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SUMMARY

Combined inference for heterogeneous high-dimensional data is critical in modern biology, where clinical
and various kinds of molecular data may be available from a single study. Classical genetic association
studies regress a single clinical outcome on many genetic variants one by one, but there is an increasing
demand for joint analysis of many molecular outcomes and genetic variants in order to unravel functional
interactions. Unfortunately, most existing approaches to joint modeling are either too simplistic to be pow-
erful or are impracticable for computational reasons. Inspired by Richardson and others (2010, Bayesian
Statistics 9), we consider a sparse multivariate regression model that allows simultaneous selection of
predictors and associated responses. As Markov chain Monte Carlo (MCMC) inference on such models
can be prohibitively slow when the number of genetic variants exceeds a few thousand, we propose a
variational inference approach which produces posterior information very close to that of MCMC infer-
ence, at a much reduced computational cost. Extensive numerical experiments show that our approach
outperforms popular variable selection methods and tailored Bayesian procedures, dealing within hours
with problems involving hundreds of thousands of genetic variants and tens to hundreds of clinical or
molecular outcomes.
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1. INTRODUCTION

Much current research in genetics focuses on combining heterogeneous data for the same samples. This is
prompted by the increasing availability of diverse molecular data types from a single study and should lead
to a more complete understanding of biological systems, as combined inference for data from different
molecular layers might unravel regulatory interactions within and across layers (Civelek and Lusis, 2014).
An example is protein quantitative trait locus (pQTL) analyses to detect associations between hundreds
of thousands of genetic variants and hundreds of proteomic expression levels. When associated with
disease genetic variants, proteins are often regarded as intermediate phenotypes or molecular proxies for
the disease of interest, as they may provide direct insights on biological processes underlying the clinical
condition, and likewise for other molecules such as genes or metabolites involved in so-called eQTL or
mQTL analyses.

An important goal of molecular QTL studies is to detect genetic variants with pleiotropic effects, i.e.,
variants that regulate the expression levels of several molecules, as the genome location where they lie may
initiate essential functional mechanisms (Breitling and others, 2008). As pleiotropy has been acknowl-
edged as a central property of genetic variants causing phenotypic variation, efforts are being made to
uncover its activity patterns and gain understanding of the shared biological processes it induces (Sivaku-
maran and others, 2011; Solovieff and others, 2013). It is also of interest to identify those cases where the
same molecule is simultaneously influenced by several genetic variants. This dual task requires a model
that allows flexible selection, ideally performed jointly on the genetic variants and the molecular outcomes.

Although in practice univariate analyses still dominate, several proposals for joint modeling of multiple
outcomes in genetic association problems have recently been made. Flutre and others (2013) and Zhou and
Stephens (2014) model the outcomes as multivariate responses having a matrix-variate distribution. The
former rely on a Bayes factor framework to uncover the associations between a given genetic variant and
any subset of outcomes, whereas the latter propose a linear mixed model whose random effect accounts for
relatedness among individuals. While these methods show improvements over the fully marginal regression
approach, they are restricted to problems with a few outcomes, because their models involve unstructured
covariance matrices. O’Reilly and others (2012)’s MultiPhen method reverses the classical regression
setup and fits a succession of models where each genetic variant is regressed on several outcomes. This
eliminates the need to model large covariance matrices, but also entails a marginal treatment of the genetic
variants. Moreover, MultiPhen does not penalize model complexity, which may cause instabilities when
many outcomes are modelled. Molecular QTL problems are particularly complex, because in addition
to the so-called p > n paradigm, whereby the number of covariates (genetic variants) p greatly exceeds
the number of samples #, there is also a “large d” characteristic, as the number of responses (expression
levels) d is usually large. Methodologies to accommodate this are needed, especially when joint response
modelling is sought.

Two-stage procedures are natural approaches to association problems with both p and d large. 2HiG-
WAS (Jiang and others, 2015) is essentially an implementation of the screening strategy of Fan and Lv
(2008) in the context of longitudinal outcomes. It consists of a dimension reduction step, where each
genetic variant is tested against each outcome, followed by a penalized regression recast into functional
mapping in which only the genetic variants remaining after screening are involved. While the second
stage of 2HiGWAS is an interesting approach to joint covariate and response modelling, the method is
not tailored to typical molecular QTL analysis, as it is designed for outcomes measured over time. Also,
the fully marginal first stage screening, if too stringent, may cause important predictors to drop out of the
analysis and thus lead to false negatives. Instead of pruning the covariate set, Wang and others (2016)
summarize information at outcome level in the context of eQTL analyses. They precluster the expression
levels using a block-mixture model and test for association between each genetic variant and the result-
ing clustering. This approach requires that the stability of the clustering and its functional relevance are
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carefully checked, as the group pattern chosen is critical to subsequent analysis. More generally, two-stage
procedures often rely on ad-hoc thresholding decisions at the first stage which influence the conclusions
of the second stage.

The approaches sketched above use very diverse strategies to model predictor and outcome variables
in high-dimensional settings. Trade-offs between realistic modeling and computational efficiency are
inevitable, but two components seem critical to practical and powerful analyses: involving all variables in
a single multivariate model, and maintaining interpretable inference. Unified selection of genetic variants
and associated outcomes is then possible, unlike for most existing methods, whose focus is on selecting
either predictors or outcomes. The Bayesian framework seems particularly suitable, as it offers flexible
modeling possibilities in which biological beliefs may be naturally incorporated. The hierarchical regres-
sion approach of Richardson and others (2010), hierarchical evolutionary stochastic search (HESS), is an
appealing example of such approaches; it can identify associations between hundreds of covariates and up
to a few thousand responses from a single model. Jia and Xu (2007) and Scott-Boyer and others (2012)
propose methods called BAYES and integrated Bayesian hierarchical model for eQTL mapping (iBMQ)
based on models similar to that of HESS, but a major drawback of all three approaches is the lack of scal-
ability of their MCMC inference procedures. Problems whose size corresponds to actual genome-wide
association studies with molecular outcomes (with hundreds of thousands of genetic variants and hundreds
to thousands of outcomes and individuals) are out of reach even for HESS, which is based on adaptive par-
allel tempering/evolutionary Monte Carlo techniques. We are unaware of any fully multivariate approach
that can deal with such data within a reasonable time.

In this article, we propose a Bayesian inference strategy that avoids sampling, via an algorithm that
is fast and whose convergence is easy to monitor, while having performance comparable with MCMC
approaches. We describe a variational inference procedure for a model similar to that of Richardson and
others (2010), comprising a series of parallel linear regressions, one for each response, combined in a
hierarchical manner to leverage shared information. A spike-and-slab prior (Ishwaran and Rao, 2005) is
used to induce sparsity of the regression coefficients, and the probability that a given covariate affects any
response is modelled through a parameter that is shared across responses. Interpretable posterior quantities,
such as the probability of association of each covariate-response pair, are produced. An efficient algorithm
for this model is crucial, as its number of parameters can be very large. Our variational approach can update
the parameters jointly in a tractable manner. Carbonetto and Stephens (2012) provide a good discussion
of variational inference in the context of genetic association and propose a variational regression method
called “varbvs”, which can be seen as a single-response counterpart of our approach. In our multiple
response setting, we show by simulation that our procedure is accurate and reliable, and is better than
existing methods at selecting variables for very large problems. Hence, it offers clear added-value in
practice: it enables complex and flexible Bayesian inference based on large batches of genetic data without
having to prune them beforehand.

The article is organized as follows. Section 2 describes the model, discusses its relation to earlier pro-
posals, and presents a procedure to allow for sparsity control at both covariate and response levels. Section
3 gives an overview of variational Bayes approaches and describes our inference strategy. Section 4 com-
pares variational and MCMC inferences on the same model, also using direct approximations of posterior
quantities. Section 5 describes numerical experiments for larger problems, comparing our method with
several predictor selection methods, including the varbvs approach of Carbonetto and Stephens (2012),
and with methods performing combined covariate and response selection, namely HESS (Richardson and
others, 2010) and iBMQ (Scott-Boyer and others, 2012). The section also presents a permutation-based
comparison of our method with varbvs on a real mQTL problem. Section 6 summarizes the discussion
and highlights further possible developments.

Although the applicability of our method is not restricted to any particular context, all the numeri-
cal experiments presented in this article use settings tailored to genome-wide association studies. The
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data-generation schemes are designed to embody common biological assumptions and are described in
Section 5.1. The method is implemented in the publicly available R package 1ocus.

2. MODEL AND EARLIER PROPOSALS

Lety = (y1,...,y4) be a n x d matrix of d centered responses and let X be a n x p matrix of p
covariates, for each of n samples. The covariates are p genetic variants, more precisely single nucleotide
polymorphisms (SNPs), and the responses might represent d gene, protein or metabolite expression levels
for n individuals, depending on whether an eQTL, pQTL, or mQTL problem is considered. Our model is
intended to accommodate all the constraints entailed by molecular QTL analyses; it is adapted from that
of HESS (Richardson and others, 2010). Suppose that

— ind
y[|ﬁt’ttNA/rl(XﬁtaT; lln), T Gamma(ntakt)a t:1,...,d,
ﬁst | Vsts Tt 02 ~ yStN(Oa 02 Tt_l) + (l - yxt) 80 > 0._2 ~ Gamma()\'n U) 5
Yu | @, ~ Bernoulli (w,) , o, ~ Beta(a,, b,), s=1,...,p,

where & is the Dirac distribution. Each response, y,, is related linearly to the covariates and has a specific
precision, 7,. The responses are conditionally independent across the regressions, but dependence among
responses associated with the same covariates is captured through the prior specification of parameters w;
and o ~2, which are shared across the responses. This formulation circumvents modeling the covariance
between the responses, which is infeasible when d is large. Each covariate-response pair has its own
regression parameter, ,, for which sparsity is induced using a spike-and-slab prior. The binary parameter
¥ acts as a “pair selection” indicator; covariate Xj is associated with response y, if and only if y;, = 1. The
parameter o represents the typical size of nonzero effects and is modulated by the residual variance, 7,”!,
of the response concerned by the effect. The parameters y;i, . . ., ¥ specify the response(s) associated
with X, and are identically distributed as Bernoulli with common parameter w,. Thus, w, controls the
proportion of responses associated with covariate X;. The goal of inference is variable selection. Selection
of predictors can be performed by ranking the posterior means of {w,} and selection of covariate-response
pairs can be performed by ranking the posterior probabilities of inclusion (PPI), i.e., the posterior means
of {y).

Our model differs from that of Richardson and others (2010) in two respects. One concerns the treatment
of the regression coefficient parameters S;,: we use independent priors, whereas Richardson and others
rely on g-priors (Zellner, 1986). The main motivation for our choice is that the effects of genetic variants
on a given outcome can be understood as causal, since no retroactive process can affect the variants, and
they can take place at locations of the genome that are far apart, so their correlation structure need not
reflect the spatial correlation of the SNPs; see Guan and Stephens (2011). Jia and Xu (2007) also rely on
independent priors for the regression coefficients of BAYES, but they model the latter with a mixture of
two normal distributions rather than a spike-and-slab prior and impose a residual variance parameter that
is common to all responses. This stringent assumption may represent a weakness of their proposal.

The second difference concerns the third level of the model. Richardson and others (2010) opt for a
quite complex specification, in which

Wy = Py, w; ~ Beta(a,, by), ps ~ Gamma(c,, dy) , 0<w,=<1. (2.1

In their case, the inclusion probability of X; for response y, is modelled through w;; it is specific to that
response but can be regulated using the parameter p,, common to all responses. Jia and Xu (2007) and
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Scott-Boyer and others (2012) propose other variants for this prior. The former choose a treatment similar
to ours, with wy, = w; ~ Dirichlet(1, 1), and the latter consider an additional level of hierarchy,

Wy | Ay, bsa Ty ™~ T[sSO + (1 - T[s)Beta(asa bs) 5 T ™ Beta(ao, bO) > (22)

with a;, ~ Exp(A,) and b; ~ Exp(},). Our choice wy, = w, ~ Beta(as, by) is partly driven by our wish
to design a simpler model and partly by practical considerations, since it ensures a closed form for our
variational algorithm, unlike with (2.1). While such a formulation was mentioned by Richardson and
others (2010) and by Scott-Boyer and others (2012), they did not pursue it because of concerns regarding
its ability to control for multiplicity. Indeed, our model inherently enforces sparse associations as the
number of responses, d, increases, but no control is achieved when the number of covariates, p, grows.
We address this below by providing a procedure to induce a correction through the prior of w;.

Part of the flexibility of our model comes from the fact that the hyperparameters, a, b € R/, (for
w’s Beta prior), A, v € R, (for 0 72’s Gamma prior) and 1, k € R (for r’s Gamma prior) are readily
interpreted. One option is to set them based on external information regarding the likelihood of given
associations, if available. For instance, to favor associations with covariate X;, one can set a, and b, so that
the prior proportion of responses affected by X;, E(w;), is large. The use of such assumptions may be very
efficient, but it may also skew the inference towards existing knowledge. In the simulations presented in
this article, we assume that the regression and variance parameters are exchangeable, i.¢., that all covariates
and responses have the same prior propensity to be involved in associations, by selecting a single value
for all components of @, b, n, and . Without favoring any covariate or response, however, we can control
signal sparsity at the level of covariates by specifying (possibly through cross-validation) a prior average
number of covariates, p*, expected to be included in the model. Setting

a, =1, by=d(p—p)/p*, 0<p"<p, (2.3)

the prior probability that X; is associated with at least one response is

[Lb+d—j  p*

l_[g*lzl(as +bs‘ +d _j) B p

J

p(U?’:l{Vst = 1}) =1-

>

and simpler models are favored as p increases. To see this, one can consider the prior odds ratio representing
the support for a model to have an additional response associated with Xj, i.e.,

d
p 2:1%::%—1 b.+d—a.
POR(gs —1:¢5) = (t >=3+ 1 g=1,....d. (2.4

p (Z;i:] Vst = q5> as + qs — 1

Clearly, penalties arise and increase with the total number of responses in the model, d. Figure 1 displays
(2.4) for g, = 1,...,5 as a function of p and indicates that, when a, and b, are specified as in (2.3), the
penalties also increase with the total number of covariates, p, therefore naturally adjusting for multiplicity.
Moreover, the penalties are not uniform when moving from one to two responses associated with X, or
from four to five, for instance.

The experiment reported in Table 1 confirms that adjustment takes place in practice. It considers
problems with p, = 20 “active” covariates, i.c., those associated with at least one response, and an
increasing number of “noise” covariates, and it compares the regime with a; and b, set according to (2.3)
to an “uncorrected” regime with a;, = 1, b, = 2d — 1, so that the prior mean number of responses associated
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Fig. 1. Prior odds ratios, POR(¢qs, — 1 : ¢y), forg, = 1,...,5, a; and b, as in (2.3), d = 100, p* = 2, and for a total
number of covariates ranging from p = 5 to 5000; see Scott and Berger (2010) for a similar visualization of prior
odds ratios in a single response context.

Table 1. Multiplicity adjustment at covariate level. The mean number of false
positives (FP) and true positives (TP) obtained with the uncorrected and corrected
regimes are compared for p, = 20 active covariates and an increasing number of
noise covariates, p — po. The total number of responses is d = 25. 64 replicates
were performed, standard errors are in parentheses

p 50 250 500 1000 2500
Mean # of FP

Uncorrected 0.61 (0.66) 5.23(2.24) 10.58(3.16) 22.38(4.48) 52.61(8.39)
Corrected 0.77 (0.81)  0.70(0.99) 0.61(0.77)  0.39(0.58)  0.44 (0.59)
Mean # of TP

Uncorrected 19.95(0.21) 20.00 (0.00) 19.98 (0.12) 20.00 (0.00) 19.94 (0.24)
Corrected 19.97 (0.18) 19.91 (0.34) 19.81(0.43) 19.77 (0.56) 19.38 (0.86)

with X; is 0.5, i.e., E(w,) = (2d)~!. The number of false positives (FP), based on a posterior probability of
inclusion greater than 0.5, grows linearly with p when the uncorrected model is used but remains roughly
constant close to zero with correction (2.3), giving a clear multiplicity adjustment. Other experiments
confirmed strong sparsity control; the reported findings on real data should therefore be plausible when
(2.3) is used.

3. VARIATIONAL INFERENCE

Section 2 described some differences between our model and those of Jia and Xu (2007, BAYES), Richard-
son and others (2010, HESS), and Scott and Berger (2010, iBMQ), but a more fundamental distinction
concerns the inference procedure. The three earlier methods rely on MCMC techniques and require mas-
sive computing resources when the dimensionality of the problem is large. We instead employ a variational
inference procedure, which is deterministic and hence can be much cheaper (Ormerod and Wand, 2010).
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Instead of sampling from the joint posterior probability p(6 | y) of the parameter vector of interest, 9,
variational approaches proceed by replacing it by a tractable analytical approximation, ¢(8). We focus on
so-called mean-field variational formulations (Xing and others, 2002; Attias, 2000) to construct such a
class, i.e., we assume that ¢(0) factorizes over some partition of 6, {6;};—1_s,

J
90 = a0);
j=1

no further assumption is made about the distribution, and in particular no constraint is imposed on the
functional forms of the g;(6;). Here, we consider the factorization

p d

P d
q(B,y.t,07%0) = {]_[Hq(ﬁst,yﬂ)} {]_[q(ws)} []_[q(tt)} q(07) ., (.1)
s=1 t=1

s=1 t=1

and turn the inference into an optimization problem where ¢(0) is obtained by minimizing its Kullback—
Leibler divergence KL (¢ || p) from the target distribution, p(6 | y). Because the marginal log-likelihood
may be written as

logp(y) = L(9) + KL (gl p) , (3.2)
where
p(©,0) f {p(G Iy)}
L(g) = ) log I =24 do, KL =— 9)1 dg,
@) /q( ) Og{ 20 } (qllp) q(0) log 20)

minimizing the Kullback—Leibler divergence amounts to maximizing £(g), which represents a lower
bound for log p(y). To this end, we observe that

J J
L(g) = / [ Jax60 {logp@,m — log qkwk)} do, - - - do,
k=1 k=1

= /qj(ej) /logp(y,e)l_[qk(ek)dek —logq;(9)) ¢ df; 4 cst

ki

(0
=/q/(9j)log{lM}d9j+cst, J=1,....J, (33)
' q;()

where cst is constant with respect to 6, and where we introduced the distribution
p—i(0;;y) = cst x exp [E_j {logp(y,G)}] s

with E_;{-} denoting the expectation with respect to the distributions g, over all variables 6;, k # j.
The right-hand side of (3.3) corresponds to the negative Kullback—Leibler divergence between g;(6;) and
p-i(8;; ), plus a constant. Hence, assuming that the g, (6;), k # j, are fixed, the distribution ¢;(6;) which
maximizes £(q) is ¢;(8;) = p_;(6;;»), i.e., the maximum of L£(g) occurs when

log ¢;(6)) = E_;{logp(y,0)} + cst, j=1...,J. (34)
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The relations (3.4) give rise to cyclic dependencies among the densities g;(6;). This suggests an iterative
algorithm whose convergence can easily be monitored by evaluating changes in the lower bound L(g).
Our choice (3.1) ensures that the coordinate updates can be derived in closed form; in particular, the semi-
conjugacy of our model implies that the prior densities of all parameters are preserved by the variational
densities. For instance, a spike-and-slab distribution with modified parameters is recovered at posterior

level, g(By, Vs) = q(Bs | Ve)q(Vsi) , with
:BSt | ySt - lsy NN(/’L/S,SD Gf?,st) ) ﬁst | yst - O,J/ ~ 80’ yst |y ~ Bemoulh <y?(tl)) 1)

where the variational parameters (g, oé’st, ys(,” are to be updated iteratively. Convergence is ensured by
the convexity of £(gq) in each of the ¢;(6;) (Boyd and Vandenberghe, 2004, Sections 3.1.5,3.2.4,3.2.5). The
algorithm and its derivation are given in Section 2 of the supplementary material available at Biostatistics
online.

4. EMPIRICAL QUALITY ASSESSMENT OF THE VARIATIONAL APPROXIMATION
4.1. Tightness of the marginal log-likelihood lower bound

In this section, we evaluate the closeness of the variational density g to the target posterior distribution
by approximating the Kullback—Leibler divergence KL (g || p). Because of relation (3.2), this amounts to
assessing the tightness of the variational lower bound for the marginal log-likelihood, £(g). For small
problems, the likelihood p(y) may be accurately approximated using simple Monte Carlo sums. We have

P P
p(y>=f~--fdwda-2 {Hp(wx)}p(o‘z)l'[ Yo pilveo ) [[romle)g,
s=1

t=1 | y€{0,1}P s=1

with

n P 2\ ~M2-m
an e (G ) fos (e 20) 4 =0,

-2
, = —n/2—
p(yt | oo ) —n/2 -2 n Ktm Sﬁr " —2\4v:/2
e A e N (e E= el [ (7)™,

otherwise ,

where

P
G =D Vs Vo2 = XK 40T S = I = XV X
s=1

V.0~ "y~

see Section 3 of the supplementary material available at Biostatistics online for details. As no closed form
is available for the remaining integrals, we use

1 1 d

m~->TI[{ > p<yz | Vr,(afz)@) ]&[p(ysf o) ¢,

i=1 t=1 | y€{0,1}? s=1

~


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data
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Fig.2. Log,, relative difference between the marginal log-likelihood and the variational lower bound. Left: indepen-
dent covariates and responses. Right: correlated covariates and responses, p = 0.75. Problems with p = 5 covariates,
of which py = 3 randomly selected as “active” (associated with at least one response), and d = 6 responses, of which
dy = 3 “active” (associated with at least one covariate). Each active covariate is associated with an additional active
response with probability 0.25 and explains on average 3.5% of the variance of its corresponding response(s). The
number of draws for the simple Monte Carlo approximations is / = 50 000; the number of replicates for each sample
size is 150.

where we independently generate
(67" ~ Gamma(r,v), o ~Beta(a,,b), s=1,....,p, i=1,...,1I. .1)

Figure 2 displays the relative difference {log p(y) — L(g)} / log p(y) for problems with p = 5 covariates,
d = 6 responses and increasing sample sizes, n. In the left panel, the covariates are independent of each
other, and so are the responses. In the right panel, the covariates are equicorrelated with correlation
coefficient p = 0.75, and so are the responses. In both cases, the mean relative difference is below 1%
with n = 50 and seems to decrease as n grows. Although we are not aware of any such study with which
to benchmark our results, these values seem very small, suggesting that our variational distribution ¢
adequately reflects the target distribution p, at least for small problems. Likewise, the variational lower
bound L£(g) may be used as a proxy for the marginal log-likelihood when performing model selection;
this use will be illustrated in Section 5.3. The fact that the variational lower bound remains tight in
the correlated data case is reassuring, as it suggests that the independence assumptions underlying the
mean-field factorization of ¢ may only weakly impact the quality of the approximation.

4.2. Comparison with Markov Chain Monte Carlo

We complement our quality assessment by comparing several variational posterior quantities with those
for MCMC inference on problems of moderate size. A fair comparison is not straightforward, as these
two types of inference rely on stopping rules and convergence diagnostics of very different natures. While
the convergence criterion for variational inference comes down to a tolerance to be prescribed, the ability
of MCMC sampling to adequately explore the model space for a given chain length can be difficult to
evaluate, and usually varies greatly with the problem size. To alleviate the risk of inaccurate MCMC
inference, we run 10 iterations and discard the first half. We also support our comparison with selected
quantities approximated by simple Monte Carlo sums, namely, the posterior probability of inclusion of a
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Table 2. Variational Bayes (VB), MCMC and simple Monte Carlo estimates for B and w (components
corresponding to noise averaged). Standard errors are in parentheses

Active Inactive
10x B2 B2 B2 Baa B2 Brest (average)
Truth —1.75 2.87 2.37 3.73 —4.76 0.00
VB —1.74(0.01) 1.86(0.01) 1.70(0.02) 2.26(0.01) —3.48(0.01) 0.02 (0.04)
MCMC —1.74 (0.33) 1.86(0.32) 1.69(0.34) 2.26(0.32) —3.48(0.34) 0.02 (0.14)

Active Inactive

w1 w2 w3 w4 Wrest (average)
True proportion of 0.2 0.2 0.2 0.4 0
active responses
VB 0.21(0.14)  0.25(0.15) 0.19(0.14) 0.33(0.17) 0.03 (0.06)
MCMC 0.23(0.18)  0.26(0.18) 0.21(0.16) 0.35(0.18) 0.04 (0.08)
Simple Monte Carlo 0.25 0.26 0.21 0.35 0.05
covariate X for a response y;,
1 « L
(l) i
plru=11y) = E;Z [13 > p(yﬂlw )]_[p(yn/lw”)
i=l | /#t | ypel0,1)P s'=1
(@) £
X Z (yt | yt: 72 ) 1_[ p (J/St | a)(l)) b
ye€f0,1)P: yg=1 s'=1

and the posterior mean of wy, controlling the proportion of responses associated with covariate Xj,

P
E(o, |y) = p%y) ;Z o TT1 D2 p(yt | v (072) (l)) ]_[p(m | wif)) ,

i=1 =1 | yefo,1p §=1

with the samples (o 2) and {0} generated as in (4.1), with / = 2 x 10° draws.

Table 2 reports the variational, MCMC and simple Monte Carlo estimates of § and w for a problem
with p = 8 covariates, d = 5 responses for n = 250 samples, and with each nonzero association
explaining on average 13.5% of response variance. The estimates all agree closely. Those of the five
active regression coefficients, f1,, B2.1, P32, Pa1, and Ba,, are significantly different from zero, unlike the
average estimate of the inactive coefficients. A plot of the MCMC and variational posterior densities (the
latter obtained in closed form), given in Figure 1 of the supplementary material available at Biostatistics
online, shows that the posterior modes of the inactive coefficients are all zero. Moreover, in this case the
variational distributions are usually solely made up of a clear spike at zero, whereas the MCMC histograms
correspond roughly to a centered Gaussian distribution with average standard deviation 0.014. Table 2 also
indicates a shrinkage effect for both variational and MCMC posterior means of the nonzero 8 compared
to the true values. This is a consequence of the spike-and-slab prior but does not seem to hamper the
detection of the association signals, since the PPI of the true nonzero associations are concentrated around
1, while those corresponding to noise are usually much lower, whether obtained by MCMC, variational
or simple Monte Carlo procedures; see Figure 2 of the supplementary material available at Biostatistics
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online. Finally, the estimates of {w;} in Table 2 provide a fair approximation to the actual proportion of
responses associated with a given covariate.

Two additional numerical experiments comparing variational and MCMC posterior quantities are pro-
vided in Section 3 of the supplementary material available at Biostatistics online. One compares the
estimates of w and t with the true values when the data are generated from the model with p = 100
covariates and d = 10 responses. It also provides receiver operating characteristic (ROC) curves assess-
ing the pairwise variable selection performance for both inference types. The other simulation gathers
the observed values, y, and the estimated posterior means of X 8 obtained by variational and MCMC
procedures and an oracle. Both experiments indicate equivalent performance for MCMC and variational
inferences.

5. STATISTICAL PERFORMANCE
5.1. Predictor selection

The problems considered in Section 4.2 were small enough to allow accurate and tractable MCMC
inference. In this section, we assess the performance of our approach on larger problems by comparing
it to popular variable selection methods; i.e., with joint modeling of outcomes and covariates (elastic
net for multivariate Gaussian responses), with joint modelling of covariates only (Bayesian multiple
regression based on MCMC inference, “BAS”, or variational inference, “varbvs”), or with fully marginal
modelling (univariate ordinary least squares and “ImBF” Bayesian regressions). Complete descriptions and
references are in Section 4.2 of the supplementary material available at Biostatistics online. The methods
are compared by measuring their ability to detect the active covariates, i.e., to determine which covariates
are associated with at least one response. For our variational approach, this task is achieved by ranking the
posterior means of the w, which control the proportion of responses associated with a given covariate.

Our data-generation design is based on generally accepted principles of population genetics. We
simulate SNPs under Hardy—Weinberg equilibrium from a binomial distribution with probabilities corre-
sponding to minor allele frequencies of common variants, chosen in the interval (0.05,0.5) uniformly at
random, and we generate outcomes from Gaussian distributions with specific error variances. The depen-
dence structure of these variables is either enforced block-wise with preselected auto- or equicorrelation
coefficients or chosen to be that of real data. The labels of the active SNPs and outcomes are picked
randomly, and each active SNP is associated to one (randomly selected) active outcome and to each of the
remaining active outcomes with a prescribed probability; some outcomes are therefore under pleiotropic
control. The proportions of outcome variance explained per SNP are simulated for all associations from a
positively skewed Beta distribution to favor the generation of smaller effects, and they are then rescaled
to match a given average proportion. To mimic the result of natural selection, the effect sizes are inversely
related to the SNP minor allele frequencies. For more details, see Section 4.1 of the supplementary material
available at Biostatistics online.

We perform 48 replications for each of three simulation configurations. The first configuration has
moderate numbers of covariates (p = 5000) and outcomes (d = 50), and allows time-consuming methods
to run within hours. The second has many outcomes (d = 20000) and the third has many covariates
(p = 150000); these numbers approach those encountered in molecular QTL studies. The remaining
settings (numbers of active outcomes and covariates, number of observations, effect sizes, etc) are detailed
in the caption to Figure 3.

The ROC curves in Figure 3 indicate that our approach outperforms the other methods. It is appreciably
more powerful for low false positive rates, which are of particular interest for the highly sparse scenarios
typically expected for genome-wide association studies. Despite the correlation among the covariates and
the outcomes, our method does not seem to suffer from the independence assumptions implied by the
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Fig. 3. Truncated average ROC curves with 95% confidence intervals for predictor selection obtained from 48 repli-
cations. The competing methods are used in three studies of different sizes, based on their computational tractability.
Left: p = 5000 covariates spatially autocorrelated with correlation coefficient py = 0.75, d = 50 outcomes equicor-
related by blocks with four blocks of equal sizes and correlation coefficients py = 0.8,0.3,0.2, and 0.5, po = 100
active covariates, dyp = 40 active outcomes, n = 250 observations, probability of association with an additional
outcome p,4¢ = 0.15, average outcome variance percentage explained by the active covariates p,. = 30.0%. Middle:
p = 500 independent covariates, d = 20 000 outcomes equicorrelated by blocks of size 10 with py € {0.5,...,0.8},
po = 300, dy = 12500, n = 300, pgqa = 0.01, pye = 55.8%. Right: p = 150000 covariates autocorrelated by
blocks of size 100 with py € {0.5,...,0.9}, d = 200 outcomes with same correlation structure than real protein
expression levels (Diogenes study, Larsen and others, 2010, see Section 5.1 of the supplementary material available
at Biostatistics online), pg = 500, dy = 150, n = 200, paq = 0.05, pye = 62.6%. The univariate ordinary least
squares and varbvs curves overlap.

mean-field approximation, as suggested by the results of Section 4.1. The marginal ordinary least squares
and marginal ImBF regressions appear to miss many associations because of their univariate modeling
of covariates, but jointly accounting for the covariates may not suffice, as suggested by the rather poor
performances of the Bayesian multiple regression approaches, BAS and varbvs, which apply separate
multiple linear regressions for each outcome. It appears that the ability of our approach to exploit the
similarity across outcomes yields more power to detect their shared associations. Finally, even though the
multivariate elastic net models jointly the covariate and outcome variables, its inference suffers from the
assumption that to each covariate corresponds a single regression coefficient, shared for all responses. As
a consequence, regression estimates of covariates with weak or few associations with the responses may
be shrunk to zero.

5.2. Combined selection of predictors and outcomes

Unlike the classical variable selection methods used as comparators in Section 5.1, our approach and
those of HESS (Richardson and others, 2010) and iBMQ (Scott-Boyer and others, 2012) are tailored to
molecular QTL problems: they quantify the associations between each covariate-response pair in a single
model, and thus provide flexible and unified frameworks for detecting pairs of associated SNP-molecules,
as well as pleiotropic SNPs associated with many molecular outcomes. In this section, we compare the
three approaches in terms of the posterior quantities used to perform such selection. As both HESS and
iBMQ rely on MCMC sampling, we consider smaller problems than in Section 5.1 in order to ensure
convergence within a reasonable time. The simulated datasets have p = 250 covariates, of which p, = 50
are active, and d = 100 outcomes, of which d, = 50 are active, the probability of association being 0.05,
for n = 250 samples. On average, the active covariates account for 22% of the variance of an outcome


https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxx007#supplementary-data

630 H. RUFFIEUX AND OTHERS

VB vs HESS VB vs iBMQ
Posterior probabilities of inclusion Posterior probabilities of inclusion
= : | 2 :
~ 7] o aclive Nbof "o 7 o 5 e ] =] o g gﬁ: 0 oW®o On BoWe
X inactive  Nbol'x:9 ' 500 :éo . X o o 5
0 ¢ % © %
e X ®0 & & o o X
& ® ¥ o ®
x X 2,
b 610
m. . % o % x (q §o>‘ x |
=} H o Nbof'0':35 |
= 4. 9 =) o Nbof'x:13 |
] bof o:4 i
g ' Nb of ' : 10 e
L34
X 0 O® 4
A%
o | X ¥ O o |
o o
: 5 © active
g - P 4 3 KX OX HO g - ] * inactive
T T T T T T T T T T T T
0.0 0.2 0.4 0.8 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
PPI HESS PPIIBMQ

Fig.4. Marginal PPI obtained by our approach, and those of HESS (left) and those of iBMQ (right), for a problem
with p = 250 covariates of which py = 50 are active, with d = 100 outcomes, of which dy = 50 are active, and
n = 250 samples.

with which they are associated. HESS was run with three MCMC chains, the number selected by the
authors for their simulations but with 50 000 iterations of which 25 000 were discarded as burn-in. For
iBMQ, 50 000 iterations were saved after removal of 50 000 burn-in samples, as suggested in the package
documentation for a problem of comparable dimensions. Inference for one replication took on average 10
s with our method, around 21 min with iBMQ and 4 h with HESS (GPU computation option disabled,
since no GPU was available to us) on an Intel Xeon CPU at 2.60 GHz with 64 GB RAM.

Figure 4 compares the marginal PPI obtained by our method with those of HESS and iBMQ. We
observe a strong correlation between our approach and HESS, with a quite good ability to discriminate
between active and inactive covariate-response pairs. There is a discrepancy at the zero ordinate, where
HESS signals a series of false positives (FP) and few true positives (TP). The comparison with iBMQ is
more contrasted, as the values of its PPI for many true associations are below 0.1 and indistinguishable
from noise. The same conclusions are reached when running the three methods on 47 additional datasets,
as suggested by Table 3, which gathers sensitivity and specificity measures based on median probability
models (Barbieri and Berger, 2004) (consisting of those covariate-response pairs whose posterior inclusion
probability is higher than 0.5). As discussed in Section 2, control of signal sparsity can be induced through
the prior for wy, still, rather than median probability models, one may prefer to use a data-driven false
discovery threshold in order to prescribe a desired level of false discoveries.

Figure 5 compares the patterns recovered by HESS and by our method, again based on the marginal PPI
from the first replicate. Visual comparison of the TP rates suggests that the abilities of the two approaches
to detect the true associations are very similar. Our approach indicates the presence of associations in the
region of active covariates only, whereas the HESS pattern is blurrier in regions of inactive covariates.
The posterior means of {w,} from our approach discriminate quite well between active and inactive
covariates, and so do, for HESS, the posterior probabilities pr(p, > 1 | y) (s = 1,...,p), described
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Table 3. Mean true positive rate (TPR) and true negative rate
(TNR) for our approach, HESS and iBMQ based on median prob-
ability models. Settings: p = 250, py = 50, d = 100, dy = 50,
n = 250, 48 replicates. Standard errors are in parentheses

100x TPR TNR

VB 58.9 (5.0) 99.9 (0.0)
HESS 57.9(5.3) 99.9 (0.0)
iBMQ 0.1(0.2) 99.8 (0.0)
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Fig. 5. Posterior quantities for detection of associations with HESS (left) and with our approach (right), for a simulated
dataset with p = 250 independent covariates (here only the first 100 are displayed), of which py = 50 are active and
placed first, with d = 100 responses (50 active) and n = 250 individuals. Marginal PPI (central panel), true positive
rates for predictor and response selection based on posterior probability of inclusion being > 0.5 (bottom and right
panels), posterior probability pr(os; > 1 | y) for HESS and posterior mean E,(wy | y) for our approach (left panel).
The simulated associations are shown by crosses.

by Richardson and others (2010) as capturing the propensity for a given covariate to influence several
responses simultaneously.

5.3. Application to a real mQTL dataset

We end these numerical experiments by illustrating our approach on data from a large multicenter dietary
intervention study called Diogenes (Larsen and others, 2010). The study contains a series of genomic
data types collected at different stages of a dietary treatment provided to the cohort. Its goal is to uncover
molecular mechanisms underlying the metabolic status of overweight individuals and improve under-
standing of the factors predisposing weight regain after a diet. Here, we perform a metabolite quantitative
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Fig. 6. SNPs and pairwise associations declared by our approach for the Diogenes study. Left: Manhattan plot for
SNP association and evidence of pleiotropy. Right: PPI for SNP-metabolite associations declared at estimated FDR
of 25% and overlap with the associations declared by the varbvs method at same FDR level (crosses) and declared
by univariate screening at Benjamini—-Hochberg FDR of 25% (underscores).

trait locus (mQTL) analysis; in this context, the metabolites may be viewed as proxies for the clinical
condition of interest, weight maintenance. We also use this illustration on real data to further highlight
the benefits of modeling the outcomes jointly via an extensive permutation-based comparison with the
single-response variational method varbvs (Carbonetto and Stephens, 2012).

After quality control, the data consist of p = 215,907 tag SNPs and d = 125 metabolite
expression levels, adjusted for age, center and gender, for n = 317 individuals. The SNPs were col-
lected on Illumina HumanCore arrays and the metabolites were quantified in plasma using liquid
chromatography-mass spectrometry (LC-MS). They span cholesterol esters (CholE), phosphatidylcholines
(PC), phosphatidylethanolamines (PE), sphingomyelins (SM), di- (DG) and triglycerides (TG). Section
5.1 of the supplementary material available at Biostatistics online provides more details.

In order to adjust for multiplicity, we specify the hyperparameters for w according to the discussion
of Section 2 and choose the prior average number of active SNPs, p*, by grid search within a 3-fold
cross-validation procedure that maximizes the variational lower bound. After hyperparameter selection,
the algorithm converged in 83 iterations, taking about 10 h on an Intel Xeon CPU at 2.60 GHz with 512
GB RAM. The posterior means E, (w; | y) suggest the presence of several active SNPs, spread across the
chromosomes (Figure 6), but we use the marginal posterior inclusion probabilities, E,(yy | »), to declare
pairwise associations and active SNPs.

We compare varbvs and our method on real data based on the number of associations declared by
each method at specific false discovery rates estimated by permutations. We apply Efron’s Bayesian
interpretation of the false discovery rate (Efron, 2008) to PPI, and use an empirical null distribution based
on B = 400 permutations to compute the estimate

FDR(7) = 1..aHPPL > L (5.1)
#(PPL, > 1)
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Table 4. Number of associations declared by our method and by
varbvs, and number of signals in common at selected permutation-
based false discovery rates. For each case, the number of associations
also declared by univariate screening (univ.) at Benjamini—Hochberg
FDR of 25% is in parentheses.

# declared:
Permutation-based FDR (%) VB varbvs VB N varbvs
5 21 19 8
10 26 19 8
15 47 21 10
20 76 31 12
25 89 (48 univ.) 47 (19 univ.) 14 (13 univ.)

for a grid of thresholds 7; we then fit a cubic spline to the resulting false discovery rates to find thresholds
for specific rates. The analysis suggests that our method is more powerful, with 89 associations declared
at an estimated FDR of 25%, against 47 for varbvs; the superiority of our method is further highlighted
by Table 4. Figure 6 displays the associations declared by our method and the overlap with those declared
by varbvs at estimated FDR of 25%); the associations detected also largely agree with those obtained with
marginal screening at Benjamini—Hochberg FDR of 25%.

Database searches on the functional relevance of the detected associations give hints of promising bio-
logical functions related to metabolic activities for 12 of the 25 SNPs declared as active by our procedure.
For instance, the most outstanding SNP Figure 6, rs4316911, shows many associations with triglyceride
levels, and turns out to be located less than 150kb from the protein coding gene ITGA6 known to be
linked to diabetic kidney disease (Iyengar and others, 2015). The second most prominent pleiotropic
SNP, rs174535, is declared by our approach to be associated with phospholipids, more precisely with 14
different phosphatidylcholine levels, of which four are ether-linked/plasmalogen (PC-O). Interestingly,
this latter SNP has been recently reported to be related to metabolite levels; among others, it was found to
be associated with trans fatty acid levels and plasma phospholipid levels (Mozaffarian and others, 2015),
in line with our findings. Moreover, it was found to be an eQTL for the fatty acid desaturase genes FADS1
and FADS2. The SNP 53903703 too has been identified as associated with very long-chain fatty acid
levels (Lemaitre and others, 2015). This seems to agree with our findings, in which 73903703 exhibits
associations with sphingomyelin, a type of lipid containing fatty acids of different chain lengths. The
complete subset of SNPs with metabolism-related links found by our procedure is given in Section 5 of
the supplementary material available at Biostatistics online. Additional details on this real data study, as
well as on its replication using simulated data, are also provided there.

6. CONCLUSIONS

We have described a scalable and efficient approach to joint variable selection from large numbers of
candidate predictor and outcome variables. As it exploits the similarity across outcomes through a flexible
hierarchical structure, our procedure outperforms the most popular predictor selection approaches in
high-dimensional set-ups. The variational approximation on which our approach relies provides accurate
posterior quantities, with reduced computational effort relative to MCMC procedures; in particular, it
yields inferences comparable to those of the MCMC procedure HESS (Richardson and others, 2010).
Convergence control is automatic, whereas convergence assessment for MCMC algorithms can be difficult,
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especially in high dimensions. Our simulations also show that variable selection remains powerful when
the predictors and outcomes are correlated, notwithstanding the independence assumptions underlying
the mean-field factorization.

The key added-value of our approach is its applicability to molecular QTL datasets without the need
for prior dimension reduction. In an application, our approach recovered several previously reported
SNP-metabolite associations, and declared more associations than the single-outcome method “varbvs”
(Carbonetto and Stephens, 2012) at prescribed false discovery rates, thus highlighting the benefits of
jointly modeling the outcomes. To the best of our knowledge, no competing Bayesian approach for joint
inference on two high-dimensional sets of variables can deal with the problem sizes typically encountered
in molecular QTL analyses.

Bioinformatics is moving towards whole-genome analyses, for which several million genetic variants
need to be considered, so it seems worthwhile to consider further speed-up strategies for our approach.
One option is to use new optimization procedures. So-called natural gradient methods, which rely on the
Riemannian structure of variational approximate distributions, seem particularly attractive, as they can be
orders of magnitude faster than conventional gradient algorithms (Honkela and others, 2008). Another
possibility is a “split-and-merge” strategy, i.e., first partitioning the variable space and then inferring a
global variational distribution on the aggregated dataset. Tran and others (2016) designed a variant of
this approach for sample space partitioning. At the recombination step, they proposed to “merge” the
variational distributions by exploiting the independence assumptions of the mean-field formulation. Both
strategies could lead to significant computational gains.

7. SOFTWARE

The algorithm and the data-generation functions used in this article are implemented in the publicly
available R package locus.

SUPPLEMENTARY MATERIAL

Supplementary material available at http://biostatistics.oxfordjournals.org contains technical appendices,
additional simulations, runtime profiling and details on the real data example.
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