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Abstract

Background: Stimulants such as methylphenidate and modafinil are frequently used as cognitive enhancers in healthy people, 
whereas 3,4-methylenedioxymethamphetamine (ecstasy) is proposed to enhance mood and empathy in healthy subjects. 
However, comparative data on the effects of methylphenidate and modafinil on negative emotions in healthy subjects have 
been partially missing. The aim of this study was to compare the acute effects of methylphenidate and modafinil on the 
neural correlates of fearful face processing using 3,4-methylenedioxymethamphetamine as a positive control.
Methods: Using a double-blind, within-subject, placebo-controlled, cross-over design, 60  mg methylphenidate, 600  mg 
modafinil, and 125 mg 3,4-methylenedioxymethamphetamine were administrated to 22 healthy subjects while performing 
an event-related fMRI task to assess brain activation in response to fearful faces. Negative mood states were assessed with 
the State-Trait Anxiety Inventory and subjective ratings.
Results: Relative to placebo, modafinil, but not methylphenidate or 3,4-methylenedioxymethamphetamine, increased 
brain activation within a limbic-cortical-striatal-pallidal-thalamic circuit during fearful face processing. Modafinil but not 
methylphenidate also increased amygdala responses to fearful faces compared with 3,4-methylenedioxymethamphetamine. 
Furthermore, activation in the middle and inferior frontal gyrus in response to fearful faces correlated positively with 
subjective feelings of fearfulness and depressiveness after modafinil administration.
Conclusions: Despite the cognitive enhancement effects of 600 mg modafinil in healthy people, potential adverse effects on 
emotion processing should be considered.
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Introduction
Methylphenidate (MPH) and modafinil are stimulants used in 
the treatment of attention deficit hyperactivity disorder and 
narcolepsy, respectively, but also frequently used as cognitive 
enhancers in healthy people (Repantis et al., 2010; Sahakian and 
Morein-Zamir, 2015). Despite their cognitive enhancing potential 

in healthy subjects (Sahakian et al., 2015), their effects on nega-
tive emotions are still poorly understood. Exploring the effect of 
MPH and modafinil on negative emotion processing in healthy 
people is helpful to detect potential adverse effects despite 
their potential to improve cognitive performance. In this study, 
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we compared the acute effects of MPH and modafinil on neural 
responses to fearful faces and whether these effects were related 
to negative mood states. 3,4-methylenedioxymethamphetamine 
(MDMA, ecstasy) was used as a positive control given its mood-
enhancing and prosocial effect in healthy people (Hysek et al., 
2014b; Kirkpatrick et al., 2014, 2015; Kuypers et al., 2017).

Recognition of the feelings of other people from their facial 
expression is fundamental to social interaction and behavior 
(Becker et al., 2012). Emotional faces, especially negative expres-
sions, increase neuronal activity relative to neutral faces in spe-
cific brain areas, including the amygdala (Morris et  al., 1996, 
1998), whereas its volume is positively correlated with that of 
social networks (Bickart et al., 2011). Studies have consistently 
reported a positive relation between amygdala response to 
attended and unattended fearful faces and state-anxiety (for 
review, see Calder et al., 2011). Accordingly, the negative emo-
tional processing bias in depressed individuals is characterized 
by amygdala hyperactivity in response to fearful faces (Peluso 
et al., 2009), which is more apparent with an implicit rather than 
explicit processing task (Monk et al., 2008). It has been shown 
that amygdala activation during implicit processing of fear-
ful faces can be attenuated with acute administration of can-
nabidiol (Fusar-Poli et al., 2009a) and LSD (Mueller et al., 2017) 
in healthy people and after heroin administration in addicted 
patients (Schmidt et al., 2014). Notably, other cognitive enhanc-
ers such as amphetamine induce fear and anxiety (Ellinwood 
et al., 1973; Hall et al., 1988) along with exaggerated amygdala 
responses to fearful facial expressions in healthy subjects 
(Hariri et  al., 2002). Therefore, it is instructive to compare the 
effects of MPH and modafinil on brain activation during fearful 
processing and the relationship to subjective mood states such 
as state-anxiety.

Studies investigating the cognitive enhancement effects of 
MPH in healthy people typically use dosages between 5 and 
60 mg (Repantis et al., 2010; Linssen et al., 2014). In our previous 
study, we could show that a relatively high dose of 60 mg MPH 
improved behavioral and neural responses during cognitive 
control in healthy subjects (Schmidt et al., 2017). However, the 
same dose also increased state-anxiety in relation to placebo, 
increased misclassification of emotions as angry (Dolder et al., 
2017), and enhanced the recognition of fearful faces in healthy 
people (Hysek et  al., 2014a). Given the positive relationship 
between state-anxiety and amygdala activation during fearful 
face processing (Calder et al., 2011), these findings of these stud-
ies (Hysek et al., 2014a; Dolder et al., 2017) suggest that 60 mg 
MPH would increase amygdala activation in response to fear-
ful faces despite its cognitive enhancement effect in healthy 
subjects.

Comparable with the effect of 60 mg MPH, it has been shown 
that 600 mg modafinil also improved behavioral (Makris et al., 
2007) and neural responses during cognitive processing (Schmidt 

et al., 2017), even though 200 mg is typically used for cognitive 
enhancing purposes in healthy subjects (Minzenberg and Carter, 
2008) and related to task enjoyment (Müller et al., 2013). In our 
previous study, 600  mg modafinil had no effect on state-anx-
iety but also increased misclassification of emotion as angry, 
similar as 60 mg MPH (Dolder et al., 2017). Furthermore, 600 mg 
modafinil produced significant adverse effects that lasted up 
to 24 hours (mostly insomnia, headache, and lack of appetite) 
(Dolder et al., 2017). This is in line with a previous study showing 
a dose-response relationship in the incidence of adverse events 
after modafinil administration in healthy people (Wong et  al., 
1999a). In particular, this study reported that 50%, 83%, 100%, 
and 100% of subjects in the 200-, 400-, 600-, and 800-mg-dose 
groups reporting at least one adverse event such as insomnia, 
anxiety, and palpitations (Wong et  al., 1999a). Together, these 
results suggest that even though 600  mg modafinil improves 
cognitive performance in healthy subjects, it may also increase 
amygdala activation in response to fearful faces due to its side 
effects.

In contrast to 60  mg MPH and 600  mg modafinil, 125  mg 
MDMA did not improve cognitive control in healthy subjects 
(Schmidt et al., 2017). But in accordance with other studies in 
healthy people using 1.5  mg/kg MDMA (Bedi et  al., 2010), we 
previously found that 125 mg MDMA impaired the recognition 
of fearful faces (Hysek et al., 2014a, 2014b; Dolder et al., 2017). 
The same dose also biased mind-reading towards positive and 
away from negative emotions (Hysek et  al., 2012a) and led to 
misclassification of emotions as happy (Dolder et  al., 2017). 
Furthermore, 125  mg MDMA also increased levels of oxyto-
cin in healthy subjects (Hysek et al., 2014b; Dolder et al., 2017), 
which has been associated with prosocial behavior (Hysek et al., 
2014b). However, while 1.5 mg/kg MDMA did attenuate amygdala 
responses to angry facial expressions stimuli in healthy volun-
teers, it did not affect amygdala response to fearful expressions 
relative to placebo in healthy subjects (Bedi et al., 2009).

Using a within-subject, placebo-controlled, cross-over 
design, this study directly compared the acute effects of a single 
dose of 60 mg MPH and 600 mg modafinil on neural responses 
and in particular amygdala responses to fearful faces using 
125 mg MDMA as positive control. We hypothesized that 60 mg 
MPH and 600 mg modafinil would increase amygdala responses 
to fearful faces compared with 125 mg MDMA and placebo and 
that these effects would be related to negative mood states.

Methods

Participants

Twenty-four healthy subjects (12 men, 12 women) with a 
mean ± SD age of 22.6 ± 3.0  years (range, 19–29  years) were 
recruited via advertisement and word of mouth. Inclusion 

Significance Statement
Methylphenidate (MPH) and modafinil are increasingly used by healthy people for cognitive enhancement purposes. However, 
comparative data how they modulate negative emotion processing in healthy people are widely missing. This study directly 
compared the acute effects of MPH and modafinil on neural responses during fearful face processing and whether these effects 
were related to negative mood states. We used 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) as a positive control 
given its mood enhancing and prosocial effects in healthy people. We found that modafinil but not MPH increased activation in 
brain regions responsible for fear processing such as the amygdala and the prefrontal cortex compared with placebo and MDMA. 
Some of these effects were associated with subjective feelings of fear and depressiveness. Our findings suggest that potential 
adverse side effects should be considered when using 600 mg modafinil for cognitive enhancement purposes in healthy people.
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criteria were age 18 to 45 years and body mass index 18 to 27 kg/
m2. Subjects with a personal or first-degree-relative history of 
psychiatric disorders or chronic or acute physical illness were 
excluded. Additional exclusion criteria were tobacco smoking 
(>10 cigarettes/d) and a lifetime history of using illicit drugs 
more than 5 times, with the exception of occasional cannabis 
use in the past. Drug use histories are shown in supplemen-
tary Table 1. Subjects who used any illicit drugs within the past 
2  months or during the study period were excluded. We per-
formed drug tests at screening and before each test session 
using TRIAGE 8 (Biosite). All female subjects used oral contra-
ceptives and were investigated during the follicular phase of 
their menstrual cycle (day 2–14 after the start of the menstru-
ation according to self-report) to account for cyclic changes in 
reactivity, which has been demonstrated to modulate amphet-
amine effects (White et al., 2002).

Study Design and Drug Administration

We used a double-blind, placebo-controlled, randomized, cross-
over design with 4 experimental sessions (125 mg MDMA, 60 mg 
MPH, 600 mg modafinil, and placebo). The order of the 4 experi-
mental sessions was counterbalanced. The washout periods 
between sessions were at least 7 days. All 24 participants com-
pleted all 4 sessions of the study as previously reported (Dolder 
et al., 2017).

The study was conducted in accordance with the Declaration 
of Helsinki and approved by the Ethics Committee northwest/
central Switzerland and the Swiss Agency for Therapeutic 
Products (Swissmedic). All the subjects provided written consent 
before participating in the study and received reimbursement 
for their participation. The study (including the a priori defined 
focus on amygdala activation) was registered at ClinicalTrials.
gov (NCT01951508).

MDMA was administered in a single absolute dose of 
125 mg corresponding to a relatively high dose of (mean ± SD) 
1.9 ± 0.3 mg/kg body weight. This dose of MDMA is in the high 
range of the doses typically used in clinical research with respect 
to its prosocial and mood-enhancing effect (Kirkpatrick et  al., 
2014; Kirkpatrick et al., 2015; Kuypers et al., 2017) and is within 
the dose range that is used recreationally (Brunt et  al., 2012). 
Even though there is no recommended dose for MPH to enhance 
cognition in healthy people, studies investigating this popula-
tion typically use single doses between 5 and 60 mg (Repantis 
et al., 2010; Linssen et al., 2014). In this study MPH was adminis-
tered in a single, relatively high dose of 60 mg as done in previous 
studies (Volkow et al., 1998; Dodds et al., 2008; Clatworthy et al., 
2009). We recently showed that 60 mg MPH improved behavioral 
and neural responses during cognitive control in healthy sub-
jects (Schmidt et al., 2017), and the same dose was shown to be 
efficient and safe in patients with attention deficit hyperactiv-
ity disorder (Muniz et al., 2008). Furthermore, the subjective and 
cardiostimulant effects of this dose were previously assessed on 
the same tests as used in the present study (Hysek et al., 2014a) 
and have also been statistically compared with a lower dose of 
40 mg (Schmid et al., 2014). With the overarching goal to achieve 
comparable cardiostimulant effects (Hysek et  al., 2014a) and 
maximize the subjective drug effects, we also administered a 
single high dose of 600 mg modafinil, even though 200 mg is the 
typical dose used for cognitive enhancing purposes in healthy 
subjects (Minzenberg and Carter, 2008). Comparable with the 
effect of 60 mg MPH, 600 mg modafinil also improved behavioral 
(Makris et al., 2007) and neural responses during cognitive pro-
cessing (Schmidt et al., 2017) and is generally well tolerated in 

healthy volunteers (Wong et al., 1999b). All administered doses 
were well tolerated by the participants, and no severe adverse 
events have been reported (Dolder et al., 2017).

Each of the 4 test sessions lasted 7 hours. Subjects arrived 
at the laboratory at 8:45 am. MPH, modafinil, MDMA, or placebo 
was administered orally at 9:45 am. fMRI scanning was per-
formed between 11:15 am and 12:15 pm during the expected drug 
peak effects (Wong et al., 1998; Hysek et al., 2014a; Schmid et al., 
2014). The sessions ended at 3:45 pm. Additional study findings 
are reported elsewhere (Dolder et al., 2017; Schmidt et al., 2017).

Assessment of Negative Emotional States

Negative emotional states were assessed directly before and 
after the fMRI took place (75 and 150 minutes posttreatment, 
respectively). We averaged the values of the 75- and 150-min-
ute posttreatment assessments to best relate the subject-
ive drug effects to brain activation during fMRI task. Negative 
emotions were assessed with the State-Trait anxiety inventory 
(Spielberger et  al., 1970) and the Adjective Mood Rating Scale 
(Janke and Debus, 1978). For the latter, we focused on subject-
ively experienced feelings of fearfulness and depressiveness.

Facial Emotion Recognition Task (FERT)

We used the FERT to assess drug effects on facial emotion rec-
ognition (Hysek et  al., 2014a; Schmid et  al., 2014). The FERT 
included 10 neutral faces and 160 faces that expressed 1 of 4 
basic emotions (i.e., happiness, sadness, anger, and fear) with 
pictures morphed between 0% (neutral) and 100% in 10% steps. 
Two female and 2 male pictures were used for each of the 4 emo-
tions. The stimuli were presented in random order for 500 mil-
liseconds and then were replaced by the rating screen where 
participants had to indicate the correct emotion. The main out-
come measure was accuracy (proportion of correct answers). 
The FERT was performed 150 minutes after drug administration. 
Results on the FERT have already been published (Dolder et al., 
2017). In line with the fearful > neutral contrast used for the 
fMRI analysis, here we report the accuracy for the recognition 
performance of fearful relative to neutral faces.

Statistical Analyses of Negative Emotional States 
and the FERT

Treatment differences in negative emotional states and FERT 
performance were examined using a repeated-measures ANOVA 
with treatment as within-subject factor. Where the ANOVA null 
hypothesis of equal means was rejected, we used posthoc tests 
(Bonferroni).

Fearful Face Processing

fMRI scanning took place between 11:15 am and 12:15 pm during 
the drug peak effects (Dolder et al., 2017). During this time, study 
subjects participated in a well-established, 6-minute experiment 
with event-related fMRI where they were presented with 10 dif-
ferent facial identities, each expressing 50% or 100% intensities 
of fear or a neutral expression (Fusar-Poli et  al., 2009a; Fusar-
Poli et al., 2010; Schmidt et al., 2014, 2015; Mueller et al., 2017). 
There were thus 30 different facial stimuli in total; each face 
was presented twice for 2 seconds. Individuals therefore viewed 
60 stimuli in total. The order of facial identities and expression 
type was pseudo-randomized such that there was no succes-
sive presentation of the same identity or facial expression type. 
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During the interstimulus interval, the duration of which was 
varied from 3 to 8 sec according to a Poisson distribution with 
an average interval of 5.9 sec, individuals viewed a fixation cross 
(Surguladze et al., 2005). To ensure a maximal degree of atten-
tion on the presented faces, subjects were requested to decide 
on the gender of face stimuli via button-press. We previously 
demonstrated that amygdala activity and connectivity during 
implicit fearful face processing in this task is related to subject-
ive anxiety ratings (Schmidt et al., 2014, 2015).

Image Acquisition and Analysis

Scanning was performed on a 3-T scanner (Siemens Magnetom 
Verio; Siemens Healthcare) with an echo planar sequence with 
2.5-second repetition time, 28-millisecond echo time, a matrix 
size of 76 x 76, and 38 slices with .5-mm inter-slice gap, providing 
a resolution of 3 x 3 x 3 mm3 and a field of view of 228 x 228 mm2. In 
total, 152 volumes were acquired. Data analysis was performed 
with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). All volumes were 
realigned to the first volume, normalized into a standard stereo-
tactic space (Montreal Neurological Institute), and smoothed 
with an 8-mm full-width-at-half-maximum Gaussian kernel.

All images underwent visual inspection, and participants with 
a high number of severely corrupted images and/or gross artefacts 
were excluded (none). Additionally, all images were checked for 
movement artefacts, and all scans with >3 mm deviation from the 
previous scan in any dimension, resulting in corrupted volumes, 
were excluded and replaced with the average of the neighboring 
volumes (6 volumes were replaced in total, all after MDMA admin-
istration). Subjects with >10% corrupted volumes were excluded 
(n = 2; final sample of 22 subjects). There were no movement differ-
ences across treatment in any dimension (supplementary Table 2).

During first-level model specification, onset times for each 
trial of neutral, 50%, and 100% fearful faces across all 4 treat-
ments were convolved with a canonical hemodynamic response 
function. Serial correlations were removed with a first-order 
autoregressive model, and a high-pass filter (128 seconds) was 
applied to remove low-frequency noise. Six movement param-
eters were also entered as nuisance covariates. Each trial for 
50% and 100% fearful faces was then contrasted against neutral 
faces, producing a subject-specific contrast image propagated 
to the second-level analysis. To extract the highest potential 
impact of fearful expressions, we specifically focused on the 
“100% fearful vs neutral face” contrast. To compute the effect of 
task, we also generated one average image for the “100% fearful 
vs neutral face” across all 4 treatments.

A 1-sample t test was performed to examine whole brain 
activation during fearful face processing across all treatments 
(effect of task). Treatment differences were examined using a 
within-subject ANOVA design using drug order as regressor of 
no interest. Significance was assessed at a cluster-level thresh-
old of P < .05 family-wise error (FWE) corrected across the whole 
brain, using an uncorrected cluster-forming threshold of P < .001 
according to recent recommendations (Woo et  al., 2014). For 
completeness, all results surviving a cluster threshold of k = 20 
are reported, but only those results surviving cluster-correction 
are discussed in the text. We also focused our analysis on the 
amygdala, as this was part of our primary hypothesis, using 
a voxel-level approach. The amygdala region of interest was 
defined using coordinates taken from a previous meta-analysis 
of fearful face processing (Fusar-Poli et al., 2009b): right (x = 20; 
y = -4; z = -14) and left (x = -22; y = -4; z = -10). Small volume correc-
tion was applied for this analysis using 8-mm spheres around 
these coordinates (Vuilleumier et  al., 2001), and a voxel-level 
threshold of P < .05 FWE corrected was considered significant.

Relationship between Brain Activation and Negative 
Emotional States

Based on significant treatment effects on brain activation, 
relationships between neural responses to fearful faces and 
negative emotions were identified by including measures of 
fearfulness, depressiveness, and state-anxiety as covariates in 
second-level models.

Results

Negative Emotional States

There was a trend for a main effect of treatment for state-anx-
iety (F = 2.592, P = .083) (Figure 1A), indicating a trend for higher 
values after MPH than MDMA treatment (P = .073). No significant 
treatment effects were found for fearfulness (F = 1.259, P = .317) 
(Figure 1B) and depressiveness (F = 1.129, P = .362) (Figure 1C).

FERT

A main effect of treatment was found for the recognition of 
fearful relative to neutral faces (F = 3.679, P = .030). Posthoc test-
ing revealed a significantly improved recognition of fearful 
relative to neutral faces after modafinil than MDMA administra-
tion (P = .039) (Figure 1D). There was no significant relationship 
between the recognition of fearful faces and negative emotional 
states after modafinil administration.

Brain Activation during Fearful Face Processing

Effect of Task
Averaged across all treatments, fearful relative to neutral faces 
induced significant activation in widespread regions including 
the amygdala, fusiform gyrus, anterior cingulate and orbito-
frontal cortex, calcarine sulcus, dorsal striatum, and insula and 
inferior frontal gyrus (all results are cluster-level FWE-corrected 
across the whole brain) (supplementary Table 3).

Treatment Effects during Fearful Face Processing

Brain activation during fearful face processing significantly 
differed across treatments in the left amygdala (small volume 
peak-level FWE-corrected), right amygdala, right putamen and 
left pallidum, and thalamus (cluster-level FWE-corrected across 
the whole brain) (supplementary Table 4).

Subsequent treatment comparison revealed that modafinil 
increased brain activation relative to placebo in the bilateral 
amygdala (small volume peak-level FWE-corrected) and anterior 
cingulate cortex, right putamen, pallidum and supplementary 
motor area, and left pallidum, caudate nucleus, and thalamus 
(cluster-level FWE-corrected across the whole brain) (Figure 2A; 
supplementary Table 5).

Furthermore, modafinil also increased brain activation com-
pared with MDMA in the right amygdala (small volume peak-
level FWE-corrected) (Figure 2B; supplementary Table 5).

Relationship between Brain Activation and Negative 
Emotional States

Based on the modafinil effects on brain activation, we fur-
ther tested the relationship between neural activation and 
negative emotional states after modafinil exposure. There 
was a significant positive relationship between activation in 
the right middle and inferior frontal gyrus and subjectively 

http://www.fil.ion.ucl.ac.uk/spm/
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experienced fearfulness after modafinil intake (Figure  3A-B; 
supplementary Table 6).

Furthermore, self-reported feelings of depressiveness also 
correlated positively with activation in the bilateral middle and 
inferior frontal gyrus after modafinil intake (Figure 4A-B; supple-
mentary Table 7). There was no significant relationship between 
state-anxiety and brain activation during fearful face processing 
following modafinil administration.

Discussion

This study provides 3 major results: firstly, modafinil increases 
brain activation in response to fearful faces within the limbic-
cortical-striatal-pallidal-thalamic circuit relative to placebo. 
Secondly, modafinil also increases amygdala responses to fearful 
faces compared with MDMA. Finally, fear-induced activation in 
the middle and inferior frontal gyrus correlated positively with 

Figure 1. Acute effects of 3,4-methylenedioxymethamphetamine (MDMA), modafinil, methylphenidate (MPH), and placebo administration on (A) state anxiety, (B) fear-

fulness, (C) depressiveness, and (D) facial recognition. *Indicates significant between-treatment effects.

Figure 2. Significantly increased brain activation after acute modafinil relative to (A) placebo and (B) 3,4-methylenedioxymethamphetamine (MDMA) administration 

during fearful face processing. Results are illustrated using a cluster-forming threshold P < .001 uncorrected, with an extent threshold of 20 voxels.



350 | International Journal of Neuropsychopharmacology, 2018

subjectively experienced feelings of fearfulness and depressive-
ness after modafinil administration.

We found that relative to placebo, modafinil increased 
activation in the limbic-cortical-striatal-pallidal-thalamic cir-
cuitry including the amygdala during fearful face process-
ing, the core of the neural system that has been implicated in 

negative emotional states and mood disorders (Drevets et  al., 
2008; Price and Drevets, 2010). A  previous study showed that 
400 mg modafinil also increased regional cerebral blood flow in 
arousal- and emotion-related brain regions such as the orbito-
frontal, superior frontal, middle frontal gyri, short insular gyri, 
left cingulate gyrus, left middle/inferior temporal gyri, left 

Figure 3. (A) Significant positive relationship between brain activation during fearful face processing and subjective feelings of fearfulness after modafinil administra-

tion. Results are illustrated using a cluster-forming threshold P < .001 uncorrected, with an extent threshold of 20 voxels. (B) Scatterplots showing the positive relation-

ship between right inferior frontal gyrus activation and feelings of fearfulness after modafinil administration (r = 0.804).

Figure 4. (A) Significant positive relationship between brain activation during fearful face processing and subjective feelings of depressiveness after modafinil admin-

istration. Results are illustrated using a cluster-forming threshold P < .001 uncorrected, with an extent threshold of 20 voxels. (B) Scatterplots showing the positive 

relationship between right inferior frontal gyrus activation and feelings of depressiveness after modafinil administration (r = 0.771).
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parahippocampal gyrus, and left pons (Joo et al., 2008). However, 
our finding partially contrasts with a previous study showing 
that repeated administration of 100  mg modafinil for 1 week 
diminished amygdala activation in response to fearful faces 
(Rasetti et al., 2010). This discrepancy may reflect the influence 
of different doses and dosing schedules used across studies.

Although we did not find that 600  mg modafinil increased 
state-anxiety or other negative mood states, significant adverse 
effects (mostly insomnia, headache, and lack of appetite) that 
lasted up to 24 hour were observed (Dolder et al., 2017). This is 
in line with a previous study showing a progressive increase of 
adverse effects such as insomnia, anxiety, and palpitations after 
200, 400, 600, and 800 mg modafinil administration in healthy 
subjects (Wong et al., 1999a). Such physical symptoms of anx-
iety have also been reported after 100 mg modafinil intake in 
healthy people (Randall et al., 2003), and another study showed 
that 400  mg modafinil increased tension-anxiety in narcolep-
tic patients (Broughton et al., 1997). Thus, we can speculate that 
the increase in activation of fear-associated brain regions after 
600  mg modafinil might be driven by significant sympatho-
mimetic and adverse effects as previously described (Dolder 
et al., 2017).

Modafinil is a weak inhibitor of the DA and NE transporter 
and has additional effects on the brain GABA, glutamate, and 
orexin system (Minzenberg and Carter, 2008), although the pre-
cise neuropharmacological mode of action of modafinil remains 
unclear. It has been proposed that the modafinil-induced adverse 
effects (“somatic anxiety”) are probably mediated via reduced 
GABAergic neurotransmission (Randall et al., 2003). Supportive 
for such an interpretation, it has been demonstrated that the 
neuropeptide oxytocin, which decreases anxiety and stress and 
facilitates social behavior (Bartz and Hollander, 2006), reduces 
amygdala responses to fearful faces in patients with general-
ized social anxiety disorder (Labuschagne et al., 2010) probably 
by activating GABAergic interneurons in the amygdala (Huber 
et al., 2005). These GABAergic interneurons are thought to inte-
grate the output activity of the central nucleus of the amygdala 
(Cassell et al., 1999). Given that modafinil also decreases levels of 
GABA in the cortex (Tanganelli et al., 1995), striatum, globus pal-
lidus (Ferraro et al., 1998), and thalamus (Ferraro et al., 1997), we 
can speculate that the modafinil-induced increase of activation 
within the limbic-cortical-striatal-pallidal-thalamic circuitry 
relative to placebo is due to reduced GABA function.

In contrast to the modafinil-induced increase in neural 
activation, we did not find a significant MPH (60 mg) effect on 
brain activation during fearful face processing compared with 
placebo, which corresponds with a previous study using 35 mg 
of MPH (Bottelier et  al., 2015). Having in mind that both MPH 
and modafinil enhance DA and NE neurotransmission (Madras 
et al., 2006; Qu et al., 2008; Hannestad et al., 2010; Schmeichel 
and Berridge, 2013; Simmler et al., 2014) and that modafinil has 
additional effects on GABAergic neurotransmission (Minzenberg 
and Carter, 2008), the lack of effect after MPH administration 
suggests on one hand that its modulation on the DA and NE 
system did not affect neural responses to fearful faces and on 
the other hand that modafinil’s effect is indeed mediated via 
GABA function. However, other factors either alone or together 
with modulation of the GABA system might be responsible for 
these effects.

In a previous study with the same sample, acute administra-
tion of 125 mg MDMA elicited increased well-being, happiness, 
trust, feelings of closeness to others, wanting to be with others, 
wanting to hug someone, and also reduced state anxiety com-
pared with MPH and modafinil (Dolder et al., 2017). Compared 

with placebo (Bedi et al., 2010; Hysek et al., 2014b), MPH and/or 
modafinil (Hysek et al., 2014a; Schmid et al., 2014; Dolder et al., 
2017), MDMA administration also significantly impaired the rec-
ognition of fearful faces.Furthermore, MDMA also enhanced 
emotional empathy and prosociality relative to placebo (Hysek 
et al., 2014b; Kuypers et al., 2017). In line with other evidence 
(Wardle et al., 2014; Kirkpatrick and de Wit, 2015; Bershad et al., 
2016), these findings underpin the socially enhancing effects of 
MDMA. In contrast to our hypothesis, however, we did not find 
diminished brain (amygdala) activation during fearful face pro-
cessing after 125 mg MDMA administration relative to placebo. 
This lack of effect is consistent with a previous study, which 
revealed attenuated amygdala response to angry but not fearful 
faces in healthy subjects after using a comparable dose of MDMA 
(1.5 mg/kg) (Bedi et al., 2009), suggesting that acute administra-
tion of representative recreational or clinical doses of 100 to 
125 mg MDMA does not affect the neural correlates of fearful 
face processing in healthy subjects compared with placebo. 
However, we did find that subjects revealed decreased amygdala 
responses to fearful faces after MDMA compared with modafinil. 
This coincides with our finding that people under MDMA 
exposure had more problems to recognize fearful faces (rela-
tive to neutral faces) than after modafinil administration. The 
decreased amygdala activation after MDMA relative to modafinil 
but not placebo and MPH could be explained again by reduced 
GABA release after modafinil administration. Furthermore, 
given that there was no significant difference between MPH and 
modafinil on amygdala activation, the difference in amygdala 
activation between MDMA and modafinil is perhaps mediated 
via reduced GABA and increased 5-HT release.

Finally, we found that brain activation in the middle and 
inferior frontal gyrus under modafinil exposure correlated posi-
tively with subjective feelings of fearfulness and depressiveness 
following modafinil administration. Together with the amyg-
dala, the inferior frontal gyrus is part of the extended system 
for face perception (Haxby et al., 2002; Ishai et al., 2005), where 
semantic aspects (emotion evaluation) of faces are processed 
(Leveroni et al., 2000). Surgical resection of the right prefrontal 
cortex in a patient with epilepsy resulted in a severe deficit in 
the recognition of emotional facial expressions, especially fear 
(Marinkovic et al., 2000). It has further been shown that threat-
induced anxiety increased the functional connectivity between 
the right amygdala and bilateral inferior frontal gyrus in healthy 
adults (Gold et al., 2015) and that cortical-amygdala connectiv-
ity correlated with social anxiety symptom severity in patients 
with social anxiety disorder (Cremers et al., 2015). Our finding 
suggests that the modafinil-induced adverse effects contribute 
to a higher emotional evaluation of fearful faces as reflected by 
increased activation in the middle and inferior frontal gyrus.

Some limitations of our study merit comment. The high 
number of drugs included in the present analysis might have 
dampened the statistical power to find treatment effects on 
negative mood states. Future studies on this topic should also 
use validated scales such as the Positive and Negative Affect 
Schedule or Profile of Mood States questionnaire to assess 
negative mood states. The demanding study design has further 
prevented examination of dose-response curves. The observed 
differences between drugs were seen at the doses used in this 
study but may not be present at different doses. However, dose-
effect relationships show Emax curve characteristics (Hysek et al., 
2012c), and we used single but relatively high doses of all drugs 
expected to result in subjective drug effects close to Emax based 
on previous studies (Hysek et  al., 2012b, 2012c; Dolder et  al., 
2017). Another point of contention is the use of self-reports to 
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ascertain the phase of menstrual cycle. Although the assess-
ment of the menstrual cycle phase is a strength of this study, the 
validity of self-reports should be considered with caution (Small 
et al., 2007). Finally, we cannot exclude effects on neurovascu-
lar coupling induced by the drugs (Honey and Bullmore, 2004), 
which might have confounded our fMRI results. For instance, 
it has been shown that modafinil increased regional cerebral 
blood in the arousal-related systems and in brain areas related 
to emotion and executive function (Joo et al., 2008).

In summary, our findings show that acute administration of 
a relatively high single dose of 600 mg modafinil, a dose pre-
viously reported to enhance cognitive performance in healthy 
subjects (Makris et  al., 2007; Schmidt et  al., 2017), increased 
neural activation in widespread brain regions implicated in 
fear processing and that some of the effects were related to 
negative mood states. Although 600  mg modafinil improves 
cognitive performance in healthy people (Schmidt et al., 2017), 
potential adverse side effects on emotion processing should be 
considered.

Supplementary Material

Supplementary data are available at International Journal of 
Neuropsychopharmacology online.
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