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ABSTRACT

Cardiovascular diseases are still the primary cause of mortality worldwide, with high blood pressure and type 2 diabetes as major promoters. Over
the past 3 decades, almost in parallel with the rise in cardiovascular disease incidence, the consumption of sugar-sweetened beverages (SSBs) has
increased. In this context, SSBs are potential contributors to weight gain and increase the risk for elevations in blood pressure, type 2 diabetes,
coronary heart disease, and stroke. Nevertheless, the mechanisms underlying the cardiovascular and metabolic responses to SSBs, in particular
on blood pressure, are poorly understood. We discuss and propose potential mechanisms underlying differential effects of sugars on postprandial
blood pressure regulation; provide evidence for additionalmolecular contributors, i.e., fibroblast growth factor 21, towards sugar-induced cardiovas-
cular responses; and discuss potential cardiovascular neutral sugars. Furthermore, we explore whether pre-existing glucose intolerance in humans
exacerbates the cardiovascular responses to SSBs, thus potentially aggravating the cardiovascular risk in already-susceptible individuals. Adv Nutr
2018;9:70–77.

Keywords: cardiovascular disease, blood pressure, glucose intolerance, fructose, fibroblast growth factor 21

Introduction
Cardiovascular diseases (CVDs) are the number-one cause of
mortality worldwide (1). A number of fundamental health is-
sues (high bloodpressure, cholesterol, and glucose levels) and
health behaviors (overweight and obesity, smoking, physi-
cal inactivity, and poor diet) contribute to increased CVD
risk (2). Although obesity is a potentially modifiable risk fac-
tor, the cause of obesity is multifactorial, and it is now well
recognized that dietary excess, particularly in combination
with a sedentary lifestyle, contributes significantly towards its
development (3).

Perspectives articles allow authors to take a position on a topic of current major importance or
controversy in the field of nutrition. As such, these articles could include statements based on
author opinions or points of view. Opinions expressed in Perspectives articles are those of the
author and are not attributable to the funder(s) or the sponsor(s) or the publisher, Editor, or
Editorial Board of Advances in Nutrition. Individuals with different positions on the topic of a
Perspective are invited to submit their comments in the form of a Perspectives article or in a
Letter to the Editor.
The authors reported no funding received for this study.
Author disclosures: CRM and EKG, no conflicts of interest and no competing financial interests.
Address correspondence to EKG (e-mail: erikkonrad.grasser@unifr.ch).
Abbreviations used: CVD, cardiovascular disease; FGF-21, fibroblast growth factor 21; LCS,
low-calorie sweetener; OGTT, oral glucose tolerance test; SSB, sugar-sweetened beverage;
T2DM, type 2 diabetes.

Over the past 3 decades, there has been a surge towards
increased consumption of sugar-sweetened beverages (SSBs),
especially among young US adults (aged 19–39 y) (4), which
have been identified as the major source of added sugars in
the US diet (5, 6). Globally, regions with the highest intake of
SSBs includeNorthAmerica, LatinAmerica, Australasia, and
Western Europe (7), where Chile was identified as the region
with the greatest increase in SSB consumption (7). The aver-
age daily calorie intake fromSSBs in theUS in 2011–2014was
179 kcal for men and 113 kcal for women (8), with younger
adults showing a greater intake of SSBs than older adults (8).
Moreover, differences in the intake of SSBs have been found
for US residents according to ethnicity, income, and behav-
ioral characteristics (9, 10). However, it has been reported
that in the US SSB intake in the form of soda consumption
has declined, whereas intake of heavy sports and/or energy
drinks has increased (11), thereby indicating a shift in con-
sumer preferences.

SSBs are nonalcoholic drinks, which typically consist of
water and sugar in the form of high-fructose corn syrup
or sucrose with the addition of a flavor enhancer, and of-
ten caffeine. SSB consumption has been linked to elevations
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in blood pressure (12–14), weight gain (15), elevated blood
lipid and blood glucose concentrations (13), increased risk of
type 2 diabetes (T2DM) (16, 17), coronary heart disease (18),
and stroke (particularly cerebral infarction) (19). Sucrose,
the most common sweetener used in beverages in Europe,
comprises the monosaccharides fructose and glucose, with
the fructose component often being regarded as the more
harmfulmoiety (20, 21). Indeed, there is compelling evidence
in animals, and increasingly in humans, that chronically
high consumption of fructose can lead to a more adverse
lipid profile and greater risks for central obesity, diabetes, and
CVD than high glucose consumption (21–24). For example,
although sustained consumption of glucose-sweetened bev-
erages for 10 wk led to similar weight gains in a cohort of
overweight and obese adults as in those consuming bever-
ages sweetened with fructose, dietary fructose specifically in-
creased visceral adiposity and dyslipidemia and decreased in-
sulin sensitivity (24). Furthermore, fructose, but not glucose,
has been reported to increase postprandial systolic and di-
astolic blood pressure in healthy young adults (25, 26), find-
ings which are in support of the notion that diets that include
repeated fructose loads might over time contribute to an in-
creased risk of CVD. However, the underlying mechanisms
for this impact on bloodpressure are still elusive, andwhether
the blood pressure–elevating effects of fructose would be ex-
acerbated (and indeed those of sucrose unmasked) under
conditions of glucose intolerance, which is often encountered
in overweight or obese individuals, is unknown.

SSBs and their Impact on the Cardiovascular
System
It was not until 2014 that the first systematic review on the
impact of chronic SSB consumption on blood pressure was
published (27). Malik and colleagues (27) included in their
review 6 cross-sectional and 6 prospective cohort studies en-
compassing a total of 409,707 participants, and observed in
10 out of 12 studies a statistically significant, positive associa-
tion between SSB consumption and blood pressure, whereas
the other 2 presented a positive trend. More specifically, in
response to SSB intake, 5 studies found an increase in sys-
tolic blood pressure (28–32), whereas 7 (14, 33–38) showed
elevated OR values for incidence of hypertension in response
to increasing SSB consumption (27). With the exception of
2 studies in which the sweetener used was not mentioned
(32, 35), all other studies (14, 28–31, 33, 34, 36–38) inves-
tigated the impact of high-fructose corn syrup or a mix-
ture of high-fructose corn syrup, glucose, and sucrose. In-
terestingly, the impact of SSB intake on blood pressure was
reduced in younger subjects when compared with studies
performed in older individuals, which could be because of
differing endothelial and smooth muscle responses (27). As
noted by Malik and colleagues (27), a caveat of the studies
included in the review is the use of FFQs to assess SSB con-
sumption. Although FFQs may provide valuable informa-
tion, this dietary assessment method relies on accurate sub-
ject recall and is therefore prone to bias, which reduces the

reliability of the collected data (39). Moreover, quantification
of absolute intake of SSBs is not possible using FFQs (39).

In contrast to cross-sectional studies, randomized
crossover trials offer advantages based on an evaluation
within the same subject. This eliminates between-subject
variability and provides insights into the mechanistic pro-
cesses (40). In this context, a recent randomized crossover
study investigated the cardiovascular responses of young
and healthy adults to ingestion of various sugary drinks and
concluded that the sucrose moiety does not seem to have
an impact on blood pressure, whereas isoenergetic amounts
of fructose raised the blood pressure substantially (26).
Moreover, although sucrose comprises equivalent amounts
of glucose and fructose, the cardiovascular responses were
related more to the glucose than to the fructose (26). These
findings led the study’s authors to the conclusion that the
blood pressure–elevating effects of fructose are attenuated
in the presence of glucose through glucose-induced actions
on vascular resistance (26). However, the underlying mech-
anisms by which sugary drinks affect the cardiovascular
system, in particular blood pressure, remain elusive.

Potential Mechanisms Underlying Differential
Effects of Sugars on Postprandial Blood
Pressure
Differential insulin release and impact on blood
pressure regulation in normal glucose tolerance
In response to glucose ingestion, the blood glucose concen-
tration rises and induces a rapid increase in plasma insulin;
this increase in plasma insulin is markedly lower in response
to fructose ingestion (41–46), as fructose is converted to glu-
cose slowly in the liver and is only partly released as glu-
cose in the circulation (47). Glucose-induced insulin release
is known to dose-dependently increase cardiac output (by in-
creasing stroke volume and heart rate) and to reduce sys-
temic vascular resistance (48) (Figure 1). This assertion is
supported by previous findings that show increased heart
rate, stroke volume, and cardiac output in response to glucose
ingestion, but decreased total peripheral resistance (25, 26).
These combined effects are accompanied by either no change
(25) or a slight increase in blood pressure (26). However, de-
spite this lack of significant overall change in blood pressure
in response to glucose ingestion, a recent study observed a
large inter-subject variability in overall (i.e., averaged over
120min with baseline values subtracted) and peak (i.e., max-
imum response averaged over 10 min with baseline values
subtracted) blood pressure changes (49). In this context, the
study’s authors suggested that the focus for future research
should be on individual responses rather than on mean re-
sults in order not to neglect potential ‘treatment responders’
(49).

Potential impact of glucose intolerance on blood
pressure and cardiovascular responses to glucose
Impaired glucose tolerance, which usually precedes T2DM,
substantially increases the risk for CVD (50), which raises
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FIGURE 1 Schematic depiction of the proposed mechanisms by which blood pressure is influenced in response to glucose, sucrose, and
fructose ingestion in subjects with normal glucose tolerance. The main difference between sucrose—whose cardiovascular actions are
more related to glucose than to fructose (26)—and fructose can best be explained by the actions of insulin, which, in response to sucrose,
will dose-dependently increase CO by increasing stroke volume and heart rate owing to attenuated systemic vascular resistance (48),
whereas the impact of fructose on the release of insulin is marginal (47). Therefore, sucrose- or glucose-induced reductions in TPR are
largely offset by increases in CO, and consequently will not change the blood pressure. In contrast, acute fructose ingestion has only little
overall effect on plasma insulin but increases plasma FGF-21, which increases SNA. This, in turn, leads to augmented CO, which, in
combination with an unchanged or only slightly increased TPR, increases the overall BP. BP, blood pressure; CO, cardiac output; FGF-21,
plasma fibroblast growth factor 21; SNA, sympathetic nerve activity; TPR, total peripheral resistance; ↓, decrease; ↑, increase; ↓↓,
pronounced decrease; ↑↑, pronounced increase; —, inhibition; +, augmentation; =, unchanged.

the possibility that even early-stage alterations in glucose
metabolism may affect the cardiovascular system. Impaired
glucose tolerance comprises elevated concentrations of in-
sulin and sympathetic neural activity at rest (51). Hence, it is
probable that further stimulation of insulin secretion could
cause additional increases in sympathetic nerve activity with
a subsequent potential impact on total peripheral resistance
(52). Indeed, Ferrannini and colleagues (52) surmised that
insulin resistance could impact on blood pressure because of
diminished vasodilation. Moreover, aside from the effects of
elevated concentrations of insulin, it is plausible that im-
paired glucose tolerance concurrently affects the frequency
and contraction force of the heart owing to higher levels of
sympathetic nerve activity, which could override or substan-
tially attenuate potential vasodilatory effects. Therefore, in
such a scenario, impaired glucose tolerancewould raise blood
pressure owing to its impact on cardiac cells rather than pe-
ripheral effects on blood vessels (Figure 2).

Despite an abundance of information on the fate of glu-
cose and insulin in response to the oral glucose tolerance test
(OGTT), which is supposedly the gold standard for diagnos-
ing impaired glucose tolerance, little is known about con-
comitant changes in cardiovascular parameters. One study
(53) has highlighted differences in blood pressure according
to waist circumference in response to an OGTT: systolic and

diastolic blood pressure were found to decrease (–6.3% and
–9.4%, respectively) in response to anOGTT in subjects with
a waist circumference <85 cm, whereas in those with a waist
circumference >85 cm, systolic and diastolic blood pressure
increased (+2% and +0.9%, respectively). Tabara and col-
leagues (54) measured brachial and central blood pressure
responses to an OGTT in 1034 subjects and observed in-
sulin sensitivity and insulin resistance as independent de-
terminants of differences between peripheral and central
(aortic) blood pressure. Central (aortic) blood pressure pro-
vides an indication of the true load imposed on target organs
and thus is proposed to better predict cardiovascular events
than peripheral (brachial) blood pressure (55).

An important outcome of a previous study (49) was
the description and quantification of interindividual blood
pressure responses: the peak systolic blood pressure of
63% of subjects was increased by >4 mm Hg following an
OGTT. It would be of interest to know whether these blood
pressure responses, in particular in so-called “responders,”
who are defined by an increase of >4 mm Hg, could be
repeated in the same individual. In this context, potential
reproducible systolic blood pressure changes in response
to oral glucose loads could be of importance for the devel-
opment of a screening tool where susceptible individuals
are followed over a longer period in order to verify the
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FIGURE 2 Schematic depiction of the proposed mechanisms by which blood pressure is hypothesized to affect glucose, sucrose, and
fructose responses in subjects with impaired glucose tolerance. It is suggested that in a state of impaired glucose tolerance, which is
characterized by elevated resting insulin and sympathetic nerve activity, an additional surge in insulin in response to the ingestion of
sucrose will further raise SNA and therefore impact on TPR. This potentially raises blood pressure because of an attenuated vasodilatory
effect of insulin on the vasculature owing to concurrently elevated SNA. Furthermore, in response to fructose ingestion, FGF-21 impacts
centrally and raises SNA, and could therefore lead to further increases in CO and TPR. This, in turn, elevates the blood pressure to an even
higher level than in glucose-tolerant subjects. BP, blood pressure; CO, cardiac output; FGF-21: plasma fibroblast growth factor 21; SNA:
sympathetic nerve activity; TPR: total peripheral resistance; ↓, decrease; ↑, increase; ↓↓, pronounced decrease; ↑↑, pronounced increase;
—, inhibition; +, augmentation; =, unchanged.

potential for later emergence of hypertension. Indeed, blood
pressure intra-variability [i.e., variations in blood pressure
over time within a single person (56, 57)] has been observed
as an independent predictor for cardiovascular events (57).
However, we are not aware of any study in adults in which
reproducibility of intra-individual blood pressure changes
was prospectively investigated in response to a standardized
glucose drink.

Proposedmechanisms underlying the blood pressure
response to sucrose and fructose in subjects
with normal and impaired glucose tolerance
All of the above-mentioned studies investigated the effect
of glucose only, but individuals generally prefer a bever-
age sweetened with sucrose or high-fructose corn syrup,
i.e., combined glucose and fructose in equivalent or simi-
lar amounts. The main difference between sucrose and fruc-
tose can best be explained by the actions of insulin, which,
in response to sucrose, will dose-dependently increase car-
diac output by increasing the stroke volume and heart rate,
and decreasing systemic vascular resistance (48); in con-
trast, the impact of fructose on the release of insulin is
marginal (47). Therefore, sucrose-induced decreases in to-
tal peripheral resistance are largely offset by subsequent in-
creases in cardiac output; consequently, they do not change

the blood pressure. On the other hand, fructose ingestion
elevates the heart rate to a greater extent than does glucose
(25, 26) but causes little change in the total peripheral resis-
tance (25, 26) and thus leads to elevations in blood pressure
(Figure 1).

In contrast to the effect of sucrose in subjects with nor-
mal glucose tolerance (Figure 1), it is suggested that in sub-
jects with impaired glucose tolerance, which is characterized
by elevated resting insulin and sympathetic nerve activity,
an additional surge in insulin will further raise sympathetic
nerve activity and cardiac output. Thus, blood pressure will
rise owing to the attenuated vasodilatory effect of insulin on
the vasculature because of the increased sympathetic drive to
resistance vessels and cardiac cells (Figure 2). Furthermore,
in response to fructose ingestion, it has been observed that in
individuals with the metabolic syndrome, fibroblast growth
factor 21 (FGF-21) increased substantiallymore than in those
without the metabolic syndrome (58). In this context, FGF-
21 has been found to impact centrally and raises sympathetic
nerve activity (59), and therefore, in a metabolic-syndrome
scenario, may lead to further increases in cardiac output and
total peripheral resistance. These, in turn, could elevate blood
pressure to a higher level than in healthy individuals. To
date, however, insulin and FGF-21 kinetics and their asso-
ciation with differential blood pressure and hemodynamic
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responses to sucrose, glucose, and fructose have not been
investigated.

Circulating FGF-21: a potential link between fructose
metabolism and sympathetic overactivity
Landsberg and Young (60), in reviewing the relation between
dietary intake and sympathetic nervous system activity, con-
cluded that insulin was able to enhance sympathetic activity.
Moreover, in response to increasing insulin concentrations,
obese men have been found to have comparable elevations
in sympathetic activity to lean and insulin-sensitive subjects
(61). Since fructose ingestion leads to only a marginal in-
crease in circulating insulin concentrations (47), sympathetic
neural responses to fructose are likely to be less dependent
on the involvement of insulin than those to glucose (62). In-
terestingly, as pointed out by Young and colleagues (62), of
all of the early human and animal studies examining sympa-
thetic responses to fructose (63–69), the only reports demon-
strating fructose-induced sympathetic activation were those
in which fructose was given orally, and clearly not those (66–
69) inwhich fructosewas administered parentally. Young and
colleagues (62) went on to propose that the afferent signal for
sympathetic stimulation by fructose is likely to originate from
peripheral chemoreceptors, possibly those located in the gas-
trointestinal tract and/or liver.

Recently, evidence has emerged that FGF-21 released by
the liver could be linked to hepatic metabolism of fructose
(58). In response to oral ingestion of 75 g fructose, FGF-21
was significantly increased above the baseline concen-
trations, with the peak response occurring at ∼120 min
postprandially (58). These increases in circulating FGF-21 in
response to fructose were more pronounced in patients with
metabolic syndrome (58), which may be related to their high
risk for glucose intolerance and insulin resistance. The time
course for circulating FGF-21 seems similar to the blood
pressure effects of a comparable amount of fructose (25),
which raises the possibility that circulating FGF-21 could
provide a link between hepatic fructose metabolism and the
activation of sympathetic activity (Figures 1 and 2). In this
context, studies inmice have shown that FGF-21 acts directly
on the brain to stimulate sympathetic nerve activity (59). In
addition to fructose, increases in plasma FGF-21 concentra-
tions in mice have also been shown to occur in response to
ingestion of 10% glucose or 10% sucrose, but not saccharin
or water (70). In humans, excess dietary carbohydrate intake
(80% of energy, with a glucose:fructose ratio of 1:1) for 3
d resulted in an 8-fold increase in FGF-21 concentrations
compared with a control diet (71), whereas ingestion of 75 g
sucrose doubled FGF-21 concentrations in healthy subjects,
with peak responses occurring 120 min after ingestion (72).
In contrast, glucose only, provided as part of an OGTT,
resulted in no overall change in FGF-21 concentrations (73,
74). It is therefore possible that increasing concentrations
of FGF-21 are triggered by fructose or a combination of
glucose and fructose, and may be involved in blood pressure
elevation. Moreover, higher FGF-21 blood concentrations
in patients with metabolic syndrome (58) could be spec-

ulated to exacerbate fructose-induced elevations in blood
pressure.

Potential Cardiovascular Neutral Sugars
Galactose
Lactose is a disaccharide comprising of the monosaccharides
glucose and galactose, at which galactose has received much
attention as a low–glycemic index sugar, with only small
increases in plasma glucose and insulin in response to its
ingestion (46, 75, 76). Recently, the cardiovascular effects
of galactose have also been explored (77). In this context,
acute cardiovascular responses to the ingestion of 60 g galac-
tose were investigated and compared with the same quan-
tity of fructose or glucose with the use of a randomized
crossover study design (77). This study observed that glucose
and galactose had minor effects on blood pressure, which
contrasted to the blood-pressure-elevating effect of fructose.
Moreover, galactose affected cardiac workload to a signifi-
cantly lesser extent than glucose. Therefore, the benefits of
galactose appear to be 2-fold: 1) it is a low–glycemic index
sugar and 2) it appears to inducemilder cardiovascular effects
than either fructose or glucose. Future studies are needed
to investigate the cardiovascular effect of chronic galactose
consumption alone and in combination with other sugars in
healthy individuals, as well as in those with impaired glucose
tolerance.

Artificial sweeteners
The increasing consumption of added sugars, i.e., dietary car-
bohydrates that are artificially added to edible food items
during processing or preparation, particularly in the form of
liquid sugars, is deemed to be an important contributor to
weight gain (38, 78–80). These findings have been strength-
ened by a randomized controlled trial in which changes in
body weight associated with sucrose intake seemed to be at-
tributable to changes in energy intake rather than energy ex-
penditure (81). As a result, the American Heart Association
recommends limiting added sugar intake to no more than
100 kcal (∼25 g)/d for women and 150 kcal (∼38 g)/d for
men (82).

Knowledge of the potential detrimental health effects as-
sociated with SSB consumption has driven an increase in
the consumption of low-calorie sweeteners (LCSs) (83, 84),
often consumed in the form of reduced-calorie beverages
(i.e., beverages containing calories and which are sweetened
with LCS) (83). LCSs are food additives containing practi-
cally no calories, which are associated with an intense sweet-
ness and are mostly used to artificially sweeten food and bev-
erages (85). The most popular and commonly used artificial
sweeteners include aspartame, acesulphame-K, saccharin,
sucralose, and cyclamate. The effect of artificial sweeteners
on body weight and metabolic risk markers has been re-
viewed and, when compared with sucrose-sweetened drinks,
LCSs were found to have beneficial effects on body weight,
glycemia, and insulinemia (86). Maersk and colleagues (87)
observed that ingestion of 1 L/d of a sucrose-sweetened soft
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drink (regular cola) over a 6-mo period resulted in aug-
mented liver-, skeletal-, and visceral fat, and increased plasma
triglycerides and total cholesterol, which were not seen when
drinking the same amount of an aspartame-sweetened soft
drink (diet cola) or water (87). Similarly, a 10-wk parallel in-
tervention study found significant increases in body weight
and fat mass, as well as systolic and diastolic blood pressure,
among overweight subjects consuming sucrose, but not in
those consuming artificial sweeteners (88).

Additional interesting LCSs include stevioside, approved
by the European Food Safety Authority (89), and erythritol, a
commonly used polyol sweetener, both of which are used as
alternatives to aspartame, acesulfame-K, sucralose, and sac-
charin. However, clinical data on stevia (derived from the
leaves of Stevia rebaudiana) and its potential cardiovascu-
lar effects are scarce and inconclusive. Stevia has been shown
to reduce blood glucose concentrations by 18% in individu-
als with T2DM compared with a cornstarch meal (90), but
chronic use of stevia (1000 mg rebaudioside A or placebo
over 16 wk) did not alter glucose homeostasis or blood pres-
sure in patients with T2DM (91). With respect to erythritol,
one study investigated the effect of acute (24 g) and chronic
(36 g/d× 4 wk) erythritol supplementation in beverage form
and found improved endothelial function in patients with
T2DM (92). In a post hoc analysis, Flint and colleagues (92)
observed that in patients with brachial systolic blood pres-
sure >130 mm Hg, chronic treatment with erythritol low-
ered the central pulse pressure (i.e., aortic systolic blood pres-
sure minus aortic diastolic blood pressure), which suggests
a central (aortic) antihypertensive effect (92). Unfortunately,
this study lacked a control group and raises concerns about
multiple testing. Future cardiovascular research should focus
on potential interaction effects of LCSs with sucrose and/or
caffeine because of the widespread use of such beverages
(i.e., diet beverages sweetened with sucrose and LCS, with or
without caffeine).

Conclusion
High consumption of SSBs has been implicated in the de-
velopment of hypertension, hyperlipidemia and obesity, all
of which are involved in the pathogenesis of CVD. This
review provides an important mechanistic understanding of
how sweetened beverages affect cardiovascular responses,
with particular reference to the regulation of blood pressure,
which is a key contributor to increased CVD risk. Over-
weight and obesity, particularly abdominal fat accumulation,
negatively impact insulin sensitivity, and in this context it
is hypothesized that impaired glucose tolerance resulting
from altered insulin action is contributing to altered blood
pressure regulation. Another potential mechanism whereby
SSBsmay increase CVD risk is sympathetic activation, which
is potentially driven by FGF-21 in response to orally ingested
fructose. In contrast to fructose and glucose, galactose ap-
pears to induce milder cardiovascular effects, while artificial
sweeteners either have no effect on cardiovascular param-
eters or are beneficial. Finally, we have identified a need
for further research to elucidate whether (and how) pre-

existing glucose intolerance in individuals may exacerbate
the postprandial cardiovascular responses to sugary drinks,
thus aggravating cardiovascular risk in already susceptible
individuals.
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