .001, BF10 > 10,000]. For quite a
few individuals, the deviance for the independent estimates
was even higher (i.e., worse) than would be expected under
chance, suggesting that some choices were particularly poorly
predicted. Presumably this occurred because, although the
independent models made correct predictions most of the
time, the predictive accuracy for a few observed choices was
extremely low, hence escalating deviance. The hierarchical
parameters, by contrast, produced less extreme choice proba-
bilities (because they represent an average across all individ-
uals), thus avoiding extreme prediction errors.

Why do the results for posterior predictive accuracy
and deviance diverge?

At first glance, the lower posterior predictive accuracy of the
hierarchical models may seem surprising, given that the hier-
archical approach outperformed the independent approach in
terms of deviance. However, there may be a plausible expla-
nation for the observed results: Like many other cognitive
models (e.g., Brown, Neath, & Chater, 2007; Nosofsky, 1986;
van Ravenzwaaij et al., 2011; Wetzels et al., 2010), TAX and
CPT were implemented using a probabilistic choice rule
(Eq. 5). Within this choice rule, a sensitivity parameter (θ, in
our case) governs how deterministically the option with the
higher valuation is chosen (here, higher parameter values lead
to increasingly deterministic choices). Therefore, as long as
the decision maker chooses the option with the higher valua-
tion more than 50 % of the time (which is mostly the case for
the Glöckner & Pachur, 2012, data), higher values of θ will
always yield a higher proportion of correct predictions. As we
mentioned above, due to parameter shrinkage, the hierarchical

model led to smaller θ values on the group level than did the
arithmetic mean of the independent estimates; this, in turn,
produced less deterministic predictions, and hence a lower
proportion of correct predictions.

To illustrate the relationship between deviance and poste-
rior predictive accuracy, we ran a simulation (using TAX) in
which we estimated both the posterior predictive accuracy and
the deviance for predicting the observed choices at t2 for
different values of the θ parameter (keeping the other param-
eters constant at the group-level estimates obtained at t1).
Figure 8 displays the results. The figure shows a
nonmonotonic relationship between θ and deviance:
Deviance is lowest (indicating the highest likelihood) right
around the group-level posterior mean for θ at 0.14, and
sharply increases for both smaller and larger values of θ.
The reason why the minimum is located near the mean of
the posterior of t2 is that in the context on hand, the deviance,
which exerts a high influence on the posterior distribution, had
a similar shape at t1 and t2. In contrast to the shape of the
deviance curve, Figure 8 further shows that the proportion of
correct predictions monotonically increases with higher
values of θ. This simulation illustrates that although posterior
predictive probability and deviance are related (since both are
calculated from the probability that the model correctly pre-
dicts the data), the two measures can systematically diverge. If
a model assigns a high likelihood to most observed data
(yielding a high posterior predictive probability) but strongly
errs for a single observed datum (i.e., assigns an extremely
low likelihood to it), the product of the likelihoods will be low,
and hence deviance will escalate (see Selten, 1998).

General discussion

Bayesian hierarchical approaches to parameter estimation are
based on the principle of partial pooling, in which estimates on
the individual level are informed by group-level distributions.
One of the advantages of this approach is that it can lead to
more reliable parameter estimates than can independent tech-
niques. We compared hierarchically and independently
estimated parameters in order to evaluate two prominent
models of decision making under risk, CPT and TAX, with
respect to different aspects of model generalizability. The
results of this comparison, drawing on an empirical data set
obtained by Glöckner and Pachur (2012), indicated that the
relative performance of the hierarchical approach varied
across the different aspects of model generalizability.
Specifically, the hierarchical approach led to higher parameter
stability across time, as measured by the coefficient of varia-
tion, and to higher predictive accuracy, as measured by
deviance. By contrast, the hierarchical approach did not
consistently increase—and sometimes even decreased—
the test–retest correlations of the parameters, and it led
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to a lower posterior predictive accuracy. These results
held for both CPT and TAX.

One reason for the finding that the hierarchical approach
did not produce superior results on all measures of generaliz-
ability was that partial pooling induced a high amount of
shrinkage for the group-level distributions, such that extreme
yet reliable parameter estimates were strongly “pulled in”
toward the group-level mean. In the context of the models
investigated here, this shrinkage also led to a lower estimate of
the choice sensitivity parameter, and hence to less determin-
istic predictions. As we have shown, this in turn led to lower
posterior predictive accuracy.

Importantly, however, the strong shrinkage in the hierar-
chical approach presumably was fueled by strong interdepen-
dencies between some of the model parameters—in particular,
the sensitivity parameter in the choice rule and the curvature
parameter of the models’ utility functions. Thus, the high
shrinkage does not seem to be a drawback or flaw of the
hierarchical approach itself, but rather points to identification
issues with the model parameters. Next, we discuss the impli-
cations of this result in more detail. This is followed by a
discussion of further factors that may contribute to the differ-
ences observed between the hierarchical and independent
approaches.

Strong parameter interdependence occurs in many cognitive
models

One may suspect that the strong parameter interdependence
that we observed, and that seems to be a key factor for the
differences between the independent and hierarchical ap-
proaches, may be a peculiarity of the models investigated
here, CPT and TAX. However, several other cognitive
models of decision making feature a similar parameteriza-
tion with a probabilistic choice rule and a utility function.
For some of them, past research has also found consider-
able correlations between these parameters, such as for
models for the Bayesian analog risk task (van
Ravenzwaaij et al. 2011) and the expectancy valence model
(and variants thereof; Wetzels et al., 2010). In fact, simu-
lation results by Stewart (2011) suggest that strong interde-
pendence between parameters should be expected in any
model that has a probabilistic choice rule and a utility
function with adjustable parameters. Parameterized choice

100 150 200 250 300 350 400

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

CPT

deviance for independent estimates

d
e
v
ia
n
c
e
 f
o
r
 h
ie
r
a
r
c
h
ic
a
l 
e
s
ti
m
a
te
s

100 150 200 250 300 350 400

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

TAX

deviance for independent estimates

d
e
v
ia
n
c
e
 f
o
r
 h
ie
r
a
r
c
h
ic
a
l 
e
s
ti
m
a
te
s

Fig. 7 Mean deviances for individual choices at t1, averaged across
representative samples of the posterior distributions for CPT (left plot)
and TAX (right plot), estimated at t1. Each dot indicates one participant.
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rules combined with parameterized item-strength functions
also exist in other areas of cognitive science, such as
categorization and memory (e.g., Brown et al., 2007;
Nosofsky, 1986). It will therefore be interesting to see to
what extent the results that we obtained would also occur
for hierarchical implementations of these models.

In general, such correlations between model parameters are
disadvantageous: They make it difficult to precisely estimate
the parameters and interpret them in isolation, and they sug-
gest that the models might benefit from a reparameterization
to eliminate redundancies. Ways to reparameterize the models
would be to express one parameter as a function of another or
to set some parameters to fixed values. For instance, instead of
a parameterized utility function, a simple identity function
[i.e., u(x) = x] could be used. Alternatively, in some cases it
might be possible to employ a nonparameterized choice rule,
such as the original version of Luce’s choice rule (e.g., Stott,
2006). However, if researchers are genuinely interested in the
value of that parameter, these solutions are not helpful.
If parameter interdependence cannot be avoided or is
theoretically justified, and researchers aim to test and compare
hierarchical models, a pragmatic solution could be to imple-
ment correlated prior distributions in the first place (e.g., Pratte
& Rouder, 2011).

As we will illustrate next, even if parameters are interde-
pendent, the advantages of the hierarchical approach will
often prevail—in particular, when there are very few data on
the individual level and when very little is known about the
possible range of the parameter values (as reflected in wide
prior distributions).

Modeling with sparse data on the individual level

A particular advantage of hierarchical over independent
approaches is the ability to yield reliable estimates even
when relatively few data are available for individuals (e.g.,
Busemeyer & Diederich, 2010). With sparse data, estimat-
ing parameters using the independent approach is rather
error-prone, and the principle of borrowing strength imple-
mented in hierarchical techniques can increase accuracy. In
the present case, a relatively large number of observations
(138) were available per individual, allowing quite reliable
estimates using the independent approach. To explore
whether in the case on hand the hierarchical approach
plays out its strengths even in terms of posterior predictive
accuracy when only sparse data are available on the
individual level, we conducted an additional analysis in
which we determined the predictive accuracy of TAX on
the basis of only 10 % (selected randomly) of the original
138 choices for each participant at t1. To retain the
proportions of the different types of lottery problems, we
drew seven gain, three loss, and four mixed lotteries. For
this subset of data, we then estimated the TAX parameters

using both the independent and hierarchical approaches.
From the estimates, predictive accuracy was assessed for
predictions across time (i.e., predicting each individual’s
choices at t2 on the basis of the respective individual
parameter estimates at t1) and for out-of-sample predic-
tions (i.e., predicting individual choices at t2 on the basis
of the group-level mean at t1).

For individual predictions across time, the hierarchical
approach yielded a posterior predictive accuracy that was
about 4 % higher than that yielded by the independence
approach. This difference was statistically different from zero,
as indicated by a conventional t test, t(63) = 4.1, p = .0001,
BF10 = 152, indicating that the hierarchical approach now
outperformed the independent approach. For out-of-sample
predictions, the posterior predictive accuracy for the hierar-
chical estimates (p = .66, SD = .03) was similar to that of the
independent estimates (p = .66, SD = .06). Thus, in this latter
case, the hierarchical approach was no longer inferior to the
independent approach (but also no better). Overall, these
results suggest that one factor contributing to the relatively
strong performance of the independent approach in our anal-
yses was that the estimation error was already quite low, due to
the large amount of data available for each individual.

Using extremely uninformative priors

The posterior predictive accuracy for the out-of-sample pre-
dictions reported in the previous section may appear quite
high, given the very small number of observations that in-
formed these estimates. One reason for this may be that some
informed assumptions about the underlying behavioral pat-
terns were already built into the structures of the models
themselves; for instance, the assumed range of the priors
was not completely uninformative, but was based on theoret-
ical reasoning and previous research. In fact, even when
simply drawing random samples from the prior distributions
(i.e., not taking any observations into account), TAX already
achieved a posterior predictive accuracy of .56, which is
significantly better than chance, t(63) = 11.6, p < .001, BF10
> 10,000. However, when the ranges of the uniform priors
were increased by a factor of 20 (i.e., ranging from 0 to 100 for
θ, γ, and β, and from –50 to 50 for δ), the predictive posterior
accuracy dropped to .53 [although this was still better than
chance: t(63) = 5.85, p < .001, BF10 > 10,000]. This indicates
that the assumed range of priors had an impact on the models’
predictive accuracies.

To examine whether using these less informative, wide
prior ranges also affected the relative predictive accuracies
of hierarchical versus independent parameter estimates, we
again estimated the TAX parameters from a random subset of
10 % of the observed choices, but now using the wider range
of priors. In this case, the posterior predictive accuracy when
predicting new group members eventually exceeded that of
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the independent approach (p = .63, SD = .03, vs. p = .58,
SD = .07), t(63) = 4.8, p < .001, BF10 = 1,571.9

Is sum, these results suggest that hierarchical estimation
techniques are particularly advantageous when only very few
observations are available for each individual and when there
is little prior knowledge—even for a model that shows con-
siderable parameter interdependence. In these situations, in-
dependent estimates will yield very vague and uninfor-
mative posterior distributions, and borrowing strength
from the estimations of other individuals is particularly
helpful in order to position the posterior distributions within
reasonable bounds.

The role of group-level priors

Given the integral role of priors in Bayesian modeling, one
may suspect that an additional factor contributing to the high
amount of shrinkage observed in our main analyses was the
choice of priors on the group level. What speaks against this
explanation for the present case is that the priors spanned a
rather wide range of possible values, including those reported
in previous studies (e.g., Glöckner & Pachur, 2012;
Rieskamp, 2008). Furthermore, there was no indication for
any of the parameters that the estimated posterior distributions
(including the group-level variances) were squeezed to the
respective prior boundaries, and the priors thus seemed to be
sufficiently wide. Arguably, priors should reflect reasonable
expectations in light of what is currently known about a model
(Edwards, Lindman, & Savage, 1963), and this was followed
in our implementations of the models. As we mentioned
above, our analyses indicated that the shrinkage diminished
considerably when we removed the correlation between pa-
rameters in the model. Nevertheless, an alternative choice of
priors or different model specifications might have induced a
more appropriate degree of shrinkage, and hence a greater
advantage of hierarchical over independent estimation
techniques, even when parameters were correlated.

Hierarchical modeling and the reduction of error variance

In a classic article, Efron and Morris (1977) showed theoret-
ically that hierarchical approaches that induce shrinkage of
individual estimates toward the grand mean often lead to
smaller prediction errors than do independent estimates. Is
our result that hierarchical estimation sometimes performs
worse than independent estimation at odds with this finding?
In Efron and Morris’s analyses, predictive accuracy was mea-
sured as the sum across the squared estimation errors, a

measure that is closely related to the deviance criterion that
we used.10 When we quantified predictive accuracy for the
Glöckner and Pachur (2012) data in terms of squared estima-
tion error, our results resembled those of Efron and Morris,
since we also found an advantage of the hierarchical over the
independent modeling approach: On average (across all par-
ticipants), the estimation error for the hierarchical parameter
estimates was smaller (i.e., better) by a factor of 1.16 (TAX)
and 1.1 (CPT), as compared with the independent approach.

Capturing the data-generating process

In general, if a given model can capture the processes that give
rise to the observed data, all unexplained variance has to be due
to measurement error. In this case, hierarchically informed
estimates are particularly well suited to reduce prediction errors
(Efron & Morris, 1977). However, when empirical choice data
are analyzed, the data-generating process is usually unknown,
and the observed variance in the data is not just due to error, but
also stems from systematic influences that the model does not
capture. In this case, the advantage of consolidating information
through hierarchical modeling will be reduced (Efron &
Morris, 1977). In the present context—where the goal was to
model the outcome of a presumably complex cognitive process,
and the actual data-generating process was unknown—it is
difficult to assess the degree to which the models captured
systematic or unsystematic influences. To be sure, both models
considered in our analyses—CPT and TAX—are highly suc-
cessful accounts of decision making and have been shown to
account for a large number of phenomena and to perform well
across a wide range of situations (e.g., Birnbaum, 2008;
Glöckner & Pachur, 2012). However, given the complexity of
human decision making, it seems plausible that these models
could nevertheless provide only an approximation of the true
data-generating processes (e.g., Pachur, Hertwig, Gigerenzer,
& Brandstätter, 2013; Su et al., 2013). Therefore, deviations
between the models’ predictions and observed data are presum-
ably not just due to random error, but may also reflect system-
atic divergences between the models and the actual cognitive
processes. This issue of possible model misspecification might
pose a challenge to hierarchical approaches, since it could
potentially lead to shrinkage of both random error and system-
atic bias, even when the latter is robust (and should therefore
not be shrunk).

Further advantages of hierarchical parameter estimation

Although our results point to some situations in which hierar-
chical techniques may not consistently improve model

9 The range of the prior distribution has very little impact on the results
when taking all 138 choices into account. Presumably, with this amount
of data on the individual level, the influence of the prior on the posterior
estimates is negligible.

10 If p is a vector of probabilities for making a correct prediction, the
deviance is defined as –2*sum[log(p)], whereas the squared error is
defined as sum[(1 – p)2].
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generalizability in terms of posterior predictive accuracy or test–
retest correlations, we would like to highlight that there are also
other reasons to use a hierarchical rather than an independent
modeling approach. As was indicated by our results, when the
criterion was deviance, squared estimation error, or the coeffi-
cient of variation, the hierarchical estimates were clearly supe-
rior. We also found that, even when parameters are correlated,
shrinkage will increasingly help to reduce unsystematic noise
when there are few data for each individual and very little prior
information. In these situations, independent estimates are often
not feasible, so hierarchical approaches are advisable, even if the
goal is to increase posterior predictive accuracy (Busemeyer &
Diederich, 2010).

Furthermore, hierarchical approaches naturally lend them-
selves to comparing groups as a whole and to quantifying the
variability between individuals (Lee & Webb, 2005). As our
examples show, they also provide a principled way to capture
correlations between parameters on the group level, and thus
offer crucial insights that would otherwise be difficult to
obtain (Lee & Wagenmakers, 2014). Last but not least, as
was pointed out by Lee and Newell (2011), “one of the most
compelling features of the hierarchical Bayesian approach is
that it encourages deeper theorizing and the construction of
more psychologically complete models” (pp. 839–840),
which will help to advance our understanding of the cognitive
processes underlying behavior.
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