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Abstract Although it is beyond doubt that mechanical
stimulation is crucial to maintain bone mass, its role in pre-
serving bone architecture is much less clear. Commonly, it
is assumed that mechanics helps to conserve the trabecular
network since an “accidental” thinning of a trabecula due to
a resorption event would result in a local increase of load,
thereby activating bone deposition there. However, consid-
ering that the thin trabecula is part of a network, it is not
evident that load concentration happens locally on the weak-
ened trabecula. The aim of this work was to clarify whether
mechanical load has a protective role for preserving the tra-
becular network during remodeling. Trabecular bone ismade
dynamic by a remodeling algorithm, which results in a thick-
ening/thinning of trabeculaewith high/low strain energy den-
sity. Our simulations show that larger deviations from a regu-
lar cubic lattice result in a greater loss of trabeculae. Around
lost trabeculae, the remaining trabeculae are on average thin-
ner. More generally, thin trabeculae are more likely to have
thin trabeculae in their neighborhood. The plausible consid-
eration that a thin trabecula concentrates a higher amount
of strain energy within itself is therefore only true when
considering a single isolated trabecula. Mechano-regulated
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1 Introduction

Bone is organized either in the high-density type of cortical
(or compact) bone or in the low-density type of trabecular
(or cancellous) bone. In humans, trabecular bone is found
in the vertebral bodies, in the long bones close to the joints
and in the flat bones such as the ilium. Considering trabec-
ular bone within the vertebrae, the bone volume fraction is
roughly 15% for healthy individuals and decreases with age,
in particular with osteoporosis, to values lower than 10%
(Stauber and Müller 2006; Thomsen et al. 2013). Trabecular
bone in the vertebrae is arranged in a network-like architec-
ture, with the struts called trabeculae approximately form-
ing a cubic lattice (Jensen et al. 1990; Yeh and Keaveny
1999), where the mean thickness of the trabeculae is about
140µm(Hildebrand et al. 1999). Considering the pivotal role
of the trabecular architecture on the mechanical competence,
especially in an osteoporotic scenario, the term architectural
bone quality has been coined (Hernandez andKeaveny 2006;
Seeman and Delmas 2006) to describe how the architecture
(e.g., anisotropy and connectivity) influences the mechanical
behavior. This research profits from computational studies
on cellular solids, with trabecular bone idealized as a cellu-
lar structure consisting of a network of interconnected beams
(Jensen et al. 1990; Lenthe et al. 2006). In trabecular bone,
the mechanical role of various microstructural features of
the trabecular network such as volume fraction, anisotropy,
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mean trabecular thickness, mean trabecular number and con-
nectivity (Kabel et al. 1999; Yeh andKeaveny 1999; Guo and
Kim 2002; Gibson 2005; Nazarian et al. 2006) as well as of
single trabeculae like slenderness ratio and local trabecular
orientation (Stauber et al. 2006; Liu et al. 2009; Easley et al.
2012) has been extensively detailed and interpreted accord-
ing to the cellular solids framework. Moreover, the trabecu-
lar architecture being neither completely regular nor random
(Fratzl and Weinkamer 2007), the role of disorder on both
stiffness and strength is a particularly critical aspect. In cel-
lular architectures, the localization of deformation and the
subsequent failure are highly influenced by the presence of
disorder and defects (Luxner et al. 2009a, b).

As a living material, trabecular bone has the intriguing
property that its architecture can change and adapt to the
mechanical needs. Biologically, this is possible due to the
process of bone remodeling, where specialized cells resorb
and deposit bone packets from and onto the surface (Parfitt
1994). This process is thought to be (at least partly) mechan-
ically controlled, following the principle that bone is more
likely deposited at sites in the network where local load-
ing is high, and resorbed in locations of mechanical disuse
(Schulte et al. 2013a). Computer simulations demonstrated
that structural bone adaptation can be understood based on
such a localmechano-regulation of bone (Huiskes et al. 2000;
Tsubota et al. 2002; Dunlop et al. 2009; Hartmann et al.
2011; Schulte et al. 2013b). In the remodeling process, it is
commonly believed that mechanical loading has a protective
role not only in preserving bone mass (Frost 1987), but also
in conserving the trabeculae (Smit and Burger 2000). This
means that an “accidental” thinning of a trabecula would
locally increase the mechanical strain in that location, which
would be sensed by specialized cells (osteocytes) leading to
the attraction of other cells (osteoblasts) for bone deposition.
For a single and isolated trabecula, finite element (FE) calcu-
lations demonstrated this function of the mechanical stimuli
and explained the natural succession of bone resorption and
subsequent formation during remodeling (Smit and Burger
2000; Mulvihill et al. 2008). A recent FE study on a two-
dimensional regular honeycomb lattice including defects
casts some doubt on this protective role of mechanical stimu-
lation (Ruffoni et al. 2010). The study demonstrated that the
reduction of thickness in a three-armed joint—i.e., the three
struts meeting in a point of the network—of a regular honey-
comb does not necessarily result in an increase in the local
strain energy density (SED) in these struts. In contrast, the
thinned struts, but also the struts in the closest environment,
had low values of SED. Interpreting this result in terms of
a mechano-regulated remodeling process implies that these
already thin trabeculaewouldundergo further resorptionwith
the risk of being eventually completely resorbed.

The aim of the current study was to analyze the connec-
tion between the trabecular architecture, in particular archi-

tectural disorder, and the protective function of mechani-
cal forces in a three-dimensional system which undergoes
mechanically regulated remodeling. This protective function
would be reflected in (i) that a loss of trabeculae is avoided,
and therefore, the trabecular architecture is preserved. If the
protection is not that rigorous, at least (ii) holes in the archi-
tecture formed due to the loss of trabeculae should be sur-
rounded by rather thick trabeculae to avoid the local “weak-
ness” spreading,whichwould undermine themechanical per-
formance of bone. To address this question, we employ an
idealized model for trabecular bone with the following main
features: Firstly, the model is three-dimensional with cylin-
drical trabeculae arranged in a cubic structure as observed, for
example, in human vertebrae (Jensen et al. 1990). Secondly,
the model considers a structural disorder that allows a vari-
ation in the thickness of the trabeculae and an architectural
disorder that allows deviations from a perfect cubic lattice
and its known mechanical singularities (Luxner et al. 2007).
Thirdly, the trabecular architecture can evolve in time using
a mechano-regulated remodeling algorithm. The mechano-
regulation is characterized by a single parameter, a reference
value for the strain energy density SEDref . If the local SED
in a trabecula is above this reference value, the thickness is
increased, where the increase is assumed to be linear with the
excess of SED, but cannot exceed a maximum increase due
to constraints given by bone biology. Likewise, resorption
occurs for local values of the SED below SEDref . Resorption
can result in a complete loss of trabeculae, which cannot be
restored once they are lost. In a simulation, this algorithm is
iteratively applied for a total simulated time corresponding to
roughly 50years. To assess the role ofmechanical stimulation
for bone architecture, we analyze the overall bone volume,
the frequency distributions of the thickness of the trabeculae
and how these thicknesses are distributed spatially within the
lattice. One additional focus is to study the local environment
of either completely resorbed or unusually thin trabeculae,
to investigate whether such mechanically weak points in the
architecture are “protected” by thickened neighboring tra-
beculae.

2 Methods

2.1 Idealized trabecular network

In our model, trabecular bone was described as a three-
dimensional cubic lattice consisting of 20×20×20 repeating
unit cells with a lattice constant (corresponding to trabecu-
lar separation) of 1mm (Fig. 1a). The volume of the virtual
bone was therefore 8 cm3. The geometry of the individual
trabeculae is simplified to cylindrical rods (Jensen et al. 1990;
Guo and Kim 2002). To account for the natural variations in
the thickness of real trabeculae, we assigned to each trabec-
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Fig. 1 Schematic illustration of the framework for trabecular bone
remodeling. a The trabecular lattice is compressed by a hydrostatic
force. b The strain energy density (SED) in each trabecula is computed
by beam finite element (FE) analysis. c The trabeculae to be remodeled
(blue) are randomly selected until the total remodeled surface reaches
10% of the total bone surface. Applying the remodeling rule (Eq. (1))
for each selected trabeculae, the new lattice configuration is obtained

ula a different thickness chosen from a Gaussian trabecu-
lar thickness distribution (mean 0.14mm, standard deviation
0.042mm), which is within the range of reported values for
healthy human vertebrae (Hildebrand et al. 1999; Yeh and
Keaveny 1999; Stauber and Müller 2006). Furthermore, as
the trabecular network even in the vertebra does not have a
regular cubic order (Jensen et al. 1990), some architectural
disorder was introduced in the lattice by perturbing the loca-
tion of joints (i.e., the intersection points of six trabeculae),
excluding joints on the boundary of the cubic lattice. Specifi-
cally, the architectural disorder was attained by shifting each
inner joint of the lattice, where the amount and direction
of the shift was randomly selected from three-dimensional
Gaussian distributions with mean equal zero and a standard
deviation σ . The value of σ , given in units of the spacing of
the regular lattice, characterizes the amount of architectural
disorder. We studied lattices with a disorder of 0% (regular
lattice), 10, 20, 30 and 40%. For each value of disorder, five
different initial architectures of the lattice to start the simula-
tion with were generated to account for the variability in the
architecture when disorder is introduced.

2.2 Remodeling framework

The iterative remodeling framework, visualized in Fig. 1,
consisted of two main steps: first the step of mechanical
assessment followed by the remodeling event. The trabecular
lattice was compressed hydrostatically by a force of 680N
(uniformly distributed over all the surface nodes) correspond-
ing to an apparent stress of 1.7MPa (Dunlop et al. 2009), as
reported for physiological loading of human vertebral bone

(Adams and Dolan 1995) (Fig. 1a). In order to prevent rigid
body movements, one node at the corner of the lattice was
fixed in all six degrees of freedom. The mechanical prob-
lem was solved with the commercial finite element analysis
softwareABAQUS/standard (Version 6.10-EF, Simulia,US).
Each trabecula of the latticewasmodeledwith four beam ele-
mentswith circular cross section (elementB32 inABAQUS).
These are 3-node, second-order elements that account for
axial, bending and shear deformation. The sufficient accu-
racy of such a meshing was demonstrated in previous studies
(Luxner et al. 2005; Ruffoni et al. 2012a), where the sim-
ulated mechanical properties deviated less than 0.1% when
using more than four beam elements per trabecula (Ruffoni
et al. 2012a). Bone tissue was described as an isotropic lin-
ear elasticmaterial withYoung’smodulus and Poisson’s ratio
of 10GPa and 0.3, respectively, as used in earlier computa-
tional studies on trabecular bone (Ruffoni et al. 2012a, b) and
in agreement with values reported in literature (Keaveny et
al. 2001; Carretta et al. 2013). A typical mesh had around 105

elements and required about 10min to be solved under the
assumption of small deformations on a normal PC (4 cores
processor with 2.66GHz of frequency and 8GB of primary
memory). Themain outcome of the FE analysiswas the strain
energy density (SED) stored in each trabecula (Fig. 1b).

In the second step of the algorithm, the trabeculae were
then remodeled according to their local SED. In living human
trabecular bone, not all trabeculae are remodeled at the same
time. The percentage of the trabecular bone surface which is
undergoing remodeling at a given time point is around 10%
(Chavassieux et al. 1997) of the total trabecular surface as
measured in standard bone histomorphometry (Parfitt et al.
1987). Here, we described remodeling by randomly selecting
the trabeculae, which can undergo remodeling in an iteration
of the simulation, until the total remodeled area was 10% of
the current total surface area (Fig. 1c). How much of each
selected trabeculawas remodeled, was determined according
to its local SED. The random selection process allowed each
trabecula to have a chance to be remodeled, as remodeling
does not occur exclusively at the locations with the highest or
lowest strains (Schulte et al. 2013a). During a single remod-
eling event in trabecular bone, a roughly longitudinal and
semi-cylindrical “trench” (Parfitt 1994; Jee 2001) is remod-
eled along the trabecula; in our model, this is reflected in
a reduction or increase of the cross-sectional area and thus
volume of the trabecula. To calculate in themodel the change
in the cross-sectional area (�A) of the selected trabecula as
a function of the local loading, a deterministic remodeling
rule was implemented, where�A was assumed linearly pro-
portional to the local SED of the trabecula (Fig. 2a):

�A =
{

�Amax
SEDref

SED − �Amax, SED < 2SEDref

�Amax, SED > 2SEDref
. (1)
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Fig. 2 a Deterministic remodeling rule (line in black) with the change
in the cross-sectional area of a trabecula (�A) assumed linearly propor-
tional to the local SED of the trabecula. The slope of the remodeling rule
(i.e., the mechano-sensitivity of the remodeling process) increases by
decreasing SEDref , which is the value of SED at which no remodeling
takes place. The other different colored remodeling rules were used for
simulations presented in plots (b)–(d). b Time evolution of the change
in bone volume fraction (BV/TV) of the virtual bone for different values

of SEDref . Final steady-state probability distributions of (c) trabecular
thickness and (d) trabecular SED obtained with different SEDref . The
SED is normalized by the chosen value of reference SED, SEDref−final,
corresponding to 23.05%of the initial mean SED in the lattice. The blue
curve in (c) indicates the initial Gaussian probability distribution used
for all simulations and in (d) the corresponding initial SED probability
distribution at 0% disorder

The maximum bone resorption (�Amax), occurring at zero
SED, was estimated based on histomorphometric measures,
assuming a resorption pit of a semi-cylindrical shape with a
radius of 50µm (Parfitt 1994; Rusconi et al. 2012):

�Amax = π (50µm)2

2
= 3925µm2. (2)

Likewise, maximum bone formation was also bounded by
the same value�Amax, corresponding to the amount of bone
necessary to completely refill the biggest excavated pit. The
SEDvalue atwhich no remodeling takes place (�A = 0)was
referred to as reference SED (SEDref) (Fig. 2a). In line with
our intention to keep the mechanical control of the remodel-
ing process as simple as possible, SEDref was the only free
parameter in the proposed remodeling rule.
Due to a remodeling event, a trabecula having an initial
thickness T was either uniformly thinned or thickened by
an amount �T equal to:

�T =
√
T 2 + 4�A

π
. (3)

As a result of an iteration step, a new lattice characterized
by changes in the thickness of some of its trabeculae was
generated, and it was used as input for the subsequent FE
analysis. Simulations using this iterative algorithm were ter-
minated after 100 iteration cycles corresponding to 50years
of remodeling. Within this time period, all the trabeculae in
the lattice undergo remodeling at least once. The conversion
of the iteration time to real time was performed knowing that
one iteration corresponded to the period of a total remodeling
cycle of about 6months (Parfitt et al. 1987).

3 Results

3.1 Influence of the set point SEDref

Firstly, it was determined whether the system approaches a
steady-state configuration, and if it does, this configuration
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was characterized. The simplicity of our approach has the
advantage that the model includes only one “free”—i.e., not
based on experimental data—parameter (SEDref) to define
the remodeling rule (Fig. 2a). Figure 2b shows the time evo-
lution of the percentage changes of bone volume fraction
BV/TV (i.e., bone volume divided by tissue volume) for dif-
ferent values of SEDref when starting the simulations from
an architecturally fully ordered cubic lattice with a Gaussian
thickness distribution (blue line, Fig. 2c and Appendix A).
The value of SEDref is given in units of the mean SEDwithin
the ordered cubic lattice after the initial hydrostatic compres-
sion, SEDmean, and the corresponding SED distribution is
plotted in Fig. 2d—blue curve (see alsoAppendixA). Choos-
ing SEDref = SEDmean, BV/TV drops in time and attains an
approximately constant value after 40yearswith roughly half
of the initial bone volume lost (Fig. 2b). The virtual bone is
not mechano-sensitive enough, i.e., the value of SEDref is too
high, to preserve the bone volume. Preservation of the vol-
ume is achieved when choosing SEDref = 0.2305 SEDmean.
In this case, the time evolution of BV/TV exhibits a peak at
about 8years and then approaches its steady-state value from
above (Fig. 2b). The corresponding trabecular thickness dis-
tributions and SED distributions obtained after 50years for
the different values of SEDref are shown in Fig. 2c and d,
respectively. For low values of SEDref , the SED distribution
is strongly peaked (Fig. 2d) as expected for an algorithm
whose driving force is the homogenization of the SED. Also,
the trabecular thickness distribution is peaked since the lat-
tice is ordered, and consequently, the same value of the SED
is obtained for a specific thickness of the trabecula. However,
for high values of SEDref , a different behavior is observed
with bimodal distributions for both SED and thickness. A
detailed explanation of this observationwill be provided later
in the Discussion and Appendix B. All the subsequent sim-
ulations in this work are performed with SEDref equal to
23.05% of the initial mean SED, which avoids large changes
in the bone volume compared to the initial condition and
hence allows to investigate the behavior of trabecular archi-
tecture independently from large variations in bone volume
fraction.

3.2 Role of architectural disorder on lattice structural
evolution

The next set of computer simulations tested the influence of
architectural disorder on the dynamic behavior of the virtual
bone lattice. For the initial conditions, an identical Gaussian
trabecular thickness distribution was always used. As a con-
sequence, the introduction of more disorder in the initial
configuration of the lattice also leads to an increase in the
initial value of the bone volume fraction, BV/TV. However,
even in the case of highest disordered studied (i.e., 40%
disorder), the increase of the initial BV/TV was not larger
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Fig. 3 a Time behavior of the change in bone volume fraction (BV/TV)
of the trabecular lattice for different levels of architectural disorder. Cor-
responding steady state b thickness and c SED distributions obtained
by increasing the amount of architectural disorder from 0% (black) to
40% (red). The blue curves again indicate the frequency distributions
at the beginning of the remodeling process

than 1.95%. The reported changes of BV/TV are normalized
again to their initial value (0% at the start of all simulations)
(Fig. 3a). The time evolution ofBV/TV for latticeswith differ-
ent amounts of architectural disorder shows a similar behav-
ior as in the ordered lattice: After a peak in bone volume,
which is attained before 10years, the bone volume decreases
again and approaches its steady-state value (Fig. 3a). The
steady-state value of BV/TV increases with disorder in a
nonlinear way, since a change in disorder from 0 to 10%
increases BV/TV by only 0.25%, while changing disorder
from 30 to 40% results in a 2.4% increase (see also Fig. 4).
For the largest architectural disorder of 40%, the final value
of BV/TV is 6% larger than the initial volume. This 6% dif-
ference in BV/TV is already almost present in the difference
in peak heights between 0 and 40% disorder (Fig. 3a), so
that the approach to steady state from the maximum value of
BV/TV is similar for all the studied lattices. That a steady-state
configuration was attained at 50years, when the remodeling
simulations are stopped, is corroborated by looking at the
corresponding SED distributions (Fig. 3c). Independent of
the amount of disorder, the SED distributions display a sharp
peak, centered on SEDref , as expected from the mechani-
cal regulation. However, to compensate for the architectural
disorder, the trabecular thickness distributions are different
for different amounts of disorder (Fig. 3b). While the peak
position and the mean value hardly change with disorder (4
and 0.6%, respectively, when changing the disorder from 10
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Fig. 4 Changes in the number of trabeculae in the lattice and in bone
volume (normalized to the respective initial values before remodeling)
for different amounts of architectural disorder. Data are shown as mean
values ± standard deviations over five simulations

to 40%), the width of the distributions (measured as full
width at half maximum) increases considerably by 24%.
Most remarkably, introducing architectural disorder in the
lattice results in a loss of trabeculae through bone resorption.
This effect is largest with a loss of about 4.4% of the total
number of trabeculae for 40% disorder (Fig. 4). In this sce-
nario, though, the thickening of the remaining trabeculae is
so substantial that the bone volume, nevertheless, increases
with disorder (Fig. 4).

3.3 Spatial distributions of lost and thin trabeculae

The observation of loss of trabeculae undergoing a mechan-
ically controlled remodeling calls for a closer study of the
environment of these “holes” in the lattice. Already the two-
dimensional cut through a lattice with 40% disorder at late
times (Fig. 5a) gives the impression that holes are not sur-
rounded by particularly thick trabeculae. On the contrary,
in the marked regions of the plot, either more than one tra-
becula got lost or very thin trabeculae can be found. Fig-
ure 5b presents a quantitative analysis of this impression,
showing the distribution of the thickness of only those tra-
beculaewhich have in their nearest neighborhood (i.e., the 10
nearest-neighboring trabeculae in direct contact) either 0, 1, 2
or 3 trabeculae which were completely resorbed. For a lattice
having 40% disorder, the frequency distributions obtained in
steady state are fairly symmetrical and can be well fitted by
a Gaussian function (R2 = 0.98) to guide the eye. The dis-
tributions shift toward thinner trabeculae when the number
of lost neighbors increased (Fig. 5b, red). The mean thick-
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Fig. 5 a Two-dimensional cut through a trabecular lattice with 40%
architectural disorder after 50years of remodeling with the thickness
of each trabecula color-coded: red indicates thick trabeculae and green
thin ones. The black circles denote areas where the mechano-regulated
remodeling process resulted in loss of trabeculae creating holes in
the network: These holes are surrounded by relatively thin trabeculae.
b Thickness distribution of the trabeculae which have in their near-
est neighborhood (i.e., the 10 nearest-neighboring trabeculae in direct
contact) either 0, 1, 2 or 3 trabeculae which were completely resorbed
during remodeling. These distributions could bewell fitted (R2 < 0.98)
by Gaussian functions. Data are shown as mean values± standard devi-
ations over five simulations

ness of the trabeculae having in the neighborhood three holes
decreases by about 10%, and the heterogeneity (character-
ized again by the full width at half maximum) increases by
approximately 8% compared to the local environment away
from holes. Figure 6 provides a more general view on spa-
tial correlations between thin and thick trabeculae, where
the probability is plotted to find a trabecula of thickness t2
in the nearest neighborhood of a trabecula having thickness
t1. The absence of short range correlations in the trabecular
network in the initial configuration is demonstrated by the
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Fig. 6 Contour plots of the probability that a trabecula of thickness t2
is found in the neighborhood (i.e., the 10 nearest-neighboring trabeculae
in direct contact) of a trabecula having thickness t1 for the virtual bone
with 40% architectural disorder a at the beginning of remodeling and
b after 50years

circular contours (Fig. 6a), as a result of a random assign-
ment for the trabecular thickness fromaGaussian distribution
to obtain the initial configuration. With time, the plot devel-
ops an increasing ellipticity with a ratio of 1.3 between the
major and minor axis in the steady state for 40% disorder
(Fig. 6b). Most importantly, the major axis of the ellipse is
aligned along the diagonal y = x in the plot, which means
that there is a higher probability of finding trabeculae with
similar thickness next to each other, i.e., thin ones next to
thin ones rather than next to thick ones.

4 Discussion

In this work, we studied bone remodeling of trabecular
bone based on a dynamic cellular structure where mechano-
regulated remodeling events result in a thinning or thickening
of trabeculae. The aim was to use an idealized description
of trabecular bone to understand its architectural stability
during ongoing remodeling and not to predict age-related
changes like trabecular bone loss or the transition from a
more plate-like to a more rod-like architecture (Stauber and
Müller 2006). Consequently, we aimed at a compromise in
the model formulation with a simplified description of archi-
tecture and loading, while maintaining the main character-
istics of mechano-regulated trabecular bone remodeling, in
particularwith a careful parameter choice. In the skeleton, the
loading scenario and the corresponding trabecular arrange-
ment are much more complex than a cubic lattice under
hydrostatic compression. Different skeletal sites show dis-
tinct trabecular patterns and the basic organization of the
trabeculae along the vertical and the horizontal direction is
a reasonable approximation for the vertebral body only; it is
surely not appropriate to describe the trabecular network in
other well-studied skeletal locations such as the femoral head
or the distal radius. Previous works have shown the ability
of simplifiedmicrostructural models representing the trabec-
ular network as a cubic lattice to capture main mechanical
features of vertebral bone, like the density–elasticity relation-
ship or the mechanical consequences of trabecular thinning
and loss (Jensen et al. 1990; Yeh and Keaveny 1999; Gibson
2005). Shortcomings of this idealized depiction are obvi-
ous since it is known, for instance, that vertebral trabecular
architecture shows a gradient from a finer to a more coarse
structure whenmoving from the endplates to the center (Smit
et al. 1997). Trabecular bone, especially in young individu-
als, also has plate-like elements (Liu et al. 2008) which are
not considered in our model. Furthermore, in a real vertebra
the loading is higher along the vertical direction compared
to perpendicular directions (Adams and Dolan 1995). This
fact produces an anisotropic distribution of bone material
with obviously more bone oriented vertically (Thomsen et
al. 2013). However, in agreement with other in silico investi-
gations of trabecular bone remodeling (Huiskes et al. 2000;
Ruimerman et al. 2005), we applied the same force along ver-
tical and horizontal directions to avoid structural anisotropy
(caused by anisotropic loading) and, consequently, an analy-
sis which has to separate between vertical and horizontal
trabeculae (Thomsen et al. 2013). In our model, a higher ver-
tical load would simply result in thicker vertical trabeculae.
This would complicate the interpretation of our results as, for
instance, the correlation between the thicknesses of neighbor-
ing trabeculae (Fig. 6) since a thicker trabecula could now
have two explanations: (i) the architectural environment of
the trabecula or (ii) the higher load due to its better vertical
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alignment. In conclusion, using a more realistic description
of bone architecture and loading conditions not only results
in a strong increase of the computational effort, but even
more important, the interpretation of the simulation results
with respect to the research question becomes problematic.
Nevertheless, the limitations of our approach deserve further
attention in the future.

In this work, we described the local mechanical environ-
ment using strain energy density (SED) and, in principle,
different measures of the mechanical environment may lead
to different responses inmechano-regulated remodeling sim-
ulations. This is most evident when the material properties
of the virtual tissue are strongly heterogeneous (e.g., during
bone healing), and therefore, the relation between various
localmechanical quantities like stress, strain and SED is gov-
erned by the spatially varying elastic properties of the tissue
(Vetter et al. 2012). However, in our model, bone is described
as a homogeneous material, i.e., we assigned to each trabec-
ula the same elastic constants. Under this condition, SED is
directly proportional to the second power of stress or strain.
Being the range of SED quite limited, as indicated by the
sharp peak-shaped SED distribution (Fig. 2d) where roughly
80% of the observed SED values are within two peak widths
(measured at half maximum), the effect of the nonlinearity
(power operator) is expected to be negligible. Regions of
high/low SED match with regions of high/low stress(strain)
and our results should therefore be rather independent of the
quantity used to measure the local mechanical environment.
For ourwork,we chose the SEDasmechanical stimulus since
it has been shown that SEDcorrelateswellwith adaptive bone
formation and bone resorption in living animals (Schulte et
al. 2013a) as well as in humans (Christen et al. 2014).

Generally, the evolution in time drives the virtual bone
toward a steady-state configuration with only minimal
changes after 40years. In this configuration, all the trabeculae
have a similar SED,where local disorder in the cubic network
architecture is compensated by a variability in the thickness
of the trabeculae.Weobserved an interesting exceptionof this
behaviorwhen the system is hardlymechano-responsive, i.e.,
for highvalues of the remodelingparameter SEDref , in a regu-
lar cubic lattice. In this case (Fig. 2d), the SED distribution as
well as the trabecular thickness distribution became bimodal
in shape. Although the trabecular thickness distribution does
not change in time, a closer investigation showed that the
thickness of the individual trabeculae fluctuates. The regular
lattice is a special case since the trabeculae are loaded only
axially, and consequently, the SED in a trabecula can be eas-
ily calculated to be proportional to the negative fourth power
of the thickness of the trabecula (Eq. B1, Appendix B). After
several iterations resulting in a rough homogenization of the
thicknesses of the trabeculae, the force on a single trabecula
hardly depends on the other trabeculae. Therefore, a recur-
rence relation for the time evolution of the trabecular cross-

sectional area can be written down (Eq. B3, Appendix B) and
analyzed using tools of nonlinear dynamics (Strogatz 2001).
The analysis shows that the system becomes unstable when
the mechano-sensitivity is reduced with SEDref larger than
7.4× 106 J/m3 (Eq. B7, Appendix B). We assume that such
a “pathological” behavior cannot be observed in real bone
and is largely a result of model properties, in particular the
fact that remodeling events occur instantaneously and at the
same time at different sites in the virtual bone.

Another important model assumption is that some archi-
tectural disorder in form of a deviation from a completely
regular cubic lattice is “frozen” into the system, i.e., is unal-
tered by remodeling. Consequently, ourmodel does not allow
an architectural adaptation as observed in real bone (Huiskes
2000; Fratzl and Weinkamer 2007). We deliberately chose
a model description with fixed architectural disorder, even
though incorporating adaptation is straightforward. Using,
for example, a Monte Carlo approach the joints, i.e., the
points in the lattice where six trabeculae meet, could be
potentially moved. Exploiting the standard Metropolis rule
used in Statistical Physics (Binder 2010), a decision is then
made whether the joint is moved depending on the asso-
ciated change in SED. However, in this scenario with the
system under hydrostatic compression, the steady-state con-
figuration is easily predictable: a fully ordered regular lat-
tice minimizing SED. Two factors in real bone contribute
that some architectural disordered remains in the trabecular
network. Firstly, probably not all of remodeling is mechani-
cally controlled, but also the so-called untargeted remodeling
(Burr 2002; Parfitt 2002) takes place serving other functions
beyond mechanical needs like mineral homeostasis. Sec-
ondly, although the main loading on a vertebra is along the
spine, the loading necessarily shows some variability both in
directionality and magnitude. In our model, in which remod-
eling occurs mechanically controlled in a deterministic way
and the external loading is fixed, the essential architectural
disorder was therefore implemented into the lattice by a pre-
defined unalterable degree.

Concerning the results of our study, a first important
outcome is that the system—starting from an artificial ini-
tial architecture—approaches a steady state after about 30–
40years in all cases with only the “pathological” exceptions
discussed above. The steady state is characterized by a uni-
form SED in all trabeculae. The initial increase in BV/TV
(Figs. 2b, 3a) can be understood by the fact that in the ini-
tial configuration the trabecular thickness is Gaussian dis-
tributed, which corresponds to a strongly asymmetric initial
distribution of the SED (Appendix A and Fig. 2d). Trabec-
ulae are more likely to have a SED above SEDref , and con-
sequently, deposition prevails in this early phase of about
8years. A second result concerns the different influences of
architectural disorder. The initial overshooting of BV/TV is
largest for largest disorder (Fig. 2b), and some part of this
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increase in BV/TV is conserved until the steady state. An
opposing trend is observed for the loss of trabeculae with dis-
order (Fig. 4): More trabeculae are lost for higher disorder.
The architectural disorder togetherwith the loss of trabeculae
weakens the virtual bone mechanically, therefore deforming
more and receiving a larger mechanical stimulation. Remod-
eling then leads to deposition on mechanically stimulated
trabeculae and an overall increase in bone volume, thereby
overcompensating the loss of trabeculae. It is alsoworthmen-
tioning that in lattices with larger disorder the “pathological”
behavior reflected in bimodal trabecular thickness distribu-
tions (see above) were less evident. Architectural disorder
has a stabilizing effect on the dynamic behavior of the vir-
tual bone.

Probably, most relevant for understanding the mechano-
biology of trabecular bone are the results obtained concern-
ing the spatial distribution of the bone volume. The often told
simplified story about the “saving quality” of mechanics for
bone architecture is questionable. Only for a single isolated
trabecula does a thinning of a trabecula increase its mechan-
ical stimulation, and the triggering of deposition “saves” it
from resorption. However, for the case of the trabecula being
part of a network with architectural disorder (like in real
bone), there is no correspondence between the thickness of
the trabecula and the received stimulation. Remodeling not
only leads to a loss of trabeculae (Fig. 4), but the neighbor-
hood of lost trabeculae is characterized by thinner trabecu-
lae than average (Fig. 5), resulting in a further decrease of
the local bone volume. On this local length scale of a tra-
becula and its nearest neighborhood, mechanically regulated
remodeling results in structural heterogeneity rather than in a
homogenization of the bone volume. Our simulations there-
fore predict a heterogeneity of bone volume on a length scale
of about one millimeter as a result of bone remodeling.

The implication of our results for bone quality suggests
that, although mechanical stimulation has a beneficial effect
for preserving bone mass (and hence stiffness), as postu-
lated already by Frost (Frost 1987) in the framework of his
mechano-stat theory and demonstrated in several mechano-
biological experiments (Robling et al. 2006; Gerhard et al.
2009;Lambers et al. 2013), the ability ofmechanical forces to
preserve bone architecture is questionable. Indeed, increas-
ing mechanical load causes an increase in bone mass mainly
by thickening some trabeculae rather than by increasing (or
at least preserving) the total number of trabeculae in the
network (Lambers et al. 2011, 2013; Saparin et al. 2011).
Hence, the task to design physical exercises, which are par-
ticularly beneficial for bone architectural quality, seems hard
to be addressed only by in vivo experiments. Computational
efforts, also with larger and more sophisticated models than
the one employed in this study (Levchuk et al. 2014), can
play a supportive role, especially in preselecting physical
therapies that are subsequently tested in animal experiments.

Appendix A

Relationship between trabecular thickness and strain energy
density frequency distributions
With T the thickness of a single trabecula having a Young’s
modulus E and subjected to an axial load F , the strain energy
density SED can be written as:

SED(T ) = g (T ) = 8

π2

F2

E

(
1

T

)4

. (A1)

Considering a collection of independent trabeculae and
assuming that T has a Gaussian probability density function
nT (T ) (blue curve, Fig. 2c) with mean value μ and standard
deviation σ :

nT (T ) = 1

σ
√
2π

exp

(
− (T − μ)2

2σ 2

)
, (A2)

the probability density function of SED is calculated as (blue
curve, Fig. 2d):

fS (SED) = nT
(
g−1 (SED)

) ∣∣∣∣dg−1 (SED)
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γ
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]2
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⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(A3)

where γ = 8F2

π2E
.

Appendix B

Mechanical control of the remodeling of a single trabecula:
recurrence relation

Considering one single trabecula loaded by a constant axial
force F and characterized by a Young’s modulus E , the rela-
tionship between the cross-sectional area A and the strain
energy density SED at a discrete time point i is:

SEDi = F2

2E

(
1

Ai

)2

. (B1)

According to the remodeling rule introduced in Fig. 2a and
assuming linearity (i.e., SED remains smaller than 2 SEDref),
the change in cross-sectional area �A is given by:

�A = �Amax

(
SED

SEDref
− 1

)
. (B2)

Hence, by inserting (B1) into (B2), the recurrence relation
for the cross-sectional area reads:
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Fig. 7 Time evolution of the cross-sectional area of an individual tra-
becula having an initial thickness of 0.14mm and remodeled according
to the recurrence relation derived in Appendix B (Eq. (B7)) for three
different values of SEDref . When SEDref is well below the instability
threshold (e.g., SEDref = 5×106 J/m3 < 7.4×106 J/m3), the trabecula
can be controlled by amechano-regulated remodeling process. If SEDref
approaches the instability threshold (e.g., SEDref = 7 × 106 J/m3),
despite some initial oscillations, the cross-sectional area still converges
to a steady state. For values of SEDref above the instability threshold
(e.g., SEDref = 9× 106 J/m3), the cross-sectional area oscillates with-
out approaching a steady state

Ai+1 = Ai + �A = Ai + �Amax

(
F2

2E SEDref

1

A2
i

− 1

)
.

(B3)

The additional normalization by the factor�Amax (for its def-
inition see Method section) allows writing (B3) in a dimen-
sionless form:

xi+1 = xi + γ̂
1

x2i
− 1, (B4)

with xi = Ai
�Amax

and γ̂ = F2

2E SEDref

1
�A2

max
. The fixed points

of a general recurrence relation xi+1 = f (xi ) are found by
setting f (x∗) = x∗ (Strogatz 2001), hence:

x∗ = x∗ + γ̂
1

x∗2 − 1, (B5)

resulting in

x∗ = ±
√

γ̂ . (B6)

The stability of the fix points (B6) can be then analyzed by
looking at the first derivative of the recurrence relation (B4):

λ = f ′ (x∗) = 1 − 2√
γ̂

. (B7)

The model is unstable when |λ| > 1, hence for 0 < γ̂ < 1.
Assuming F= 1.5N, E= 10GPa and�Amax = 0.0039 mm2,
the corresponding value of SEDref above which the recur-
rence relation gives rise to oscillations in the cross-sectional
area is 7.4 × 106 J/m3 (Fig. 7).
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