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Abstract

Motivation: Molecular pathways and networks play a key role in basic and disease biology. An

emerging notion is that networks encoding patterns of molecular interplay may themselves differ

between contexts, such as cell type, tissue or disease (sub)type. However, while statistical testing

of differences in mean expression levels has been extensively studied, testing of network differ-

ences remains challenging. Furthermore, since network differences could provide important and

biologically interpretable information to identify molecular subgroups, there is a need to consider

the unsupervised task of learning subgroups and networks that define them. This is a nontrivial

clustering problem, with neither subgroups nor subgroup-specific networks known at the outset.

Results: We leverage recent ideas from high-dimensional statistics for testing and clustering in the

network biology setting. The methods we describe can be applied directly to most continuous mo-

lecular measurements and networks do not need to be specified beforehand. We illustrate the

ideas and methods in a case study using protein data from The Cancer Genome Atlas (TCGA). This

provides evidence that patterns of interplay between signalling proteins differ significantly be-

tween cancer types. Furthermore, we show how the proposed approaches can be used to learn

subtypes and the molecular networks that define them.

Availability and implementation: As the Bioconductor package nethet.

Contact: staedler.n@gmail.com or sach.mukherjee@dzne.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular interplay plays a fundamental role in biology and its dys-

regulation is a feature of many diseases. It is thought that networks

encoding molecular interplay may depend on biological context

such as cell type, tissue type, or disease subtype. An increasing

number of studies, including, among others, ENCODE (Andersson

et al., 2014), BLUEPRINT (Martens and Stunnenberg, 2013) and

TCGA (The Cancer Genome Atlas Network, 2012), span multiple

biological contexts and such studies offer an opportunity to better

understand molecular heterogeneity.
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The study of molecular networks involves relatively complex

statistical models, since it is not only the mean levels of molecular

variables but also measures of interplay between them that are rele-

vant. For this reason, despite the importance of networks in biology,

several core bioinformatics tasks remain challenging in the network

setting. In this paper we address two of these, two-sample testing

and clustering. In network models, the number of statistical param-

eters may grow rapidly with the number of molecular variables and

for this reason network-based analyses typically lead to so-called

high-dimensional statistical problems, where the number of param-

eters is large in relation to the sample size.

To fix ideas and clarify the specific questions we address, first con-

sider molecular data X1;X2 from two groups, each with the same set

of variables measured, but with potentially different sample sizes.

Using these data, we would like to test significance of differences be-

tween the groups, not only in terms of average molecular abundance

(as tested in standard differential expression analyses and multiple

testing extensions thereof), but at the level of networks describing

interplay between the variables. In the general case group-specific net-

works are not known in advance but must be estimated from the data

and the resulting variability in estimation must be properly accounted

for. This is the testing problem that we address.

Next consider the unknown groups case, where starting with a

dataset X (with no group labels) we seek to identify subsets of sam-

ples (i.e. clusters) with their associated networks. In general neither

the cluster assignments nor cluster-specific networks are known at

the outset. This is the clustering problem that we address.

The testing and clustering problems are different, but share the

need to model underlying networks. We use sparse Gaussian graph-

ical models (GGMs) for this purpose. The approaches we discuss are

likelihood-based and should be extensible to other classes of model.

Estimation for GGMs has been widely studied, including in bioinfor-

matics (e.g. Sch€afer and Strimmer, 2005). There has been progress in

high-dimensional methods relevant to testing and clustering using

GGMs (including Chen and Qin, 2010; St€adler and Mukherjee, 2013,

2017; Zhou et al., 2009). We note that GGMs are not causal models

and we do not consider causality per se in this paper, although exten-

sions in a causal direction could be possible.

We address the testing problem using a framework proposed in

St€adler and Mukherjee (2017) that extends the likelihood ratio test to

the high-dimensional setting. Specifically, we use an application of

their methodology to testing networks called Differential Network or

DiffNet. This is a formal statistical test that retains validity in the

high-dimensional setting. For a review of related methods and a dis-

cussion of methodological differences with respect to the DiffNet test,

we refer the interested reader to the reference.

For the clustering problem, we pursue a model-based approach. In

particular, we use mixture models where the different mixture compo-

nents (or clusters) are represented by cluster-specific means and

GGMs. Gaussian mixture models have been well-studied in the low-

dimensional setting but estimation remains challenging in the high-

dimensional setting. In the present context, we are interested in inter-

play between molecular variables and furthermore we expect that

clusters may have different underlying GGMs. This requires formula-

tions for which classical maximum likelihood is ill-suited (even when

the number of molecular variables p itself is not very large). A compu-

tationally and statistically attractive approach is to use ‘1-penalization

within a mixture model framework and this is the route we pursue.

Specifically, we develop a latent variable extension of the graphical

lasso (Friedman et al., 2008) that we call Mixture Graphical Lasso, or

MixGlasso. MixGlasso renders estimation tractable by assuming

sparsity of the cluster-specific networks, i.e. for each cluster only

relatively few edges are important (but these edges are not pre-

specified and can differ between clusters).

The features of MixGlasso that make it practically applicable for

bioinformatics are: (i) MixGlasso allows clusters to have different

means and networks (i.e. GGMs). (ii) The penalty is designed to

automatically adapt to the number of clusters and to the sample size

and scale of the clusters (these are unknown at the outset and cannot

be dealt with by pre-processing). (iii) MixGlasso uses theoretical re-

sults from high-dimensional regression to set the level of penaliza-

tion automatically, following recent work in the context of hidden

Markov models (St€adler and Mukherjee, 2013). This means that the

procedure is essentially free of tuning parameters and efficient

enough to be run on a single core.

Many clustering methods that are widely used in bioinformatics,

including K-means, PAM and hierarchical clustering, differ funda-

mentally from MixGlasso in that they are driven by mean levels of

variables and do not account for network or covariance structure.

The mclust multivariate clustering tool (Fraley et al., 2012) is very

popular. The key difference between mclust and MixGlasso is that

the former is not geared towards high-dimensional problems.

Mukherjee and Hill (2011) discuss penalized, network-based clus-

tering, but using a heuristic algorithm that unlike MixGlasso is not a

principled mixture model. The iCluster methodology (Shen et al.,

2009) performs high-dimensional clustering via a low-dimensional

representation; this differs in intent from MixGlasso, which empha-

sizes the network setting in which the original molecular variables

and their network connections are of direct interest.

Pan and Shen (2007) used penalization for variable selection in clus-

tering, using a mixture model with common diagonal covariance matri-

ces. In contrast, MixGlasso focuses on the non-identical, non-diagonal

case that is relevant to discovery of clusters that may have different

underlying patterns of molecular interplay. Our approach is similar to

Zhou et al. (2009) but differs in the form of the penalty: the MixGlasso

penalty is designed to automatically adapt to the sample size and scale

of clusters and the level of penalization is set automatically.

In summary, the specific contributions of this paper are: (1) We

discuss how the DiffNet test can be used for network-related testing

in bioinformatics. (2) We propose a penalized mixture model

MixGlasso that can be used to cluster data that is likely to be hetero-

geneous with respect to underlying networks and that automatically

takes care of several practical issues; and (3) We illustrate the prop-

erties and use of the two approaches by way of simulations and a

TCGA case study.

We illustrate the approaches in an analysis of protein data from

n ¼ 3467 TCGA samples (data from Akbani et al., 2014). Using

DiffNet we show that patterns of protein-protein interplay differ sig-

nificantly between cancer types, both at the ‘global’ level of all assayed

proteins and at the ‘local’ level of pre-defined signaling pathways. This

offers evidence, over thousands of samples, supporting the notion that

signaling depends on disease lineage and context, i.e. that pathways

and networks are contextual. Furthermore, using MixGlasso, we iden-

tify clusters (that can span more than one cancer type or classical lin-

eage) each having a cluster-specific network. This analysis supports,

from a network perspective, the emerging notion that there may be

molecular commonalities between seemingly distinct cancer types (see

e.g. The Cancer Genome Atlas Network, 2012).

2 Materials and methods

We first introduce some notation. Let the number of samples be n,

the number of variables be p and the n�p data matrix be
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X ¼ X1 . . . Xn½ �T. Data subsets or groups are indexed by

k 2 f1; . . . ;Kg. For each group k, nk denotes the (group-specific) sample

size and Xk is the corresponding nk � p data matrix. Group-specific

mean vectors and inverse covariance matrices are lk and Xk respectively.

2.1 DiffNet: testing differences in patterns of molecular

interplay
To test whether known groups differ with respect to molecular net-

works, a starting point is to learn a network model for each group

and to then compare the models. Although many procedures are

available for learning networks (see e.g. De Smet and Marchal,

2010), the models are inherently complex and typically subject to

high statistical variability. This means that observed differences be-

tween fitted models may simply be due to such variability. This mo-

tivates a need for uncertainty quantification.

The DiffNet test that we use is based on a framework that ex-

tends the likelihood ratio test (LRT) to high-dimensions (St€adler and

Mukherjee, 2017). DiffNet assumes that the data are generated

from GGMs and tests the null hypothesis that both groups share the

same underlying model, i.e. the null hypotheses

H
k;k0ð Þ

0 : Xk ¼ Xk0 ; k;k0 2 f1; . . . ;Kg and k 6¼ k0: (2.1)

The key idea in DiffNet is to exploit estimated sparsity patterns in

the construction of the test statistic and in P-value calculation. The

use of sparse structure renders the test effective in high-dimensions

but raises technical questions that are addressed via theory that ex-

tends the LRT to the high-dimensional setting. This gives an asymp-

totic P-value that remains valid in high-dimensional problems.

DiffNet uses randomized data-splitting: sparsity structure is esti-

mated using the first half of the data, and P-value calculation carried

out using the second half. We consider two variants of DiffNet, one

using a single data split (‘DiffNet(SS)’) and one using multiple

data splits (50 data splits) followed by P-value aggregation

(‘DiffNet(MS)’). For full technical details we refer the interested

reader to St€adler and Mukherjee (2017). The overall analysis is com-

putationally tractable: on the TCGA protein data discussed below a

typical (single-split) run of DiffNet required 2.5 minutes and 2.5 GB

of memory (on one core of an Intel Nehalem processor).

2.2 Subtype identification using MixGlasso
MixGlasso is a penalized mixture of Gaussian graphical models. As

above, let k index groups and K denote the number of groups (in the

clustering setting both K and cluster assignments are unknown at

the outset). Let Si 2 f1; . . . ;Kg be latent labels with Si ¼ k if sample

i belongs to group k. The component probabilities (i.e. mixture

weights) are pk ¼ P Si ¼ kð Þ. We assume XijSi ¼ k � N lk;X
�1
k

� �
,

where N l;Rð Þ denotes a normal density with mean l and covariance

matrix R. The mixture model is then parameterized by

HK ¼ h1; . . . ; hK;p1; . . . ; pKð Þ; hk ¼ lk;Xkð Þ, with log-likelihood

‘ HK; Xð Þ ¼
X

i

log
X

k

pk N Xijlk;X
�1
k

� � !
: (2.2)

Estimation comprises two (coupled) tasks. The first task is to esti-

mate HK, given the number of clusters K. In MixGlasso this is done

by minimizing the negative penalized log-likelihood to get

bHK;k ¼ arg min
HK

�‘ HK; Xð Þ þ k pen HKð Þ; (2.3)

where

pen HKð Þ ¼
XK

k¼1

p1=2
k

X
j6¼j0

jXk;jj0 j=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk;jjXk;j0 j0

q
is the penalty function and k is a regularization parameter. This

specific form of penalty, originally introduced in St€adler and

Mukherjee (2013) for hidden Markov models, adapts to the sample

size and scale of individual clusters. Optimization of (2.3) is per-

formed using expectation-maximization (EM) as outlined in SI.

We set k to a ‘universal’ value kuni ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n log p

p
=2. This penalty

is based on well-known theoretical results for high-dimensional re-

gression and the connection between GGMs and regression, and in

the present setting is valid for the specific penalty given above (for

details see St€adler and Mukherjee, 2013). The use of kuni coupled

with the penalty above in effect allows automatic adaptation to clus-

ter size and scale during the EM. As we show below, this allows

MixGlasso to give good results across a range of settings, while con-

trolling the computational burden; running MixGlasso on the

TCGA dataset (see below) with K ¼ 9 clusters required 2 minutes

and 5.3 GB of memory (on one core of an Intel Nehalem processor).

The second task involves determining an appropriate number

of clusters K�. This is done by minimizing the BIC score (k is set to kuni):

K� ¼ arg min
K

BIC bHK;kuni

� �
;

with

BIC bHK;kuni

� �
¼ �‘ bHK;kuni

; X
� �

þ 1

2
log nð Þ K� 1ð Þ

þ1

2
log nð Þ

XK

k¼1

Df k; kunið Þ;

where degrees of freedom are set as Df k; kunið Þ ¼ pþ
P

l0�l 1 bXk;kuni

� �
ll0
6¼0

.

3 Results

3.1 Testing differences in patterns of molecular

interplay
Simulation study. Figure 1A presents results of a simulation study,

based on the characteristics of the TCGA data (including sample

size and dimensionality; see SI for details), that compares differential

network (‘DiffNet’) against standard multivariate tests. The meth-

ods we compare against are:

1. Likelihood ratio test (‘LRT (Asym)’). This is a classical LRT,

based on the Gaussian models and with an asymptotic P-value.

2. Permutation LRT (‘LRT(Perm)’). This uses the same test statistic

as the classical LRT, but obtains a P-value by permutation of

group labels.

3. Test based on Fisher’s Z-transform (‘Mult.FisherZ’). Here,

equality of all partial correlations is tested using P-values

obtained by transforming each partial correlation using Fisher’s

Z-transform (see SI Section 2.2).

In line with theoretical results, we find that DiffNet controls type I

error. Both DiffNet variants, but especially the multi-split variant,

outperform the other approaches in an ROC sense and in terms of

power. The permutation LRT is considerably less powerful than

DiffNet, but as expected catches up at larger sample sizes. The poor

performance of the classical LRT is expected (due to the high-

dimensional nature of the problem) and it is interesting to note that

LRT(Asym) does not control Type I error even with 50% more
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samples than available in TCGA (i.e. more than 300 samples per

group; with number of variables p¼181). Additional simulations

using a non-Gaussian model appear in Supplementary Figure S1A.

TCGA data. Next, we considered TCGA protein data (spanning

p ¼ 181 proteins listed in Supplementary Table S1) from Akbani

et al. (2014). Normalization for batch effects using control samples

is discussed in Akbani et al. (2014); here, we use the normalized

data presented there and refer the interested reader to the reference

for details.

Akbani et al. (2014) inferred networks specific to each of the 11

cancer types in the data using the graphical lasso (Friedman et al.,

2008). Without using biological prior knowledge, the networks cap-

tured many known links but also showed many differences between

cancer types. We used DiffNet to assess the significance of differ-

ences between cancer types (Fig. 1B). These results account for un-

certainty in network estimation and adjust for multiple comparisons

due to testing across cancer-type pairs. Some pairs of cancers do not

show significant network differences at the 1% FDR level, including

READ/COAD, LUAD/LUSC, LUSC/HNSC and UCEC/BLCA (the

first three pairs are known to be closely related). Our results show

that with these exceptions, most cancer types indeed appear to be

significantly different at the network level.

We also carried out a similar but ‘local’ analysis using only pro-

teins belonging to specific pre-defined pathways (listed in

Supplementary Table S2) rather than all proteins together as above.

This analysis can be thought of as similar to a gene-set test, but one

that captures differences in partial correlation patterns between gene

set members (see St€adler and Mukherjee, 2015). This broadly

confirmed the global view, but revealed a number of pathway-

specific insights (Supplementary Fig. S2).

3.2 Subtype identification using MixGlasso
Simulation study. We tested MixGlasso using a simulation strategy

that, as above, aimed to mimic the TCGA protein data. In brief this

was done by defining clusters corresponding to the cancer types in the

TCGA data, with cluster-specific parameters given by estimates from

the TCGA data. Data were then generated from the resulting model.

This allowed us to mimic some features of the real data (including sam-

ple size and dimensionality) while allowing access to ground-truth clus-

ter assignments. We compared MixGlasso to the following approaches:

• K-means clustering (‘K-means’).
• Hierarchical clustering (hclust).
• Conventional Gaussian mixture model (‘Gaussian Mixture’).

This is a classical Gaussian mixture model with unconstrained

covariance matrices, fitted using maximum likelihood.
• Gaussian mixture model with model selection (mclust). This is a

model-based approach due to Fraley et al. (2012) that is one of

the most widely used tools for mixture modelling.
• Penalized Gaussian mixture model (‘Gaussian Mixture (penal-

ised)’). This is a Gaussian mixture model with ‘1-penalized in-

verse covariance matrices. The penalty is as described in Zhou

et al. (2009), but without penalization of the means. The key dif-

ference to MixGlasso is that the penalty does not adapt to the

cluster-specific sample size and scale.

We first investigated the estimation of the number K of clusters.

There is a vast literature on this topic and a wide range of heuristics

used in practice. We are interested in addressing the high-

dimensional issues inherent to network-based clustering. For a

focused comparison, we therefore compared MixGlasso against

mclust and the penalized Gaussian mixture model as these methods

make similar modeling assumptions to MixGlasso but differ in how

they handle the high-dimensional aspect. This allows for a direct

comparison, using the same model selection approach to select the

number of clusters in each case. All the methods are likelihood-

based and we used the Bayesian Information Criterion or BIC to set

the number of clusters. The penalized Gaussian mixture model used

the same regularization parameter kuni as MixGlasso (see Section

2.2). Figure 2A shows the results of the analysis. MixGlasso comes

closest to determining the correct number of clusters (K¼9), and

also agrees well with true cluster assignments.

Next, we considered accuracy of cluster assignments as a func-

tion of sample size (Fig. 2B). We included K-means and hclust in the

comparison. To avoid confounding by choice of model selection

heuristic, we treated the true number of clusters as known and

focused on comparing cluster assignments. As expected, perform-

ance improves with sample size; however, at smaller sample sizes,

MixGlasso tends to outperform the other methods, and only at large

sample sizes do the classical mixture models catch up.

Several of the methods, including MixGlasso, make Gaussianity

assumptions. We therefore performed additional simulations using a

non-Gaussian model (Supplementary Fig. S1B, see also SI Section 4);

MixGlasso appears reasonably robust to departures from Gaussianity.

TCGA data. First we used BIC to select the number of clusters K;

this showed an optimum at K ¼ 8 (Fig. 3A). We tested stability by it-

erative subsampling; at each iteration, we removed 1/4 of the data

samples at random, and then scored between-iteration concordance

between assignments (using the adjusted Rand index). MixGlasso is

highly stable with an adjusted Rand index of 0.94 6 0.03 over

Fig. 1. (A) Differential network (DiffNet), simulation study. Left-to-right (all as a

function of sample size): Type-I error (false positive rate); power (true positive

rate); and area under the ROC curve. Average performance over 100 simulation

runs shown. The simulation was designed to mimic characteristics and sample

size of the TCGA protein data for LUAD and GBM (see SI for details). X-axis

shows the smaller of the sample sizes of the two compared groups and the

multiplier with respect to the TCGA sample sizes. [‘LRT(Asym)’: asymptotic likeli-

hood ratio test (LRT); ‘LRT(Perm)’: permutation-based LRT; ‘Mult.FisherZ’:

Fisher’s Z Transform; ‘DiffNet(SS)’: single-split DiffNet; ‘DiffNet(MS)’: multi-split

DiffNet (see text)]. (B) DiffNet results, TCGA protein data. Heatmap shows FDR-

corrected P-values indicating significance of differences between 11 cancer

types, using data for 181 proteins, including post-translational modifications (see

Methods). To focus on network-related differences rather than differential expres-

sion, data from each cancer type were normalized to have zero mean and unit

variance as a pre-processing step. [ns indicates non-significant cancer pairs with

FDR>1%] (Color version of this figure is available at Bioinformatics online.)
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subsamples. To assess the stability of individual clusters we addition-

ally used a resampling approach due to Hennig (2007) that quantifies

individual cluster quality (Supplementary Fig. S3A).

Most of the clusters show a dominant cancer or lineage member-

ship; accordingly we named the clusters after the dominant can-

cer(s). An exception is a cluster that spans 10/11 cancers and has no

dominant cancer; we named this cluster ‘M’ (for mixed) and discuss

it below. Figure 3C shows networks across all clusters, indicating

cluster-specific as well as shared edges. Note that the partial correl-

ations shown here are obtained by first estimating the cluster mem-

bership using MixGlasso, then merging proteins whose expression

profiles are highly correlated with those of their phosphorylated

forms, and finally re-estimating the networks using the graphical

lasso. The merging step is necessary as otherwise the network would

be dominated by (trivial) partial correlations between proteins and

their phosphorylated forms. We also created a mosaic plot compar-

ing the proposed clustering with the known cancer types (Fig. 3B,

see also Supplementary Fig. S3B for the corresponding cross-

tabulation of the sample numbers). Comparison between cluster

assignments and known cancer types shows an adjusted Rand index

of 0.73.

We further compared our approach to results reported in Hoadley

et al. (2014) obtained using a consensus clustering approach (COCA)

applied to six different TCGA data types (whole-exome DNA

sequencing, DNA copy-number variation, DNA methylation,

genome-wide mRNA gene expression, and RPPA protein expression

for 131 proteins). Supplementary Fig. S5 shows a comparison of the

MixGlasso clustering with COCA, as well as with the Pearson-Ward

clustering forming part of the input to COCA (PW-131), and the clus-

tering in Akbani et al. (2014) (PW-181). The comparison focuses on

2,809 TCGA samples in common across the analyses and a number of

differences are apparent. Interestingly, of the three clusterings that use

protein data only, MixGlasso most closely agrees with the integrative

consensus clustering (adjusted Rand Index 0.76, vs 0.65 for PW-131

and 0.6 for PW-181).

Insights from MixGlasso. The results below serve to illustrate

the nature of the output that can be immediately obtained from

MixGlasso. We note that further work will be needed to better

understand these results and to more comprehensively test the ro-

bustness of the reported patterns.

A pan-cancer, protein-defined cluster.

Cluster M spans 10/11 of the TCGA cancer types and there is no

clearly dominant cancer type. Cluster M has a distinct protein abun-

dance profile (Supplementary Fig. S4), with (among other proteins)

high abundance of Yap and Taz (which share the same target and

overlapping functions) and low levels of ATM, RBM15 and MTOR,

as well as low levels of some phospho-proteins (with the exception

of pp27 and pCHK2) which could be a signal of DNA damage and

cell cycle arrest.

A subset of ‘super basal’ breast cancers.

From n¼747 BRCA samples in our study, 70 are assigned to the clus-

ter that contains the majority of the OVCA samples (‘OVCA-like’),

rather than to the cluster that contains the majority of BRCA samples

(‘BRCA-like’). Most of these samples (67/70) belong to the basal sub-

type of breast cancer. Genomic similarities between basal and high-

grade serous ovarian samples have been previously noted (The Cancer

Genome Atlas Network, 2012). However, we find that only a subset

of basal breast samples (67 out of a total of 120 basal samples in the

study) appear in the OVCA-like cluster. We compared these samples

(‘basal-OVCA’) to the basal samples that remain clustered with

BRCA samples (‘basal-BRCA’; Fig. 4A, B). We find that in basal-

OVCA, a number of proteins show significantly different abundance

patterns that are typically associated with the basal subtype; this in-

cludes lower abundance of the three markers for ‘triple-negative’

breast cancer (ERa, PR and pHER2; total HER2 is lower among

basal-OVCA, but not significantly so), as well as higher abundance of

several cyclins, including CyclinE1 and CyclinB1, and higher activa-

tion of several PI3K pathway proteins, including total S6 and two

forms of p4EBP1 (Fig. 4B) as well as FoxM1. In each of these cases,

the characteristics that define the basal breast cancer subtype seem to

be amplified in the OVCA-basal samples.

4 Discussion and conclusions
Large datasets are often heterogeneous and often such data are in a

sense collections of smaller datasets with non-identical underlying

models. Furthermore, models capable of capturing even a very ap-

proximate view of molecular interplay tend to be relatively complex.

We think that these two factors mean that high-dimensional statis-

tical ideas will play a central role in the emerging areas of precision,

stratified and systems medicine, even when sample sizes become

much larger than is currently the case. The methods we described

Fig. 2. MixGlasso, simulation study. (A) Boxplot showing adjusted Rand index of

estimated cluster assignments compared to true cluster assignments, over 10

simulated datasets, each with total sample size n ¼ 3; 467. Data were generated

from a Gaussian mixture model aiming to mimic characteristics of the TCGA pro-

tein data (see SI for details). Inset boxplot displays the inferred number of clus-

ters using the Bayesian Information Criterion (BIC) and the dashed horizontal line

shows the true number of clusters in the simulation (K¼ 9). (B) Boxplot showing

adjusted Rand index (with respect to true cluster assignments) over 10 simulated

datasets with varying total sample size n (number of clusters fixed to K¼ 9). See

Main Text for a description of the different clustering methods. Note that the con-

ventional Gaussian mixture model can only be fitted for large sample sizes

(Color version of this figure is available at Bioinformatics online.)
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should be applicable to most continuous molecular data types and

can be run directly with minimal tuning.

We did not consider the case of truly large p in this paper. The

methods and ideas we discussed should be relevant to future work

aimed at that setting. At the same time, the challenges involved

should not be underestimated. As we showed, analyses involving

moderate numbers of variables but capturing patterns of interplay

are already challenging and require care.

Heterogeneity at one level of biology does not necessarily imply

heterogeneity at another. For example, differential expression may

or may not be accompanied by differences in patterns of interplay,

and differences in gene expression may or may not be accompanied

by changes in functional protein levels. Thus, although the intertu-

moral genomic heterogeneity of cancers is now well established, the

question of whether such heterogeneity appears also at the level of

signaling proteins has remained open. DiffNet applied to high-

quality protein data over thousands of patient samples supported

the notion that cancers differ at the protein network level.

Furthermore, we showed how MixGlasso could be used to reveal

new examples of commonalities across subtypes, where a subset of

samples from a certain type is closer to samples from a second type

than it is to other samples of the first type.

It is important to note that the graphical models in our analyses

are not causal models per se and links may be driven by non-causal

associations, e.g. co-regulation by an unobserved confounder (des-

pite this caveat, many high-scoring links in the networks ap-

peared consistent with the biochemical literature). However, our

approaches are rooted in a principled, likelihood-based framework

and it should be possible to extend the methods towards causal

models and interventional data.

Fig. 3. MixGlasso analysis of TCGA protein data. (A) Model selection using the Bayesian Information Criterion (BIC). (B) Mosaic plot of cluster membership in the

K ¼ 8 novel clusters with respect to the 11 TCGA cancer types. Dashed lines represent absent cancer types; column width is proportional to cluster-specific sample

size. (C) Cluster-specific networks. Strength of links is indicated by edge thickness, while color indicates cluster in which the link was observed; only relatively strong

links are shown. Nodes in white are related nodes that were highly correlated and merged prior to network analysis. The adjacent correlated (green) node was then

used for network generation. [Edges with partial correlations above 0.25 are shown] (Color version of this figure is available at Bioinformatics online.)
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Fig. 4. OVCA-like basal samples. A subset of basal breast samples cluster with ovarian samples. (A) Mean normalized protein levels for basal breast samples that

are clustered with OVCA samples (Basal-OVCA), with BRCA samples (Basal-BRCA), with UCEC/BLCA (Basal-UCEC/BLCA), as well as the BRCA-like and OVCA-like

clusters. (B) Comparison of normalized protein levels between Basal-OVCA (67 out of total 120 basal samples) and Basal-BRCA using a paired t-test. Only proteins

with P-value<0.2 are displayed. [Data were globally standardized prior to testing such that each protein had zero mean and unit variance over all samples] (Color

version of this figure is available at Bioinformatics online.)
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