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Abstract Groundwater extracted from alluvial aquifers close to rivers is vulnerable to
contamination by infiltrating river water. Infiltration is often increased during high
discharge events, when the levels of waterborne pathogens are also increased. Water
suppliers with low-level treatment thus rely on alternative measures derived from infor-
mation on system state to manage the resource and maintain drinking-water quality. In
this study, a combination of Self-Organizing Maps and Sammon’s Mapping (SOM-SM)
was used as a proxy analysis of a multivariate time-series to detect critical system states
whereby contamination of the drinking water extraction wells is imminent. Groundwater
head, temperature and electrical conductivity time-series from groundwater observation
wells were analysed using the SOM-SM method. Independent measurements (spectral
absorption coefficient, turbidity, particle density and river stage) were used. This ap-
proach can identify critical system states and can be integrated into an adaptive, online,
automated groundwater-management process.
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1 Introduction

Alluvial groundwater is an important source of drinking water in many countries, providing
approximately 50 % of the global drinking-water supply, as well as a significant part of water
required for industrial and agricultural purposes (Zektser and Everett 2004). Many drinking
water extraction wells are located near rivers, drawing water from high-permeability alluvial
deposits in the river valley. The filter capacity of the riverbank and alluvial aquifer is not
constant and varies with different hydrological conditions. Not all conditions enable the filter
capacity to remove river-borne microbial contamination before it reaches groundwater extrac-
tion wells (Taylor et al. 2004; Dash et al. 2010). Increased infiltration of river water into an
aquifer during high discharge events can result in microbial contamination of drinking water
extraction wells (Regli et al. 2003). The contamination potential is strongly dependent on the
nature of high discharge events, the location of the extraction wells relative to the river and the
composition of the aquifer material and river bed (Regli et al. 2003; Page et al. 2012).
Alongside these spatial considerations, the duration and level of contamination, the filter
capacity and the distance travelled by the freshly infiltrated water are influenced by temporal
factors including (a) the history of high discharge events, (b) the relative change in river stage
over time, (c) seasonality, (d) the varying load of river water contaminants (Regli et al. 2003).
The resulting interaction of spatial and temporal factors influencing groundwater quality
fluctuations can lead to problems in securing the supply of drinking water. Instead of investing
in elaborate water treatment equipment, it may often suffice to manage drinking water
production according to actual groundwater quality. Three possible management options for
water suppliers with a strong temporal variability of water quality, are to (a) continue extraction
and invest in additional treatment steps (e.g., filters, UV, disinfection), (b) stop extracting and
purchase water from other suppliers, or (c) reduce extraction from wells at risk and monitor the
water quality and its temporal development (‘adaptive management’).

However, determining actual groundwater quality is strongly based on the selection of
representative measurement parameters and the timely interpretation of patterns observed in
the measurements. Early warning systems function by detecting changes in the system under
observation, e.g., extracted water quality, as they occur. Low temporal resolution or time
delays in such systems reduce the breadth of management options available. Technological
advancements (e.g., remote data collection) and availability of measurement equipment
allow a temporally high-resolution collection of data (online and real-time) (O’Flynn et al.
2010). However, the greater amount of data available also makes the interpretation a
greater task, requiring an efficient mechanism to recognize the system states that are of
interest, i.e., hazardous or suboptimal system states, especially when current and past
situations need to be considered jointly. Hazardous system states need to be rapidly
identified, a task which requires the operations manager to be able to view and assess
the current system state and decide on the best course of action within a short period of
time before any damage has been done. The complexity is also increased, as these states
can be induced by one or more measured parameters indicating a deviation from normal,
or desired situations (Camplani et al. 2009; Fuertes et al. 2010). The identification and
interpretation of significant fluctuations in time series requires time and knowledge, a
complex task ideally automated so that the operator of the process under surveillance can
select the steps necessary to steer the system back to the desired state. This calls for not
only a structured data management system, but also for a methodology for interpreting the
recorded data (Stefanovic et al. 2015).
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One method used to identify and track system states are Self-Organizing Maps (SOM),
which are a form of artificial neural networks (ANN) (Kohonen 2001; Mustonen et al. 2008;
Fuertes et al. 2010). These ANNs are able to extract the inherent structure, i.e., the underlying
patterns, directly from a data set without an explicit physical model by resolving nonlinear
input–output relationships in complex systems. They have a broad spectrum of applications,
ranging from speech recognition over image analysis to anomaly detection (Kohonen 2001;
Mustonen et al. 2008; Camplani et al. 2009). In this study, the methodology has been applied
to identify hazardous events based on time series analysis. The first step is to find patterns in a
system, e.g., groundwater time series, by considering changes over time and associating them
with system states using independent parameters. During the next step, the different system
states can be classified as e.g., hazardous or non-critical.

The overall aim of this study is to identify critical system states of groundwater quality as
they develop, potentially enabling an early initiation of counter measures, e.g., reduced
extraction, to avoid contamination of a drinking water supply plant. The methodology is based
on a multivariate data set of groundwater quality proxy indicators. Furthermore, specific
objectives are to (1) identify patterns in groundwater quality, which can be associated with
hazardous system states, and (2) assess the degree to which this methodology represents the
inherent patterns in groundwater quality over time and space. This study tests the methodology
as a novel approach to managing riverine groundwater extraction by combining online
measurements with automated multivariate analysis.

2 Methodology

For the development and testing of the methodology and conceptual approach, we selected a
water supply system using several wells, some of which are located close to a river and
affected by freshly infiltrating river water during high discharge events.

2.1 Experimental Field Site

The experimental field site is located in the lower Birs Valley in North-west Switzerland
(Fig. 1). It is an alluvial system with a shallow, coarse, gravelly aquifer. The Birs runs 75 km
through the Swiss Jura and joins the River Rhine in Basel with a catchment area of 911 km2.
The mean annual flow near the confluence of the tributary and the Rhine is 15.4 m3 s−1 with
storm flows reaching up to 383 m3 s−1.

The aquifer material mainly consists of carbonate gravel, often well-rounded, with variable
sediment sorting, and few intercalations of clay or silt layers, resulting in several orders of
magnitude variance in hydraulic properties (conductivities between 3×10−3 and 10−2 ms−1.).
The carbonate gravel components of the aquifer are of Triassic to Jurassic origin. The lower
aquifer boundary (aquitard) consists of Tertiary deposits of the Elsässer Molasse, generally
with very low hydraulic conductivities (10−8 to 10−5 ms−1). During average hydrological
situations, the thickness of the saturated zone varies between 0.6 and 10 m (smallest next to the
river, largest further away).

Most of the water is supplied to the aquifer by river water infiltration, lateral inflow from
the local catchment area, and intermittent artificial recharge. Affolter et al. (2010) give a
detailed description of the water budget in the study area. Eight extraction wells supply water
to approximately 51’000 people, amounting to 5×106 m3 drinking water per year.
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The time-series used in the analysis were recorded in nine groundwater observation wells
close to extraction wells susceptible to contamination due to river water infiltration and the
river bank (Fig. 1).

Two measurement set-ups were used: 1) multiparameter instruments recording pressure,
temperature, hydraulic electrical conductivity and turbidity (YSI 600OMS V2), 2) three
instruments recording pressure, hydraulic electrical conductivity (and temperature) and turbid-
ity (Endress+Hauser Waterpilot FMX167, Indumax CLS50 and Turbimax W CUS41).
Additional time-series of spectral absorption coefficient (SAC, measured at 254 nm,
Endress+Hauser Viomax CAS51D) and particle density (2–10 μm, Endress+Hauser
Lasersens CYM790) were available only for three observation wells (B1, B2 and B3). The
time-series were quality checked, e.g., to detect instrument maintenance. The data resolution
used in the analysis was 0.5 h.

The criteria for selecting the events were based on the completeness of the time series (no
missing values) and the magnitude of the event (river stage). The event had to be detectable in
the time series, however not a very large event, as the small to intermediate events were more
of a challenge to detect and to test the sensitivity of the methodology.

2.2 Data Analysis

The Self-Organizing Map (SOM, Kohonen (2001)) is an ANN method based on competitive,
unsupervised learning. Kohonen (2001) provides explanatory figures of the following section.
SOMs have found use in many engineering applications, for example, for monitoring indus-
trial process states or drinking-water quality in distribution networks (Dominguez et al. 2007;
Mustonen et al. 2008; Corona et al. 2010). A SOM consists of a set of nodes in a regular 2-D
or 3-D grid where every node represents a so-called reference vector. An input data matrix with
three vectors each will give a reference vector with three values. Adjacent nodes are very
similar to each other. Every row-vector of the data matrix is assigned to the most similar
reference vector (node). Once this is accomplished, each observation time (row-vector of the
input data matrix) is mapped to the grid based on similarity rather than temporal sequence.
Thus, the SOM allows tracking of the system state by visualizing trajectories through time
(Dominguez et al. 2007).

River bank

280 m

283 m

275 m
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5 m 95 m10 m 15 m 20 m

266 m

B3 B2 B1

F3 F1F2

W3 W2 W1B

W

F

Fig. 1 Map of the study area showing the locations of the wells as well as the depth of the filter sections in the
aquifer. There are three clusters: W1, W2 and W3, F1, F2 and F3 and B1, B2 and B3
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A first step in creating a SOM is to determine the size and shape of the basic grid, which
will later be used to build the map. The number n of units, or nodes in the grid, was defined
according to Vesanto et al. (2000) as a function of the size of the input data set:

n ¼ 5⋅�0:50321 ð1Þ
where x is the number of rows in the input matrix (in this case times series of temperature,
electrical conductivity and groundwater head, Fig. 2). The dimension of the grid is based on
the ratio between the two largest eigenvalues of the correlation matrix of the input matrix. By
using the ratio of the two largest eigenvalues as an indication of the size of grid necessary to
represent the patterns in the input data, the lattice spacing in the grid becomes approximately
uniform (Kohonen 2001).

The reference vectors were initialized based on the two eigenvectors with the largest
eigenvalues. The eigenvectors were normalized and multiplied with the square roots of the
corresponding eigenvalues to give a set of structural vectors with the same dimension as the
number of eigenvalues (number of columns in the input matrix). This resulted in a 2-D grid
with 21×12 nodes.

Then the SOM is adapted to the data in an iterative procedure (Btraining^). The nodes of the
grid are initially associated with a set of reference vectors and the grid is gradually reshaped by
varying the values of the reference vectors to fit the patterns of the input data the best.
Stepwise, the best-matching units (BMUs) are identified for each row vector of the input data
matrix, that is, the node with the greatest similarity with the input data row vector, determined
by calculating the Euclidean distance between the reference vector associated with each node
(mi, where i=number of nodes) and the row vector of the input data set (Eq. 2) (Vesanto and
Alhoniemi 2000).

BMU ¼ argmini x−mik kð Þ ð2Þ
During subsequent training, the nodes surrounding the BMU are updated and modified

using a Gaussian neighbourhood function (hBMUi) (Eq. 3). Components of this smoothing
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Fig. 2 Time series of electrical conductivity, groundwater head, temperature used in the analysis. The location of
the observation wells is shown in Fig. 1
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kernel are: the learning rate α, distance from each node (i) to the BMU of each time step
(rBMUi), and the width of the kernel σ (radius of the topological neighbourhood). α and σ both
decrease with number of training steps (Kohonen 2001).

hBMUi ¼ α⋅exp −
r2BMUi

2σ2

� �
ð3Þ

The influence of a node identified as a BMU therefore decreases with increasing distance
between each BMU and any other node i.

The updating and modification of the reference vectors (mi (t+1)) in the grid is a function of
the previous state mi(t), the neighbourhood function hBMUi(t) and the input data vector x(t)
(Eq. 4). t denotes the training step.

mi t þ 1ð Þ ¼ mi tð Þ þ hBMUi tð Þ x tð Þ−mi tð Þ½ � ð4Þ
In the end of the training procedure, any row vector of the input data can be ascribed to a

best-matching reference vector or node of the SOM. However, the distance between system
state representations in the visualization is not proportional to the dissimilarity in the input data
set, e.g., system states that are only vaguely similar may be close to each other in the map
giving a false sense of similarity. In addition, the BMUs often represent more than one row
vector of input data, i.e., multiple system states. This is difficult to visualize and small
differences between system states are disregarded. Some authors combine SOMs with
nonlinear projection methods to capture the temporal aspect of system state development
(Bernataviciene et al. 2006; Mustonen et al. 2008; Lischeid 2009). To emphasize the
temporal resolution and visualization of variation in the original data set, especially over
time, the output of the SOMs were further subjected to the Sammon’s mapping algorithm
(Sammon 1969). The BMUs derived from the SOM analysis were used to calculate
coordinates that formed the basis for the projection space in the Sammon’s Mapping
(SM) algorithm.

Sammon’s Mapping is a nonlinear mapping algorithm aiming at preserving the distances in
the measurement vector in a 2-D projection (Sammon 1969). SM is useful in determining the
shape and density of clusters and the relative differences between these clusters (Kolehmainen
et al. 2003). In SM each row vector of the input data matrix is represented by a single point.
The points are located so that the distance between them is approximately proportional to the
dissimilarities between the respective row vectors. Multivariate time series can thus be
visualized by trajectories that follow the succession of BMUs through time (Corona et al.
2010).

The methodology is a form of multidimensional scaling (MDS), whereby the relative
distances in the data are preserved to the greatest extent possible (Sammon 1969). The
objective of the optimization problem (Eq. 5) is to minimize the Sammon’s Error (E) by using
a gradient descent approach based on interpoint distances in the input space (dij*) and in the
projection space (dij), whereby i and j represent any two system states. The error (E, Eq. 5)
expresses how well the present configuration of the K system state representations in the
projection (output) space fits the K points in the input space.

E ¼ 1X
i< j

d*i j

X K

i< j

d*i j−di j
h i2

d*i j
ð5Þ
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To avoid the problematic of local minima, a priori knowledge can be used to initialize the
map. The BMUs derived from the SOM analysis provide coordinates for the Sammon’s
projection. Henceforth, the combination of using the SOM codebook vectors to initiate the
Sammon’s projection is referred to as SOM-SM.

Measures of fit are given by the topographic error (TE) and by the quantisation error (QE)
of the SOM (Postolache et al. 2005). They describe the percentage data vectors for which the
1st and 2nd BMUs are not adjacent cells in the SOM grid (QE), and the average distance
between each data vector and its BMU (TE). The squared Pearson correlation coefficient R2

(coefficient of determination) gives an indication of the truthfulness of the SOM-SM projec-
tion by measuring the correlation between the Euclidean distances in the input matrix and
those of the projection matrix. The correlation coefficient thus becomes a measure of repre-
sentative strength of the projection in portraying the input data. These three measures of fit
were used to quantify the ability of the methodology to represent the inherent patterns in the
input data set.

The time-series were normalized separately for each time period and variable by subtracting
its mean and dividing by the standard deviation. The separate normalization prevents variables
with large fluctuations (e.g., electrical conductivity) dominating the analysis. The normalized
time-series were combined to form one data set, which was used for the SOM-SM. The SOMs
were calculated using the SOM Toolbox (Vesanto et al. 2000), developed at the Laboratory of
Information and Computer Science in the Helsinki University of Technology. Both steps of the
analysis (SOM and SM) were carried out with MATLAB (Mathworks).

The SOM-SM analysis was carried out with 24 time-series: groundwater head and temper-
ature measurements from nine observation wells and electrical conductivity time series from
six observation wells (Figs. 1 and 2). Time series of three electrical conductivity sensors could
not be used due to measurement errors (W1, F2, F3). The time-series were normalized for each
time period to avoid differences based on e.g., seasonality, which were not the focus of this
study. Three time periods were used: 17. January - 03. February 2009 (time period Jan. 09, 864
measurement time steps), 23. December 2009–08. January 2010 (time period Dec. 09, 816
measurement time steps) and 03.–20. May 2010 (time period May 10, 847 measurement time
steps). They were analysed as one joint data set: the dimension of the resulting matrix was
2527×24 and the map size 21×12.

3 Results

3.1 Time-Series

Groundwater head, temperature and electrical conductivity time-series from nine observation
wells were used in the SOM-SM analysis (Fig. 2). Each time period (Jan 09, Dec 09 and
May 10) included at least one high discharge event.

Temperature fluctuated around 11 °C in seven of the nine observation wells in all three time
periods. The two exceptions are B3 and W3, both located close to the river in the upper region
of the aquifer. The temperature recorded in these observation wells differed between the three
time periods: the lowest temperatures for both observation wells were recorded in Jan. 09
(around 4 °C), followed by Dec. 09 (around 7 °C), the temperatures recorded in May 10 are
not distinguishable from the other groundwater temperature time series. Nevertheless, small
fluctuations (0.75–1.5 °C) were observed during high discharge events.
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High discharge events were more easily recognizable as increases in groundwater
head (Fig. 2). The smaller, daily fluctuating signal observed in groundwater head can be
attributed to the pumping regime in the eight groundwater extraction wells in the study
area (Fig. 1). This signal is not detectable during the high discharge events, suggesting it
was either masked or extraction was stopped. Electrical conductivity showed little
variation between time periods, fluctuating between 400 and 600 μS cm−1.
Characteristically, el. conductivity decreased following a high discharge event (in rela-
tion to increase in groundwater head). In some cases, a small increase was observed first
(e.g., W3).

Of the three parameters, el. conductivity showed the strongest response to the high
discharge event in the observation wells located close to the river, while those further away
(F1, B1 and B2) showed little or no response.

3.2 SOM-SM Analysis

The SOM-SM methodology aims to reduce the amount of time required to obtain useful and
relevant information for the management of groundwater extraction wells. It is designed to
rapidly identify any potentially hazardous changes of the system state.

The topographic error TE and quantization error QE of the self-organizing map were 0.035
and 1.775, respectively. The correlation coefficient for Sammon’s projection R2 was 0.836.

The visualization of the SOM-SM analysis result is shown in Figs. 3, 4 and 5. There is one
point per system state, i.e., 2527 points representing 2527 observations, as each point
summarises one row and all 24 variables (columns) of the data matrix. The axes (Sammon’s
MAp 1 and Sammon’sMAp 2) define a two-dimensional Cartesian coordinate system, which
is used to show the proximity and distance between individual observations (represented by
points in Figs. 3, 4 and 5) based on the SOM-SM analysis. The lines indicate subsequent
observations. The shading is used to show the measured values of different parameters in
relation to the multivariate results of the SOM-SM analysis.
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evaluated

3964 R.M. Page et al.



3.3 General Pattern and Overview

Figure 3 highlights the overall shape of the projection, which is roughly triangular. The
majority of the points were located in the upper half of the projection space, with fewer
points in the lower region. The shading in Fig. 3 shows the values of three different
parameters used for the calculation (subset of groundwater head, temperature and
electrical conductivity from observation well W3). Observation well W3 is located
closest to the river and shows a strong response to high discharge events (Fig. 4).
Groundwater head and electrical conductivity show a trend in the shading from the top
left to the bottom right. High groundwater head levels and low electrical conductivity
measures were located in the lower region of the projection. The temperature shading did
not show such a pattern, but reflected the different time periods used in the analysis as
distinguished by differing temperatures in W3 (Fig. 2).

3.4 Temporal Development During Events

Figure 4 shows the results for each of the three time periods separately (non-active time
periods are indicated in grey in the background). The point shading is given by
normalized groundwater head in W3. The lighter shades are generally in the lower
region of the projection, indicating higher groundwater head during these system states.
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The development of system state over time is similar for all three events: each time
period starts in the upper half of the plot, moves towards the lower right quadrant and
back up to the upper half, creating a u-, or v-shaped trajectory (Fig. 4).
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Not only are the system states of the three time periods similar, as highlighted in Fig. 3, but
the dynamics during high discharge events (trajectories) are also similar, as highlighted in
Fig. 4, suggesting a pattern that can be easily identified and interpreted.

3.5 Identifying Hazardous System States

Figure 5 shows the same analysis and projection, however the shading is taken from param-
eters not used in the SOM-SM analysis (river head, particle density, spectral absorption
coefficient (SAC) and turbidity). They are used to highlight potentially hazardous situations.
The shading of particle density, SAC and turbidity is based on the time series recorded in B3.
The fourth parameter used to identify high discharge events in the SOM-SM analysis was river
stage, which was included in this study as the drinking water suppliers currently use it as a
trigger to manage the extraction regime. The shading in the projection shows a pattern similar
to the ones seen in Figs. 3 and 4 (groundwater head and electrical conductivity): higher river
stage, turbidity, SAC measurements and particle counts (lighter shades) are located in the
lowest area of the projection space, while the majority of the points are darker and located in
the upper areas of the projection space. Despite the similarity between time periods in terms of
point location and system development during high discharge events, SAC and turbidity
highlight a potential characteristic of each high discharge event: the change between darker
and lighter shades during the event in January 2009 is drawn out considerably longer than in
May 2010, where only the tip of the projection shows lighter shades. The lighter shades, and
thus the higher values of river stage cover a larger extent of the dip in the projected points than
the other indicator parameters do, suggesting an initial rise in river head and subsequent
infiltration of river water with higher turbidity and SAC levels. The particle time series from
Jan 09 were not included due to large measurement errors.

4 Discussion

In this study, time-series of three groundwater parameters were analysed to identify patterns
reflecting changes in system state. The three high discharge events analysed differed from each
other in terms of magnitude and velocity in which the measured groundwater parameters
(groundwater head, electrical conductivity and temperature) responded. Groundwater head
time-series showed a strong response to all three events and appeared strongly influenced by
pressure wave propagation through the aquifer linked to drinking water extraction, river water
infiltration and rapid river stage rises (Fig. 2). Methods like principal component analysis have
shown that multiple influences, such as groundwater extraction and river-stage fluctuations,
can be superimposed and may mask each other, depending on their magnitude and the distance
of each observation well to the source of disturbance (Lewandowski et al. 2009; Page et al.
2012 also seen in Fig. 2). The observed decrease in electrical conductivity suggests dilution
caused by infiltrating river water with lower ion concentrations than the groundwater. Some
events are characterized by an initial increase in electrical conductivity, e.g., during the first
event in Jan 09 or May 10 (Fig. 2). Both effects, the in- and the decrease of electrical
conductivity, were not observed in the wells further away from the river (Fig. 2, e.g., B1). A
number of reasons may have led to the dampening and loss of the signal over distance, e.g.,
advection, assimilation, or, potentially, the non-conservative behaviour of the parameter
(Cirpka et al. 2007), or a varying influence of the regional groundwater flow component as
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not all observation wells are equally strongly influenced by river-groundwater interactions.
The combination of these effects makes a generalized interpretation of electrical conductivity
values difficult and requires case-by-case consideration. Temperature showed the least fluctu-
ations during each time period and only minor reactions to the high discharge events.
However, seasonality and river temperature strongly influenced groundwater temperature close
to the river (Fig. 2). The strength of temperature as an indicator for river water infiltration is
limited in the experimental site when river and groundwater temperatures are similar, which
usually occurs at least twice a year (in the spring and autumn).

Despite these limitations, the SOM-SM analysis and projection indicated a characteristic
behaviour of the system throughout three different time periods and high discharge events
(Fig. 4). The use of independent parameters (river head, turbidity, SAC and particle density)
supported the indication of characteristic behaviour of the system under observation. High
turbidity values are often associated with surface water infiltration and potential contamination
and are used by drinking-water supply-plant operators for water quality control (Iglesias et al.
2014). Similarly, the elevated SAC values in the groundwater observation wells indicated an
increase in organic matter content. As SAC has been used as an indicator for faecal contamination
in other studies (Stadler et al. 2010), high SAC measurements are characteristic of infiltrating
surface water and critical system states. Increased particle density is another parameter that has
been used as an indicator for faecal bacteria contamination (Auckenthaler et al. 2002; Pronk et al.
2007). These additional groundwater quality parameters and river stage are strongly associated
with river water infiltration and can be used as indices of critical situations, where drinking-water
extraction wells are vulnerable to river-borne microbial contamination.

The indicators for potential contamination showed the highest values in the lower right area of
the SOM-SM projection, thus the critical system states during each time period were located in
the same area of the projection and indicated a similar behaviour during high discharge events.
The consistent position of points representing critical system states in the SOM-SM projection, as
validated by elevated indicator parameter values (Fig. 5), suggests that the combination of
groundwater head, temperature and el. conductivity measurements can be used to identify
potentially hazardous situations. The temporal dynamic of system state can be illustrated by
considering the trajectories over time, as the lower density u- and v-shaped trajectories reflect the
different system states during the course of the three high discharge events (Fig. 4). Furthermore,
all three high discharge events showed a similar pattern (Figs. 3 and 5). These two pieces of
information (length of event and pattern) enable a relatively early initial warning (before indicator
parameters react) and an indication of the development stage of a high discharge event. In
addition, the definition of the time before system state returned to a previous level is a further
estimate that can be drawn from the SOM-SM analysis and that provides the drinking water
supply manager with additional information on actual resource quality.

The effectiveness of the SOM-SM method increases with the magnitude of change in system
state. Rapid infiltration and associated changes in measured parameters will evoke large changes
in the SOM-SM projection, which can then be used to issue a warning to the water supplier and
provide sufficient time for necessary management options to be taken, for example reduction of
extraction or switch to other extractionwells. However, events with only small or gradual changes
could be missed if the minimal change between measurement times required for detection is not
adequately defined. The onset and duration of potentially hazardous situations require further
validation using a range of events, including large and small, as well as rapid and gradual changes
in system state. These two considerations (minimal change threshold as well as onset and
duration) can be part of a fine-tuning process, dependent on the system under consideration
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and the management options, e.g., the number of active wells or the pump stages. As demon-
strated by Dominguez et al. (2007), the SOM-SM approach to process supervision can be an
important part of a decentralized and distributed management system and can be included in a
quality assurance HACCP-approach (Hazard Analysis and Critical Control Point). The approach
can be fully automated: 1) online instrumentation reporting to a database, 2) database connected
to all parameters recorded in the production process, including water extraction and treatment
information, 3) analysis software integrated into the operational system of the water suppliers, 4)
warning system adapted to the needs of the user.

5 Conclusions

Traditionally, in the study area and for water suppliers with similar situations, the approach to
managing the water quality of the extracted groundwater has been based on a univariate
threshold consideration relying on the expertise (and availability) of the operator of the water
supply to detect potentially hazardous situations. The novel approach in this study combines
online measurements, data management and automated pattern recognition to achieve an
adaptive management solution that provides 24 h surveillance. The online identification of
potential contamination of groundwater extraction wells is a step towards an adaptive approach
to groundwater management, allowing a temporally-differentiated extraction plan. The SOM-
SM analysis provides a means by which changes in system state can be quantified and
integrated into the operational system of water suppliers.

Combining the SOM and Sammon’s Mapping to a multivariate proxy analysis provided the
basis for a timely identification of critical system states. The analysis using groundwater head,
electrical conductivity and temperature was able to identify changes in system state indicating
the arrival of rapidly infiltrating river water and with it, potential contamination. Independent
time-series (turbidity, river stage, SAC and particle density) validate the patterns during high
discharge events and identify situations, when the system is strongly influenced by infiltrating
river water, thus representing potential contamination of the extraction wells. The resumption
of extraction requires further validation.

As the approach can be automated after validation, it can be integrated into the operational
management of riverine groundwater extraction well fields to provide a continuous online
assessment of actual system state. The time of detection of infiltrating river water is based on
changes occurring in the measured time-series and can be used to issue warnings to the water
supplier. Besides issuing warnings concerning the onset of critical system states, information
on when extraction can be resumed is an important element of the management process.

Such an online, automated system can supply additional degrees of freedom to the
management of extraction wells near rivers, which have high-quality water during most of
the year, but where water quality is severely compromised during high discharge events. The
complex task of identifying hazardous situations for drinking-water quality in a heterogeneous
environment can thus be simplified by using a SOM-SM proxy analysis as part of quality
management and assurance.
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