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We introduce a residual-based a posteriori error estimator for contact problems in two- and three-
dimensional linear elasticity, discretized with linear and quadratic finite elements and Nitsche’s method.
Efficiency and reliability of the estimator are proved under a saturation assumption. Numerical experiments
illustrate the theoretical properties and the good performance of the estimator.
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1. Introduction

The computations of contact problems between deformable bodies are usually obtained with the finite ele-
ment method (Laursen, 2003; Wriggers, 2006). An important aspect for the user is to quantify the quality
of the simulations by evaluating the discretization errors coming from the finite element approximation.
This quantification requires the definition of a posteriori error estimators that can be of different types
(residual based, equilibrated fluxes, smoothing of the stress fields, etc.). The main aim of the estimators
is to furnish some information on the local error in order to adapt or refine the mesh and to reduce the
computational costs.

© The authors 2017. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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Among the finite element discretizations for contact problems, a recent effort was devoted to Nitsche’s
method, which can be seen as a consistent penalty formulation with only one primal unknown (like
the variational inequality formulation or like the penalty method): the displacement field. In contrast
to Nitsche’s method, the Lagrange (stabilized or standard) methods admit the contact pressure as a
supplementary unknown. Nitsche’s method was introduced for the frictionless unilateral contact prob-
lem in a simple (symmetric) form in Chouly & Hild (2013), while investigated in a generalized and
numerical form in Chouly et al. (2015). In the latter references, the theoretical results deal with well-
posedness of the discrete problems and a priori error estimates in two- and three-dimensional spaces
with linear and quadratic finite elements. A generalization to frictional contact problems is carried
out in Chouly (2014) (numerical analysis for Tresca friction) and Renard (2013) (numerical study for
Coulomb friction). To our knowledge, the a posteriori quantification of the discretization errors commit-
ted by the Nitsche finite element approximation has not been considered for unilateral contact problems
up to now.

Nevertheless, there are several studies concerning a posteriori error analyses for frictionless or fric-
tional contact problems in Buscaglia et al. (2001), Carstensen ef al. (1999), Fernandez & Hild (2010),
Lee & Oden (1994) and Wriggers & Scherf (1998) (residual approach using a penalization of the contact
condition or the normal compliance law); in Coorevits et al. (2000, 2001), Louf et al. (2003), Weiss &
Wohlmuth (2009) and Wohlmuth (2007) (equilibrated residual method); in Banz & Stephan (2015), Eck
& Wendland (2003) and Maischak & Stephan (2005) (residual approach for BEM-discretizations); in
Blum & Suttmeier (2000) and Schroder & Rademacher (2011) (error technique measure developed in
Becker & Rannacher, 1996). Moreover, a residual-type estimator for the Signorini problem in its com-
mon formulation (variational inequality or mixed method) can be found in Bostan & Han (2006), Hild
& Nicaise (2005, 2007) and Schroder (2012) and in the recent work by Krause ef al. (2015).

Finally, we mention that only a few works are devoted to a posteriori error estimates for Nitsche’s
method, and all concern linear boundary/interface conditions. For interface conditions and elliptic prob-
lems, Hansbo & Hansbo (2002) introduce a residual-type estimator for a Nitsche unfitted treatment of the
interface condition. They prove an upper bound on a linear functional of the error, in the spirit of Becker
& Rannacher (2001). Note as well an early work of Becker (2002) in the context of optimal control for
Navier—Stokes equations, with a Nitsche treatment of Dirichlet boundary conditions and an a posteriori
error estimate for the functional to minimize. Residual error estimates are introduced as well by Becker,
Hansbo and Stenberg in Becker et al. (2003) for a Nitsche-based domain decomposition with nonmatch-
ing meshes. Upper bounds in both the H'- and L?-norms are established, with the help of a saturation
assumption (as in Wohlmuth, 1999) for the H'-norm. In the context of composite grids, two variants
of residual-based error estimates are proposed by Hansbo et al. (2003). Upper bounds in the H'-norm
without any saturation assumption are proposed for both of them. Later, Juntunen & Stenberg (2008)
provide a residual-based error estimator for the stabilized Bassi—Rebay discontinuous Galerkin method
that relies on Nitsche’s treatment of continuity. Upper and lower bounds are proved for this method.
The same authors in Juntunen & Stenberg (2009) introduce a Nitsche method for a general boundary
condition and an associated residual error estimator. They prove an upper bound in the H'-norm under a
saturation assumption (as in Braess & Verflirth, 1996), and they establish a lower bound too. Finally, let
us mention two recent papers on the Brinkman problem by Juntunen & Stenberg (2010) and Konno &
Stenberg (2011).

The paper is outlined as follows. In Section 2, the Nitsche finite element discretization for contact
problems in linear elasticity is described and results dealing with well-posedness are recalled from Chouly
etal. (2015). In Section 3, a residual a posteriori error estimator is introduced, and we prove its reliability
and efficiency. In Section 4, numerical experiments in two- and three-dimensional spaces illustrate the
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theoretical results and allow us to assess the quality of the estimator for different values of the numerical
parameters.

Let us introduce some useful notation. In what follows, bold letters like u, v indicate vector- or
tensor-valued quantities, while the capital ones (e.g., V, K) represent functional sets involving vector
fields. As usual, we denote by (H*()4, s € R, d = 1,2,3, the Sobolev spaces in one, two or three
space dimensions (see Adams, 1975), with the convention H° = L2. The usual norm (respectively
seminorm) of (H*(D))? is denoted by || - ||;,» (respectively | - |;»), and we keep the same notation for
any d = 1,2,3. In the sequel, the symbol | - | will either denote the Euclidean norm in RY or the
measure of a domain in R?. The letter C stands for a generic constant, independent of the discretization
parameters.

For two scalar quantities a and b, the notation a < b means there exists a constant C, independent of
the mesh-size parameters and of the Nitsche parameter y, (see Section 2.2), such that a < Cb. Moreover,
a~ bmeans thata S band b < a.

2. Setting
2.1 The unilateral contact problem

We consider an elastic body whose reference configuration is represented by the polygonal or polyhedral
domain £2 in R?, with d = 2 or d = 3. Small strain assumptions are made, as well as plane strain, when
d = 2. The boundary 952 of £2 consists of three nonoverlapping parts I, Iy and the (potential) contact
boundary I¢, with meas(/p) > 0 and meas(/¢) > 0. The (potential) contact boundary is supposed to
be a straight line segment when d = 2 or a planar polygon when d = 3 to simplify. The unit outward
normal vector on 952 is denoted n. In its initial stage, the body shows a gap on I with a rigid foundation
(the extension to two elastic bodies in contact can be easily made, at least for small strain models). The
non-negative gap function is denoted by g, and we assume that g is continuous on I"¢. We suppose that
the unknown final contact zone after deformation will be included in /. The body is clamped on I}, for
the sake of simplicity. It is subjected to volume forces f € (L?(£2))¢ and to surface loads F € (L>(1\))“.

The unilateral contact problem in linear elasticity consists of finding the displacement fieldu : £2 — R¢
verifying the equations and conditions (2.1)—(2.2):

divo(u) +f =0 in £2,
o(u) =Ae() in £2,

2.1
u=20 on Ip,
o(wn=F on Iy,

where 0 = (03;), 1 <i,j < d stands for the stress tensor field and div denotes the divergence operator of
tensor-valued functions. The notation &(v) = (Vv + VVT) /2 represents the linearized strain tensor field
and A is the fourth-order symmetric elasticity tensor having the usual uniform ellipticity and boundedness
property. For any displacement field v and for any density of surface forces o (v)n defined on 952, we
adopt the following notation:

v=vyv,n+v; and o(v)n=o0,(v)n+ o(v),
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where v, (respectively o¢(v)) is the tangential component of v (respectively o (v)n). The conditions
describing unilateral contact without friction on I are

@) u, < g,

(ii) o,(w) <0,
2.2)

(i) o,() (u, —g) =0,

(iv) o) = 0.

We introduce the Hilbert space V and the convex cone K of admissible displacements that satisfy
non-interpenetration on the contact zone /¢:

Vi={ve H'(R2)! :v=00nTlp}, K:={veV:y,=v-n=<gonlch

We define as well
a(u,v) :=/a(u):e(v) ds2, L(V)::/f-vd.Q—i-/ F-vdr
2 2 IN

for any u and v in V. From the previous assumptions, we deduce that a(-,-) is bilinear, symmetric,
V-elliptic and continuous on V x V. Likewise we observe that L(-) is a continuous linear form on V. The
weak formulation of problem (2.1)—(2.2), as a variational inequality (see Fichera, 1963/1964; Kikuchi &
Oden, 1988; Haslinger et al., 1996), reads

{ﬁnd u € K such that 2.3)

a(u,v—u) > L(v—u) Vv e K.

Stampacchia’s theorem ensures that problem (2.3) admits a unique solution.

2.2 Finite element setting and Nitsche-based method

To approximate problem (2.3), we fix a family of meshes (7},),-0, regular in Ciarlet’s sense (see Ciarlet,
1991), made of closed elements and assumed to be subordinated to the decomposition of the boundary
082 into Ip, Iy and I¢c. For K € T, we recall that hg is the diameter of K and h := maxger, hik.
The regularity of the mesh implies notably that for any edge (or face when d = 3) E of K one has
hg = |E| ~ hg. ‘

Let us define E}, as the set of edges (or faces when d = 3) of the triangulation and define E* = {E €
E, : E C £2} as the set of interior edges/faces of 7}, (the edges/faces are supposed to be relatively open).
We denote by E) = {E € E, : E C Iy} the set of boundary edges/faces that correspond to Neumann
conditions, and similarly, Ef = {E € E, : E C I} is the set of boundary edges/faces included in the
contact boundary.

For an element K, we denote by E the set of edges/faces of K and according to the above notation,
we set E = Ex NE™, E} = Ex NE), ES = Ex N Ej . For an edge/face E of an element K, introduce
v g, the unit outward normal vector to K along E. Furthermore, for each edge/face E, we fix one of the
two normal vectors and denote it by vg. The jump of some vector-valued function v across an edge/face
E € E™ atapointy € E is defined as

[1,0) = lim vy +ave) = vy — ave).
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Note that the sign of [[v]] - depends on the orientation of vg. Finally, we will need local subdomains (also
called patches). As usual, let wg be the union of all elements having a nonempty intersection with K.
Similarly for a node x and an edge/face E, let w, = Uk.,cxK and g = U, go,.

The chosen finite element space V" C V involves standard Lagrange finite elements of degree k, with
k =1 ork =2 (see Ciarlet, 1991; Ern & Guermond, 2004; Brenner & Scott, 2007), i.e.,

Vi o= {vh € (6" (@) : V|, € (PUK)' VK €T;,v" =0 on PD}.

Let us introduce the notation [-], for the positive part of a scalar quantity a € R: [a]; = a ifa > 0 and
[al. = O otherwise. The monotonicity property below holds:

(laly = [b1)(a = b) = (laly — [b]})* = 0. 2.4

Note that condition (2.4) can be straightforwardly extended to real-valued functions.
Let y be a positive piecewise constant function on the contact interface I, that satisfies

4 |1er = Yohk

for every K that has a nonempty intersection of dimension d — 1 with I, and where y, is a positive given
constant that we call the ‘Nitsche parameter’. Note that the value of y on element intersections has no
influence.

We introduce the discrete linear operator

V' - L*(Ic),
= Vz -V O-n(Vh)s

and the bilinear form where 6 € R is a fixed parameter:
Ay, (" V") := a(a", V") — /0)/ o,(u"o,(v!) dI.
Ic
Our Nitsche-based method then reads

find u" € V" such that

2.5
Ag, (u",v") +/ %[Py(uh)—ghpgy(vh) dr =L vv'eVh 2)

I'c

We consider the quasi-interpolation (regularization) operator introduced in, e.g., Bernardi & Girault
(1998, formula (4.11)) and its straightforward extension to the vectorial case, which we denote
R":V — V" This operator has the following approximation and stability properties.

LEMMA 2.1 Foranyv € VN (H'(£2))?,1 <1 < k + 1, the following estimates hold:

v = R"llog < HglPliwe YK €Th, (2.6)
v = R'llog < By "’y YE € Ey. 2.7)
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Moreover, R" is stable in the H'-norm, i.e.,
IRV1e S Ivlie VveV. (2.8)

Proof. Estimates (2.6) and (2.7) are provided in Bernardi & Girault (1998, Theorem 4.8, Remark 8).
The stability of R" in the H'-norm is proved in Bernardi & Girault (1998, Theorem 4.4) (in all cases, it
suffices to apply the results of Bernardi & Girault, 1998 componentwise). O

We next define a convenient mesh-dependent norm that is in fact a weighted L?(/¢)-norm (since
v/Yo = hg).

DEFINITION 2.2 For any v € L>(I¢), we set

)’
— %
Yo

We end this subsection with a discrete trace inequality that will be useful for the analysis (for the
proof, see, e.g., Chouly et al., 2015).

V12 = ‘
0,I¢c

LemMA 2.3 For any v' € V", we have

||Un(Vh)||71/2,h,rC N ||Vh||1,:2~ (2.9

2.3 Consistency and well-posedness of the Nitsche-based method

We recall two theoretical properties for the Nitsche-based method (2.5): consistency and well-posedness.
These properties, together with optimal a priori error estimates in the H' (£2)-norm, are proved in Chouly
et al. (2015) in the particular case of a zero gap function (i.e., g = 0).

Like Nitsche’s method for second-order elliptic problems with Dirichlet boundary conditions or
domain decomposition (Becker et al., 2003), our Nitsche-based formulation (2.5) for unilateral contact
is consistent.

LEmMMA 2.4 The Nitsche-based method for contact is consistent: suppose that the solution u of (2.1)—(2.2)
lies in (H***"(£2))¢ with v > 0 and d = 2, 3. Then u is also a solution of

h 1 h h h h
Agy(u,v)+/ S [Py =gl Py, (") dF = L) V¥ e V.

I'c
Problem (2.5) is well posed in the following sense and under the assumptions below.

THEOREM 2.5 Suppose that either 8 # —1 and y, > 0 is sufficiently small, or 8 = —1 and y;, > 0. Then
problem (2.5) admits one unique solution u” in V*.
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Lemma 2.4 and Theorem 2.5 are obtained exactly as in Chouly et al. (2015), for any gap function g,
by noting that the contact conditions (2.2) (i)—(iii) are equivalent to

1
op(u) = —;[M,, — 88— J/Un(u)]+~

REMARK 2.6 When y; is large and 6 # —1, we can conclude neither to uniqueness nor to existence of a
solution. In reference Chouly ef al. (2015), there are some simple explicit examples of nonexistence and
nonuniqueness of solutions.

3. A posteriori error analysis
3.1 Definition of the residual error estimator

The element residual of the equilibrium equation in (2.1) is defined by
divo(w) +f ink.
REMARK 3.1 For linear elements (k = 1), the term div o (u”) vanishes.

As usual, this element residual can be replaced by some finite-dimensional approximation, called an
approximate element residual (see, e.g., Ainsworth & Oden, 2000),

dive ") +fx, fxe P(K)? [>0.

A current choice is to take fx = [, f(x) /|K|dx since for f € (H'(£2))?, scaling arguments yield
If — fxllox S hillfllik, and it is then negligible with respect to the estimator 1 defined hereafter. In

~

the same way, F is approximated by a computable quantity denoted Fx on any E € E)' and the gap g is
computed using an approximation denoted gc.

DEeFINITION 3.2 The local error estimators ng and the global estimator 7 are defined by

4 1/2
i=1

Mk = hglldive@") + filox,
12

1/2
mx=h [ Y WeaIG |

int| ;N
EEEK UEK
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1/2

mx =Y le@)IG |
E€ES

1/2
1 2
—[P, (") —gcl; + 0, (u")

= | Y

C
EcEg

0.E

172

n=>_n|

KeTy,
where Ji,(u") means the constraint jump of u” in the normal direction, i.e.,

[o@"ve], VEe<EM

U(uh)VE—FE VE GE}I'\] (31)

JE,n(uh) = {

The local and global approximation terms are given by

172

1
te=|hy Y I —felle +he Y ||F—FE||3,E+y2—h > lg—gclis |
0K

’ N C
K'Cog ECEy ECEg
1/2

c=1>"¢

KeTy,

3.2 Upper error bound

First, we state a ‘saturation’ assumption that we need in order to prove the estimate (see also Becker
et al., 2003 in the case of Nitsche for domain decomposition, and Wohlmuth, 1999 for mortar methods).

ASSUMPTION 3.3 The solution u of (2.3) and the discrete solution u” of (2.5) are such that

HG"(“ - Slu—u| 0. (3.2)

u’) ” _1/2h0C

REMARK 3.4 Note that for a Nitsche treatment of (linear) interface conditions, an upper bound for a
residual-based estimator has been derived without such an assumption in Hansbo et al. (2003). Simi-
larly for some classes of mixed nonconforming finite element approximations, an assumption such as
Assumption 3.3 has been revealed to be superfluous; see, e.g., Carstensen (1997) and Kim (2007). How-
ever, for method (2.5), the derivation of an upper bound without such a saturation assumption remains an
open issue.
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The following statement guarantees the reliability of the a posteriori error estimator given in
Definition 3.2.

THEOREM 3.5 Let u be the solution to the variational inequality (2.3), withu € (H***"(2))¢ (v > 0
and d = 2,3), and let u” be the solution to the corresponding discrete problem (2.5). Assume that for
6 # —1, y, is sufficiently small, and otherwise that 3, > O for & = —1. Assume that the saturation
assumption (3.2) holds as well. Then, we have

+ llow(@) — o, (") 212 S (14 v0) (1 +2).
—1/2h,Tc

/
lu—u’ll o+

1
o, (u) + ;[Py u")—gl:

Proof. Letv" € V" To lighten the notation, we define e := u —u”. We first use the V-ellipticity of a(-, -),
together with the Green formula, equations (2.1) and (2.5) to obtain

aleli, <au—u",u—u")

=a(uu—u") —a@,u—-v")—a@",v"—u"

=Lu—u")+ /o,,(u)(un —u")dI' —a(",u —v"

I'c

— L(v" —u" —i—/

I'c

1 h h h h h h
;[Py(u )—gl+Po, (V' —u")dI"' — 0 |y o,(u")o, (V' —u")dI’
I'c
=7+, (3.3)

where « is the V-ellipticity constant of a(-, -) and

T :=Lu—v") —a@" u—-v")+ / i[Py(uh)—g]Jr(v'; —u,)dr,

I'c

T = /Un(u)(un —uy)dl +/ %[Py(uh)—ghPey(u —u")dr
I'c

I'c

1 h h h h h
~of 1P, W —gl v, (¢~ ar = [y o,who, " ~ 'y ar.
I'c

I'c

The quantity 7; is an expression that is handled hereafter in a classical way. Namely, by integrating by
parts on each triangle K, using the definition of Jg,(u") in (3.1) and splitting the integrals on Ic into
normal and tangential components we get

Ti=) /(diva(uh) + ). (u—v"dr
K

KeTy,

1
+ ) / (;[Py(u">—g]++an<u">) vy —u) A

EeES
1
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+ 3 o ot-war— Y [ @-v) ar
EcEf E

B E
int ; pN
EeEh UEh

+§2/m-mym-%mn (3.4)

E€EY E
We now need to estimate each term of this right-hand side. For that purpose, we take
vi=u"+R'@u—-u", 3.5)

where R" is the quasi-interpolation operator defined in Section 2.2.
We start with the integral term on elements K. The Cauchy—Schwarz inequality implies

> / @ivo") + ) @—vHdr < Y |ldive@") + flloxlu—v"lox,
K

KeTy, KeTh
and it suffices to estimate |u — v"||ox for any triangle K. From the definition of v* and (2.6), we get
lu—v"llox = lle = R"ellox < fxllel]r.p-

Asa consequence,

/ dive@") + f)- (u—v" df‘ S+ Dlell e.
2

We now consider the interior and Neumann boundary terms in (3.4). As we previously noticed, the
application of the Cauchy—Schwarz inequality leads to

o Je@) c@=vdri < YT el llozlu = Vo

EcEMUEN E EcEMUEN
Therefore, using expression (3.5) and estimate (2.7), we obtain
h h 172
lu—v"lloz = lle — R'elloz < g llelliup-

Inserting this estimate into the previous one we deduce that

o Jea@) @ =V dr| S nllell e

. E
int ;pN
EeEh UEh

Moreover,

Y| F=Fp)-w-vHdr| Slele.

E
N
E€E,
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The two following terms are handled in a similar way as previously. Using the inequality [a + b], <
[al, + |b| for a,b € R, we bound

1 h h h
> / (;[Py(u )—gls + o, (u )) (Vi —u,) AT
E

C
EeEh

= /
E

C

E€E,

S+ Olel e

[P, (") —gcls + 0,(u")

1
|vf;—un|dr+Z/;Ig—gcllvf:—unldf
E

C
EeEh

1
14
Moreover, there holds

> /at(uh) (v —uw) dT| S nllel.e

E
C
EeEh

Collecting the previous results, we deduce
T S+ 0lelle. (3.6)

The first two terms in 7, are split using the definitions of P, (-) and Py, (-), and the last one is split
using relationship o, (v — u") = 0, ((v — u) + (u — u")). This leads to

T, = /o,,(u)Py (u—uhdr + /an(u)ya,l(u —uhdr

I'c I'c

1 1
+ / —[P,(u")—gl, P,(u—u")dI" + (1 — 9)/ —[P,(u")—gl,yo,(u—u")dI
rCy Fcy

6 / L (e, =gl + 0y0") youv" —wydr — 6 /y ou(u)o(u — u') dT".
Ic 14

I'c

Then, we split the second term in the above expression using 1 = 6 + (1 — 6) and we gather the resulting
terms:

1
n-| (—[m(u’?)—g]+ + an<u)) P,(u—u')dr
Ic Y
1 h h
+(1— 9)/ — (ou(u) + [P, (") —g];) yo,( —u")dI
I‘CV
~of (%[Py (") —gl, + an<u")) Yo, (" =) dI" + 6]y o, (u — w2 .
I'c

Now we substitute o, (u) using the reformulation of contact conditions (2.2) (i)—(iii) as o,(u) = —%

[P, (w)—gl; (see, e.g., Alart & Curnier, 1988; Chouly & Hild, 2013). This reformulation makes sense in



932 F. CHOULY ET AL.

L*(I'c) due to the regularity assumption u € (H>?(£2))4. Afterward, we apply the bound (2.4) in the
first term as well as the Cauchy—Schwarz inequality in the second one:

2

1
T <— HV”Z(U,.(U) + ;[Py (u")—gly)

0,I¢c

1/2 h
lly 20, (a = u")lo.re
0.Ic

1
+16 —1] Hy”z(an(u) + 1Py W")—gly)
1
- 9/ (;[Py(u")—gh + Un(u")) yo,(v' —w) dI" + 6]y o, — u")[lg ..
I'c

The expression ab < a* + b*/4 yields, for any 8 > 0,

o — 1P
<
= 4
1
- 9/ (;[Py(u")—gh + on(u")) yo,(vV' —w) dI' + 6|y o, —u") 5
I'c

@+ 1)2
= Iy ou(@ — w5 . — 0

1/2 hy (12
T Iy "o (u — u"IIG .

1 h h h
<;[Py(u )—gl+ +on(u )) You (V' —w)dl’

0+ 1)
<~ lIy"Po—u)G r + 1017 0+ Olly ou(v" = Wl

6 +1) ,
= — Iy o —u)G .+ B0 (n+¢)

1
+ 35 (17Pou = w1y o~ wi )

1 (+1)y ) Yo )
= (ﬁ + T) Yollon(u — u})||27|/2,h,rc + ,302)/0(7) + 5)2 + ﬁ”an(vh - u})||27|/2,h,rc'

Using (2.9) and the H'-stability of R" (see (2.8) in Lemma 2.1), we bound
||Un(Vh - llh)||7|/z,h,rc = C||Vh - “h||1,rz = C||Rh(u - “h)|||,9 <Clu- uh|||,9~

‘We combine this last bound with the saturation assumption (3.2) and get

0+ 1)32 1
T, <Cy <( : L E) lu — "I 5 + BO*Yo(n + ¢)°. (3.7

Now we combine estimates (3.3), (3.6) and (3.7):

6+ 1% 1
allel?y < Cort Ollela + Cro (( ' L E) lel o + BO%yo(n + 002,
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We treat the first term on the right-hand side with Young’s inequality and obtain

0+ 1)? 1 C
(% —Cy <% + E)) lellie < — " +¢3) + B (n + 0)*.

933

When 6 # —1, we choose y, sufficiently small, and for 6 = —1, we can choose, e.g., 8 = 4Cyy/a (for
a fixed value of y, > 0, which does not need to be small in this case). We obtain the upper bound on the

error in natural norm,
lele S+ )@+ 0).
The saturation assumption (3.2) provides directly a bound on the contact stress error:
o —u"l 1 onre S lelle.

For the contact error, we make use of the triangle inequality and of the above inequality:

1
Un(u) + _[Py(uh)_g]+
14 —1/2.0.Tc

IA

1
low(u — llh)||71/2,h,rc + o, (u") + ;[Py (u")—gl;

—1/2.hTc

A

lellie +n+¢.

Collecting the three previous results allows us to prove the theorem.

3.3 Lower error bound

We now consider the local lower error bounds of the discretization error terms.
THEOREM 3.6 For all elements K € T}, the following local lower error bounds hold:

mr S lu— uh”l,K + Ck,

h
Nk S — 'y o + Lk

For all elements K, such that K N E,f # (4, the following local lower error bounds hold:

mx S lu—u|x + Lk,

n S Y by (

C
EeEK

1
o,(u) + ;[Py u")—gl;

+ ”0”(“ - uh)Ho,b") + Sk
0.E

(3.8)
(3.9)

(3.10)

@3.11)

Proof. The estimates of 1, 72k in (3.8)—(3.9) are standard (see, e.g., Verflirth, 1999). The estimate 1;3x

in (3.10) is handled in a standard way, as in Hild & Nicaise (2007).

The estimate of 1y in (3.11) is obtained from Definition 3.2 by using triangular inequalities.

O
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REMARK 3.7 Note that, from Theorem 3.6, optimal convergence rates of order O(h™"*:1/2+")) are expected
for the estimator of Definition 3.2.

REMARK 3.8 An extension of the above analysis for the Tresca friction case is sketched in the appendix.

REMARK 3.9 We carried out the analysis considering a straight contact boundary I for the sake of
simplicity. However, some numerical tests (see Section 4.3) illustrate that this analysis might be extended
to the case of curved boundaries. For contact problems with a curved boundary, one can refer to Hlavacek
et al. (1988, Theorem 3.3, p. 149) and Wang (2000) for a priori error estimates, and to Schroder (2012)
and Banz & Stephan (2015) for a posteriori error estimates.

4. Numerical experiments

We illustrate numerically the theoretical properties of the error estimator n given in Definition 3.2 and
compute its convergence order when % vanishes. To study separately the global contributions of each
component of 7, we introduce the notation

1/2

ni = ZH?K , 1<i<4,

KeTy,

where the expressions of n;x are provided in Definition 3.2. In all the examples below, Hooke’s law
is considered: E and vp will denote respectively Young’s modulus and Poisson’s ratio. Moreover, a
dimensional analysis allows us to deduce that y; is the inverse of a stiffness parameter. Consequently,
we choose in our discussion )y = C/E, where C is a constant that does not depend on E. The finite
element method (2.5), as well as the residual estimator 7, are implemented under the open source finite
element library GetFEM++.! For details on numerical solution, we refer to Chouly et al. (2015) and
Renard (2013).
To measure the quality of the estimator 7, we introduce the effectivity index:

n
Efff = —/————F—.
FEfe—w]

As in Hild & Nicaise (2007), this index has been normalized with respect to Young’s modulus E. Indeed,
we remark that if u(E) denotes the solution of a (linear) Lamé system with Young’s modulus E then
u(mE) = u(E)/m, whereas o (u(mkE)) = o (u(E)). Thus, the error estimator 7 is independent of E (for
n4 this property comes from the scaling y, = C/E). In contrast, there holds ||u(mE) — u"(mE)|, o =
|u(E) — u"(E)|\./m, which becomes independent of E for the choice m = 1/E.

REMARK 4.1 Note that the parameter y, scales as the inverse of an elastic coefficient. In the case of
an isotropic or heterogeneous material, a possible option would be to set y, relatively to the greater
stiffness. This ensures at least well-posedness and correct behavior of both the approximation and the a
posteriori error estimate. Improving this choice remains an open issue (see, e.g., Stein & Ohnimus, 1999
for elasticity without contact).

! see http://getfem.org
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4.1 First example: a square with slip and separation

4.1.1 Description. We first consider a test case taken from Hild & Nicaise (2007) (see also Hild &
Lleras, 2009; Lleras, 2009 in the frictional case). We consider the domain £2 = (0,1) x (0, 1) with
material characteristics E = 10° and vp = 0.3. A homogeneous Dirichlet condition on I, = {0} x (0, 1)
is prescribed to clamp the body. The body is potentially in contact on It = {1} x (0, 1) with a rigid
obstacle, and I'y = (0, 1) x ({0} U {1}) is the location of a homogeneous Neumann condition. There is
no initial gap between the body and the rigid obstacle (g = 0). The body £2 is acted on by a vertical
volume density of force f = (0,f,) with f, = —76518, such that there is coexistence of a slip zone and
a separation zone with a transition point between both zones. For error computations, since we do not
have a closed-form solution, a reference solution is computed with Lagrange P, elements, 7 = 1/160,
Yo=1/Eand 6 = —1.

First of all, we illustrate in Fig. 1 the difference between uniform and adaptive refinement.
For the latter, we refine only the mesh elements K in which the local estimator 7 is below a
given threshold s = 2.5 x 107, The minimal (respectively maximal) size of the adaptive mesh is
equal to 1/160 (respectively 7 = 1/40). As expected, the rate of convergence with respect to the
number of degrees of freedom is far better in the case of adaptive refinement than with uniform
refinement.

The solution obtained with adaptive refinement and & = —1 is depicted in Fig. 2. We observe that
the error is concentrated at both left corners (transition between Dirichlet and Neumann conditions) and
near the transition point between contact and separation. As expected, we observe that all the nodes on
I have a negative tangential displacement and that I'¢ is divided into two parts: the upper part where the
body remains in contact (slipping nodes) and the lower part where it is separated, with a transition point
near (1,0.685). The value is close to the transition point (1,0.69 4= 0.01) found in Hild & Nicaise (2007)
and (1, 0.65) found in Lleras (2009). The slight difference with Lleras (2009) should be due to Coulomb
friction.

REMARK 4.2 Note that the solution in the case & = 1 (see Fig. 3) has an error estimator on the contact zone,
which is larger than in the case § = —1. In the case § = —1, the discrete solution is less dependent on the
parameter y, than for the other methods (see Chouly et al., 2015) and we obtain a better approximation
of the problem on the contact boundary /.

10 e
-©- uniform refinement
= -+- adaptive refi
§ 5 : E
D O 7 i NG S
D
=
i
=)
g
g .3
€ 10~ puninpaaimanininy Beednn eI e
-
==}
—4 - - -
10
10' 10° 10’ 10 10°
degrees of freedom
FiG. 1. Rate of convergence for uniform and adaptive refinement methods. Parameters 9 = 1/E, & = —1 and Lagrange P>

elements.
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von Mises stress
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FIG. 2. Leftpanel: mesh with adaptive refinement and contact boundary on the right. Right panel: plot of von Mises stress. Parameters
yo = 1/E, 6 = —1 and Lagrange P> elements.

von Mises stress

30

-0.2}

0.8 0.8} 2
i 0.6/ .
0.4}

0.4
0.27
.2
0 .| .
0

0 0.5

FIG. 3. Leftpanel: mesh with adaptive refinement and contact boundary on the right. Right panel: plot of von Mises stress. Parameters
yo = 1/E, 6 = 1 and Lagrange P, elements.

4.1.2  Numerical convergence. We perform a numerical convergence study for three variants of method
(2.5) corresponding to 6 = 1,6 = 0 and 8 = —1. The Nitsche parameter y; is fixed to 1/E, which should
ensure well-posedness and optimal convergence in each case. Lagrange P, finite elements are chosen.
The reference solution for error computations corresponds to the one described in Section 4.1.1 and
depicted in Fig. 2 (P, finite elements, & = —1 and adaptive finest mesh). No mesh adaptation is carried
out anymore and only uniform refinement is imposed, with a sequence of decreasing mesh sizes 4.

First, the estimator 1, the L?- and the H'-norms of the error u — u’ are depicted in Fig. 4. One can
note a suboptimality of the convergence rate in the L2- and H'-norms of the error. They are caused by the
Neumann-Dirichlet transition in the left corners of £2 (the same observation has been reported in Fabre
et al., 2016).
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FIG. 4. First example. Convergence curves of the error estimator 7, the L?- and H'-norms of the error u — u”, for yy = 1/E.

TABLE 1 First example, 0 = 1 and yy = 1/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80  Slope
Degrees of freedom 32 128 512 2048 8192 12800

lu—u"],, (x107") 1047551 48.2436 17.3689 59666  2.0366  1.4262  1.4589
Ju—u"| ,(x107%) 513896 28.8563 16.1335 9.0627 49777  4.1489  0.8412
m ’ 16719.8  8359.9  4179.95 2089.97 1044.99 83599  1.0000
m 60779.5 380767 22698 132223 7724.01 6507.89 0.7522
73 7626.32  3209.18 1207.19 427.694 157242 118.467 1.4107
M 13501 4604.89 139558 370912 10073 772 1.7646

n 64916.4  39385.6 231533 13398.4 7796.61 6562.89 0.7779
Effectivity index Effg 1.2632 1.3649 1.4351 1.4784 1.5661 1.5816

Then the different contributions of 7 are reported in Tables 1-3. The convergence rate of 7, is
strictly equal to 1 since, for piecewise linear finite elements, the expression of this estimator reduces
to nx = hg||fxllox. More generally, all the estimators n; converge toward zero as i vanishes, and they
behave identically whatever the value of 8 is (this is due to the low value of y). Moreover, the convergence
rate of 7, is slightly less than that of the H'-norms of the error, whereas the convergence rates of 7; and
14 are far greater and higher than 1 (we do not have a clear interpretation of this). In all cases, we obtain
an effectivity index between 1.2 and 1.6 (the average is close to 1.45 and the standard deviation is close
to 0.12). These overall results are quite similar to those presented in Hild & Nicaise (2007) and Lleras
(2009).

Figure 5 shows the numerical experiment performed for a larger parameter y, = 1000/E. In the
case 8 = 1 and in the case & = 0, the convergence rate is degraded compared with the case y, = 1/E.
Conversely, in the case § = —1, the convergence is not deteriorated, which confirms the theoretical results
obtained in both the a priori analysis in Chouly et al. (2015) and the a posteriori analysis in Section 3
(see Theorem 3.5).

4.1.3 The case of a very large y,. Additionally, we present a numerical convergence study for 6 =
1,0, —1 and for a very large value of the parameter y, = 10°/E, far from its reference value of 1/E. In
this case, for 6 = 1 and & = 0, there is no longer a guarantee of well-posedness and optimal convergence
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TABLE 2 First example, 6 = 0 and yy = 1/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80  Slope
Degrees of freedom 32 128 512 2048 8192 12800
Ju—u"|,, (x107%) 113.6807 47.1350 17.0780 59262 20312 14229 14757
lu—u"|, , (x107%) 488181 28.0213 159877 9.0359 49716  4.1459  0.8251
m ’ 16719.8 83599  4179.95 2089.97 104499 83599  1.0000
m 573053 373747 225472 132007 7720.86 650524  0.7356
B 393822 1852.35 720951 256.135 95.0474  71.047  1.3686
M 11946.5 400256 1154.11 324915 89.6552  61.026  1.7809
n 61005.6 385514 22971.7 13371.5 779235 65594  0.7779
Effectivity index Effy; ~ 1.2496 ~ 1.3758 14368 14798  1.5672  1.5819

TABLE 3 First example, 6 = —1 and yy = 1/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80  Slope
Degrees of freedom 32 128 512 2048 8192 12800
lu—u"],, (x107) 1209371 489718 17.3613 59619  2.0360  1.4255  1.4952
Ju—u"| ,(x107%) 493705 28.1269 16.0087 9.0385 49714  4.1467  0.8283
m ’ 16719.8  8359.9  4179.95 2089.97 1044.99 83599  1.0000
m 588463  37649.9 22607.7 132132 772358 650699 0.7428
73 2690.5  1464.81 558.637 192194 70.7559 53.7733 1.3544
M 9202.06  2854.93 832228 229.683  62.842  44.0949  1.8004
n 619222 38700.1 23012.7 13380.8 779452 6560.84 0.7779
Effectivity index Effy ~ 1.2542 13759 14375  1.4804  1.5677  1.5820

errors

;X] -©- eta/E (slope=0.653)
“|-+-H'-norm (slope=0.71753)
»X.o o] =X-1L2 norm (slope=1.452) ||

0=1

errors

-O-eta/E (slope=0.82962)
+- Hl-nnrm (slope=1.075)
“|-%-L2-norm (slope=1.3765

107"
h

6=0

10

errors

-©-eta/E (slope=0.76651)
-+-H'-norm (slope=0.83846
“[-%-L2-norm (slope=1.4709)

FIG. 5. First example. Convergence curves of the error estimator 7, the L?- and H'-norms of the error u — u”, for yy = 1000/E.
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FIG. 6. First example. Convergence curves of the error estimator 1, the L?- and H'-norms of the error u — u”, for yy = 10°/E.

TABLE 4 First example, 6 = 1 and yy = 10%/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80 Slope

Degrees of freedom 32 128 512 2048 8192 12800
Ju—ut|, , (x107%) 122.6500 584959 464511 16.6143  3.0112 20808 13628

lu—w"|, , (x107%) 577770  30.5558 30.8275 151381  7.5190  7.2669  0.6963
m ’ 16719.8 83599  4179.95 2089.97 104499 83599  1.0000
m 620734 383354 410333 225524 109167 963548 0.6172
N3(x1072) 2.13709  1.01961 0.63268 0.768462 0.414401 0.42499  0.4878
n4(x1072) 2.52415  0.571842 255605 138494 0.525521 0.446467 0.4177
n 642857 392363 412456 22649  10966.6 9671.68 0.6272

Effectivity index Effy ~ 1.1127 1.2841 1.3380 1.4962 1.4564 1.3266

(see Chouly et al., 2015). The error estimator 7, the L>- and H'-norms of the error u — u” are plotted in
Fig. 6, while Tables 4—6 present the different contributions of 7.

For the method 6 = 0, the solution does not converge, while the effectivity index (Efff) tends to 0.
This is consistent with our theoretical results since Theorem 3.5 is no longer applicable and no upper
bound is guaranteed. The estimator i converges, though the term 7, is slightly increasing (but remark
that 74 is very small in comparison to 7). For the method & = 1, even though y; is large, the method
converges in L2- and H'-norms of the error with an acceptable effectivity index, but with a deteriorated
convergence rate. Conversely, for the method & = —1, both convergence and the effectivity index are
optimal and are not deteriorated compared with the case y, = 1/E. This supports its theoretical property
of robustness with respect to yj.

The previous experiment for 8 = 0 reveals the bad behavior of n for very large yy. An heuristic to
recover a meaningful estimator is to decouple the value of y, for problem (2.5) and for the estimator
n4. A final experiment performed, as shown in Fig. 7, shows the convergence curves in the same case
vo = 10°/E, yet with an error estimator that makes use of a Nitsche parameter 3, = 1/E. For the methods
6 = 1 and 6 = —1, this has no visible influence on the effectivity index Eff. For the method 6 = 0,
a better effectivity index is obtained: at least the estimator does not tend to zero for a nonconvergent
solution, in contrast with what happens in Fig. 6. To summarize, this study for large y, confirms the
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TABLE 5 First example, 0 = 0 and y, = 10°/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80 Slope
Degrees of freedom 32 128 512 2048 8192 12800

lu—u"],, (x107%) 321.9223 5182042 592.2560 635.8190 615.1016 577.5225 —0.1689
Ju—u"|, ,(x107%) 130.6775 175.6706 192.4574 203.4624 197.2235 186.4225 —0.1058
m ’ 16719.8  8359.9  4179.95 2089.97 104499 83599  1.0000
m 755624 493429 295829 17606.7 10284.5 8546.95  0.7339
3 2468.7  908.957 316.586 107.411 38.2804 28.2145  1.5045
ns (x1071) 2.00548 3.65123 5.58251 8.52101 138006 1.37438 —0.6465

n 77429.5 50054.3 298785 17730.7 10337.5 8587.78  0.7399
Effectivity index Eff; 59252  2.8493 15525  0.8714 05242  0.4607
(x1071)

TABLE 6 First example, 6 = —1 and y, = 10°/E

Mesh size h 1/4 1/8 1/16 1/32 1/64 1/80 Slope
Degrees of freedom 32 128 512 2048 8192 12800

Ju—u"|,, (x107%) 1105852 47.6266 169809 59093 20290 14216  1.4709
Ju—u"|, , (x107)  50.6403 29.1195 16.2386 9.0861  4.9803  4.1565  0.8386
m ’ 16719.8  8359.9 4179.95 2089.97 104499 83599  1.0000
m 622922 38204  22809.5 132494 773201 651298  0.7582
n3(x107%) 143.671  83.7405 26.7592 8.72031 3.05775 0.0236947  1.4405
N4 (x107%) 168.808  67.5774 142866 3.96942 1.17445 0.948677  1.8030

n 64497 39108  23189.4 13413.2 7802.31 6566.42  0.7666
Effectivity index Effg 1.2736 1.3430  1.4280  1.4762 1.5663 1.5796

~6- etalE (slope=—0.41994) 107
+ H'-norm (slope=—0.10578
|-%-L2-norm (slope=-0.16885)|

errors
errors

-©-eta/E (slope=0.61479)
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-X- L2 -norm (slope=1.3628)

-©- eta/E (slope=0.7731)
+-H'-norm (slope=0.83858
X-L2-norm (slope=1.4709)

=1 =0 0=-1

FIG.7. First example. Convergence curves of the error estimator 7, the L2- and H'-norms of the error u — u”, with y = 10°/E in
Nitsche’s method and 39 = 1/F in the error estimator 4.
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analysis provided in Section 3, which requires a sufficiently small parameter y;, to obtain a reliable and
an efficient a posteriori estimator when 6 # —1.

All the variants of Nitsche’s method (§ = —1,0, 1) compare well whenever y; is small enough. The
symmetric version 8 = 1 has the advantage that it leads to a symmetric tangent matrix when the problem
is solved with a generalized Newton algorithm. Also the nonsymmetric version # = 0 involves fewer
terms in the weak formulation and may be preferred for this reason. Nevertheless, and as already observed
in, e.g., Chouly et al. (2015), the skew-symmetric variant § = —1 appears to be robust in the sense that
it preserves optimal convergence for a wide range of values for y,. Because of this property, we keep the
choice & = —1 in the remaining part of the paper.

4.2 Second example: a square/cube with softer singularities

4.2.1 Description. We study another example, with softer singularities, inspired by Hild & Lleras
(2009). We consider the domain £2 = (0, 1) x (0, 1) with material characteristics E = 10*, vp = 0.2 and
no body force (f = 0). We adopt symmetry conditions

u, =0, oi(u) =0

on the boundary Iy := {0} x (0, 1). The contact with the rigid obstacle is on It = (0, 1) x {0}. There
is no initial gap between the body and the rigid obstacle (g = 0). On the remaining part of the boundary
I'y, we impose a Neumann boundary condition, with the following expression for the surface force:

(=y+0.5,0) ifx=1and05<y<]l,
F(x,y)=1(0,-05+x) ify=1and0<x <05,
0,0) otherwise.

This means that the force F is applied inward the body at the top and on the right side. Since there is no
Dirichlet boundary condition (I, = @) this corresponds to the K-elliptic case (Haslinger et al., 1996,
Theorem 6.3). For error computations, since we do not have a closed-form solution, a reference solution
is computed with Lagrange P, elements, h = 1/100, y, = 1/(100E) and & = —1. The reference solution
is depicted in Fig. 8, with a displacement that is amplified by factor 2000. We recover a solution close to
Hild & Lleras (2009), with a separation on the contact boundary at the bottom.

4.2.2  Numerical convergence in two-dimensional. ~We first investigate the numerical convergence of
the error estimator. Error curves are depicted in Fig. 9. As in the previous example, convergence in the
L?- and H'-norms is observed, as well as convergence of the error estimator 7 itself, with however a
lower rate. The detailed behavior of 7 is provided in Table 7. Note that the effectivity index is close
to 0.4.

4.2.3 Adaptive refinement in two-dimensional. ~We carry out adaptive refinement. At each refinement
iteration, all the elements K for which ng > 0.5nyax are refined, where nyax denotes the maximum
value of nx over all the elements K in the mesh 7”. Solutions with adaptive refinement, as well as the error
map (value of g at each element K), are depicted in Fig. 10. Note that both the highest values of the error
estimator and the refinement are concentrated (i) at the symmetry—Neumann and Neumann—Neumann
transitions near the top and right edges and (ii) near the separation on the contact boundary to resolve
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von_Mises_Stress
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2.5828
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FiG. 8. Reference solution for the second example. Plot of von Mises stress. Displacement amplified by 2000. Parameters

yo = 1/(100E), & = —1 and Lagrange P, elements.
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FIG.9. Second example (two dimensions). Error curves for uniform refinement. Left: global estimator 7 and L?- and the H'-norms
of the error. Right: separated components of the estimator 7y, . . ., n4, and maximum value of ng.

the transition between contact and noncontact. After the fifth refinement iteration, no more significant

evolution of the mesh is observed.

Error curves are depicted in Fig. 11, which allow us to assess that the error in the L2- and H'-norms
decreases after each refinement, as well as 1 and all of its components 7y, . . ., 4. Finally, Fig. 12 shows
how the error is reduced compared to the degrees of freedom, both for uniform and for adaptive refinement

strategies.
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TABLE 7 Second example (two dimensions). Uniform refinement. Lagrange P, finite elements

Mesh size h 1/4 1/8 1/10 1/15 1/20 1/25 Slope
Degrees of freedom 64 256 400 900 1600 2500

lu—u"],, (x1077)  116.47 58.61 46.75 13.04 21.93 5.68 1.5235
u—u"], , (x107%  45.06 22.74 18.19 5.55 8.67 2.61 1.4500
m 0.113959  0.0489525 0.0329965  0.027139  0.0181964  0.0172498  1.0410
m 0.174624  0.0766977 0.0658897 0.0326302  0.0274335  0.0152579 1.2823
3 0.00403177 0.00164762 0.00180977 0.00107956 0.000746811 0.000528401 1.0609
N 0.0149697  0.017064  0.0117852 0.00595715 0.00572391 0.00388521 0.8093
n 0.209095  0.0925893  0.0746484 0.0428708  0.033422  0.0233609 1.1808

Effectivity index Effy  0.46401 0.40723 0.41044 0.77291 0.38570 0.89638

Estimator_Eta

Estimator_Eta

1.200e-01
0.09 .0375
0.06 0.025
& &
z 0.03 70.0]25
0.0000+00 0.0000+00
initial mesh iteration 1
Estimator_Eta Estimator_Eta
5.000e-03 2.
0.00375 0.00156
0.0025 0.001
& &
0.00125 0.0005
s ; Z X »
~0.000e+00 ~0.000e+00

iteration 3

iteration 5

FI1G. 10. Second example (two dimensions). Error map and refined mesh: initial guess for a coarse mesh and refinement iterations
1,3 and 5.

4.2.4 Adaptive refinement in three-dimensional. We carry out a test to assess the performance of
the error estimator 7 in the three-dimensional case, and its capability to resolve contact conditions
even in three dimensions. We consider this time a cube 2 = (0,1) x (0,1) x (0,1) with the same
material characteristics as in two dimensions. Symmetry conditions are imposed on the boundary Iy :=
{0} x (0, 1) x (0, 1) U (0, 1) x{0} x (0, 1). The contact with the rigid obstacleison I = (0, 1) x (0, 1) x{0}.
There is still no initial gap between the body and the rigid obstacle (g = 0). On I'y the expression for the
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le+0
-©- eta/E (slope=-0.64) -©-etal (slope=-0.62)
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FiG. 11. Second example (two dimensions). Error curves for adaptive refinement. Left: global estimator 5 and L?- and H'-norms
of the error. Right: separated components of the estimator 7y, . . ., 74, and maximum value of ng.

errors

degrees of freedom

FiG. 12. Second example (two dimensions). Rate of convergence for uniform and adaptive refinement methods.

surface force is now

(=0.5(z — 0.5),0,0) ifx=1and05<z<1,
Flxy.2) = (0,—-0.5(z — 0.5),0) ify=1and05<z<1,
S (0,0,—4(0.5—-x)(0.5—-y)) ifz=1and0 <x,y <0.5,
(0,0,0) otherwise.

Refinement is still carried out with a relative threshold nx > 0.4 nyax. Figure 13 depicts the convergence
behavior of the error estimator, which decreases at each refinement iteration. Note, moreover, the better
performance of the adaptative refinement, compared to uniform refinement, with a lower value and a
slightly better slope. Figure 14 depicts the solution on the initial mesh and on the final mesh after 6
refinement iterations. Note that, as in the two-dimensional case, refinement occurs near the Neumann—
Neumann (and symmetry—Neumann) transitions, as well as near the transition between contact and
noncontact.
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errors
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degrees of freedom degrees of freedom

FIG. 13. Second example (three dimensions). Error curves for refinement in three dimensions. Left: global estimator » (uniform
vs. adaptive). Right: separated components of the estimator 11, . . ., 74, and maximum value of ng (adaptive refinement only).
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FIG. 14. Second example (three dimensions). Initial mesh (left panel) and final mesh (right panel) after 6 refinement iterations. The
deformation is amplified by factor 2000.

4.3 Third example: Hertz’s contact

4.3.1 Description. We consider Hertz’s contact problems of a disk/a sphere with a plane rigid foun-
dation (see, e.g., the numerical examples in Hild & Nicaise, 2007; Chouly et al., 2015). The parameters
have been fixed as @ = —1 and y, = 1073 /E.

The disk (respectively the sphere) is of center (0,20) (respectively of center (0, 0,20)) and radius
20. The lower part of the boundary /¢ is potentially in contact with the rigid support. The remaining
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40r 40—
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FiG. 15. Reference solutions with von Mises stresses, in two dimensions (left) and three dimensions (right).

(upper part) of the boundary Iy is subjected to a homogenous Neumann condition. To overcome the
nondefiniteness coming from free rigid motions, the horizontal displacement is prescribed to be zero at
the two points with coordinates (0, 20) and (0, 25) (respectively the horizontal displacement components
u; and u, at the point (0, 0, 20), the component u; at the point (0, 5, 20) and the component u, at the
point (5, 0, 20)): this blocks horizontal translation and rigid rotation. Young’s modulus is fixed at £ = 25
and Poisson’s ratio is vp = 0.25. A vertical density of volume forces of intensity 20 is applied in §2. The
reference solutions are depicted in Fig. 15. There are uniformly refined solutions with an average mesh
size h = 0.10 for the disk (respectively 7 = 1.27 for the sphere), Lagrange P, elements, § = —1 and
y = 1073/E.

The initial gap between I and the obstacle is computed as g(X) := X - Dy, Where X € I¢ and with
N,ps the unit outward normal vector on the boundary of the plane obstacle. In such a simple situation, we
can take g = gc, so that there is no approximation error associated with the gap.

4.3.2 Numerical convergence in two-dimensional. The error curves in the two-dimensional case are
depicted in Fig. 16, for both linear and quadratic finite elements. In the case of P, finite elements, and as
in Chouly et al. (2015), a slight super convergence is observed in the H'-norm of the error (1.5 instead
of 1). This behavior is not recovered by the error estimator n, which converges with a rate close to 1. The
origin of this difference is unknown. For P, finite elements, the agreement between 1 and the error in the
H'-norm is better: for the H'-norm, the convergence rate is close to 1.7, while approximately 1.5 for 7.
‘We observe the same results for the variants § = 0, 1.

In Table 8, the contribution of each component n; of 1 is detailed. Each term of the error estimator
converges toward zero when /& becomes smaller. Note, however, the increasing values of the effectivity
index, due to the super convergence in the H'-norm and the convergence rate of the contribution 7,
which is close to 1.5.

4.3.3 Numerical convergence in three-dimensional. The error curves in the three-dimensional case are
depicted in Fig. 17, for both linear and quadratic finite elements. For P, finite elements, the convergence
rates for n and for the error in the H'-norm are close (around 1.3) and slightly above the expected rate of
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FIG. 16. Hertz’s contact in two dimensions. Error estimator 7 and the H'-norm of the error u — u”, for Lagrange P; (left) and P,
(right) finite elements.

TABLE 8 Hertz’s contact in two dimensions, 6 = —1, y, = 1073 /E and Lagrange P, elements

Mesh size h 6.04766 523002 2.7327 1.64637 0.482414 0.246359  Slope
Ju—u",, 50.5984 12.3996  4.1083  1.5561  0.3399  0.1534  1.6392
m 7781.84 7376.92 4066.11 2379.44 728236  359.817 0.9715
m 18000.7 12350.7 9279.79 5866.83  2009.88  1029.86  0.8525
3 2523.15 1055.64 852.542 458.121 90.2956  38.1934  1.2132
M 21999.5 10276.6 2537.53 173577 321.871  152.501  1.4597
n 295792 17711.1 10479.2 6580.59 2163.73  1102.18  0.9643

Effectivity index Effy  0.2338  0.5713 1.0203 1.6916 2.5467 2.8735

1. For P, finite elements, we observe a suboptimality of the error estimator 7, which converges but with
arate of 1, while the error in the H'-norm remains optimal, with a convergence rate around 1.5.

The contribution of each component 7; of 1 is detailed in Tables 9 and 10 for linear and quadratic
finite elements, respectively. For P, finite elements, the effectivity index remains close to 0.7 and the
error estimator 7, of the contact condition converges faster than the others. For P, finite elements, such
behavior is not recovered, and n, converges with a rate of 1 approximately. The effectivity index is lower
than for P; finite elements and remains around 0.3.

REMARK 4.3 Note that this test case is not fully covered by the theoretical analysis of Section 3 since
the contact boundary is curved. We use isoparametric Lagrange P, and P, elements that provide affine
and quadratic approximations, respectively, of the curved boundary. The numerical results presented in
this section show that the theoretical bounds of Theorems 3.5 and 3.6 may be extended to a setting with
a curved contact boundary.
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FIG. 17. Hertz’s contact in three dimensions. Error estimator 5 and the H'-norm of the error u — u”, for Lagrange P, (left) and P,
(right) finite elements.

TABLE 9 Hertz’s contact in three dimensions, 6 = —1, yy = 1/1000E, Lagrange P, elements

Mesh size h 6.99992  6.48188  5.50504 4.95584 4.04204 3.16207  Slope
Ju—u"|,, 1455261  146.1777 80.9980 72.8654 70.3068 56.9181 1.2175
m 63195.6 637869 58218 507784 47260.1 35050.5 0.7432
m 130398 130152 107003  96631.9 101191  80077.5 0.5911
13 9404.94 927675 150159 7973.6  6642.56 5246.94 0.8664
M4 246585 242981 98555  84586.1 68588.5 393142 2.3401

n 286164 283080 157409 138328 131231 95990  1.3910
Effectivity index Effg 0.7866 0.7746 0.7773  0.7594  0.7466  0.6746

TABLE 10 Hertz’s contact in three dimensions, 6 = —1, yy = 1/1000E, Lagrange P, elements

Mesh size h 8.60341  8.42192 6.09033  4.72471 472145 3.69153  Slope
||u —u" || Lo 261.2041 248.7847 142.4049 1215570 124.0673 59.6301 1.5405
il 80200.8  78955.6 58608 40699.3  40816.2 28237.3 1.2090
N 98066.1 98430 78979.6  65528.8  65304.7 54911.2 0.6951
03 5824.05 573421 6074.19 3196.26  3159.32 2468.21 1.0548
N4 166077 165873  57204.1 908153 91107.4 62615.7 1.0431

n 208960 208493 113938 119198 119336  87973.9 0.9753
Effectivity index Eff ~ 0.3200 0.3352 0.3200 0.3922 0.3847 0.5901
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Appendix. Extension to the Tresca friction case

We extend, in this appendix, the analysis of Section 3 to the case of unilateral contact with Tresca friction.
For a posteriori error estimates for the Tresca friction problem one may refer, e.g., to Dorsek & Melenk
(2010) and references therein.

Setting and Nitsche-based finite element method for Tresca

Lets € L>(I¢),s > 0Obea given threshold. The Tresca friction problem with unilateral contact consists
in finding the displacement field u : 2 — R verifying the equations and conditions (2.1)—(2.2 (i,ii,iii))—
(A.1), with (A.1) given by

lo()] < ifu =0, (@

A.l
o¢(u) =—s|u—t| otherwise, (ii) (A1)
U

where | - | stands for the Euclidean norm in R?"!,

For any o € R*, we introduce the notation [-], for the orthogonal projection onto %(0, o) C R !,
where Z(0, «) is the closed ball centered at the origin 0 and of radius «. The following property holds
for all x,y € R

(y = %) - ([¥la — [xL) = [yl — [XLI, (A.2)

where - is the Euclidean scalar product in R9~!.
Let us introduce the discrete linear operator P; LS V{’ — y o¢(v") and the bilinear form

Ag, (U, V") 1= a(u",v") — /0)/ o("n - ¢ (v")n dI'. The extension of our Nitsche-based method for
I'c
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unilateral contact with Tresca friction then reads
find u" € V" such that

1
Ag, (0" V") + /F > [P, (u")—g], Py, (V') A" (A3)

1 t h t h h h h
+/FC; [PL@h] P, (M)Al = LV Vvhe V.

Consistency, well-posedness and a priori error estimates for method (A.3) are established in Chouly
(2014).

Residual error estimator, upper and lower bound

Definition 3.2 still holds for problem (A.3), except for n;x whose expression is now

1/2
2

me =0 [ 3

C
EcEg

1
— [P, "] +ou@"

0.E

First, we provide counterparts to Assumption 3.3 and to the discrete trace inequality of Lemma 2.3.

AsSUMPTION A.1 The solution u of (2.1)—(2.2 (i,ii,iii))—(A.1) and the discrete solution u” of (A.3) are
such that

||0,,(u —u’) ||—1/2,h,1"c + ”6t(u —u') H—l/z,h,rc S lhw— vl g. (A4)
LEMMA A.2 For any v € V", we have
low (V=12 + 1o 1mre S IV 1. (A.5)

For contact with Tresca friction, the following statement guarantees the reliability of the a posteriori
error estimator.

THEOREM A.3 Let u be the solution to (2.1)—(2.2 (i,ii,iii))—(A.1), withu € (H**(22))? (v > 0 and
d = 2,3), and let u" be the solution to the corresponding discrete problem (A.3). Assume that, for
0 # —1, y, is sufficiently small, and otherwise that y, > 0 for & = —1. Assume that the saturation
assumption (A.4) holds as well. Then we have

+

—1/2,h,Tc

lu —u"fl10 +

1
o, () + ;[Py u")—gly

1
o(u) + ” [P} (u")]

s
Y 12mre

o) — o,(@")|_1j2pre + loc@) — o @) Zionre S 1+ 1)+ 0).
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Proof. The proof is a direct adaptation of Theorem 3.5. Let v € V", To lighten the notation, we define
e :=u — u". We start as in Theorem 3.5 and get

aleli, <7 + 7,
where « is the V-ellipticity constant of a(-, -) and
T, :=Lu—v" —a@",u—-v"

1 1
+/ —[Py(uh)_g]+(\/z — Mn) dr +/ — [P;(uh)] K (Vi’ — ut) dr’
rc? Y v

I'c

T, = /a(u)n S(u—vu"dr + / l[P,, (u")—gl Py, (u —u")dr
Ic y

I'c

1 h h
+ /rc; [P (u )]W Py, (u—u")dr

- 9/ 1P, W) —gl yo, v —wdr - 9/ L [P,@"] -yo (v —wdr
FCV Fcy Vs

— 9/)/ o(@Hn-o (" —uHndr.

I'c

The quantity 7, is bounded almost exactly as in Theorem 3.5, except for the new Tresca friction term,
that is bounded as

> / ( [P, "]+ at(u")> -(v¢ —u) dI'| S nllell.o.
E€ES

Note that the remaining terms in 7, can be split as

T =TS+ 17,

where 7,° represents the contact terms and 7," contains the Tresca friction terms. The contact terms
TZC are handled as in Theorem 3.5. Moreover, we can bound the friction terms TZT in a similar fashion,
following step by step the proof of Theorem 3.5 and using the bound (A.2). We get finally for any 8 > 0

T, < L + e+ volloa —u")2, 5, e + Brodn® + 2 oy — w2 2 Ter
— zﬂ 4 —1/2,h,I'c 2ﬂ —1/2,h,I'c

Using (A.5) and the H!-stability of R" (see (2.8) in Lemma 2.1) we bound

loe(v" —u")|- 12nIc = CIIV" —u"|li e = CIR" (@ —u")|l; o < Cllu—u"| 0.



954 F. CHOULY ET AL.

We combine this last bound with the saturation assumption (A.4) and get (remembering the result that
holds for the contact terms 7,°)

@+1)7 1
T, <Cy (T + B la — "7 o + Bref>(n + )%
From now on the proof is exactly the same as in Theorem 3.5. O

REMARK A.4 An extension of Theorem 3.6 holds as well for problem (A.3) and similar local lower error
bounds can be derived following the same method. The only difference is that the term 75k is bounded as

<Y h(

C
EeEK

1
s+ 3 [Pl |+ fodu-ul, ).
Y "log |
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