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Abstract: We establish reflection positivity for Gibbs trace states for a class of gauge-
invariant, reflection-invariant Hamiltonians describing parafermion interactions on a
lattice. We relate these results to recent work in the condensed-matter physics literature.

1. Introduction

In the early 1960s, Keijiro Yamazaki introduced a family of algebras generalizing a
Clifford algebra.1 These algebras are characterized by a primitive nth root of unity
ω = e2π i/n , and generators c j , where j = 1, 2, . . . , L , with each generator of order n.
Alun Morris studied these algebras and showed that for even L when considered over the
complex field they have an irreducible representation on a Hilbert space H of dimension
N = nL/2, and this is unique up to unitary equivalence [33]. Here we consider L even
and c j unitary. In the physics literature, one calls the operators c j a set of parafermion
generators of order n (or simply “parafermions”) if they satisfy Yamazaki’s relations:

cn
j = I, and c j c j ′ = ω c j ′c j , for j < j ′. (1.1)

Consequently c∗
j = cn−1

j , and also c j c j ′ = ω−1 c j ′c j for j > j ′. The choice n = 2
reduces to a self-adjoint representation of a Clifford algebra; it describes Majoranas,
namely fermionic coordinates. For n � 3 one obtains a generic algebra of parafermi-
onic coordinates, whose generators are not self-adjoint. Note that if {c j } are a set of L
parafermion generators of order n, then {c∗

j } is another set of L parafermion generators
of order n.

Parafermion commutation relations appeared in both the mathematics and the physics
literature, long before the definitions of the algebras cited above. J. J. Sylvester introduced
matrices satisfying parafermion commutation relations in 1882, see [40,41]. In 1953,

1 See (1) and (2) in the middle of page 193 in §7.5 of [44].
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Herbert S. Green proposed such commutators for fields [20]. More recent examples
occur in [16,22].

The relations (1.1) arise from studying representations of the braid group; a new
discussion appears in [12]. Generally, representations of the braid group lead to a variety
of statistics and have been the focus of intense research over the last decades, see for
example [19].

Fendley [14,15] gave a parafermion representation for Rodney Baxter’s clock Hamil-
tonian and for some related spin chains [4–6], and discovered matrices similar to those
in [40]; see our remarks in Sect. 8. Some further examples occur in [1,7]. Recently there
has been a great deal of interest in the possibility to obtain parafermion states in one
and two-dimensional model systems, see [2,3,10,27,28,30,32,43]. Two sets of authors
have proposed a classification of topological and non-topological phases in parafermi-
onic chains [9,34].

1.1. Reflection positivity (RP). Osterwalder and Schrader [37,38] discovered RP for
bosons and fermion fields, after which RP became the standard way to relate statistical
physics to quantum theory, especially quantum field theory, justifying inverse Wick
rotation. In condensed-matter physics RP leads to a self-adjoint transfer matrix acting
on a Hilbert space. Variations of this property have been central in hundreds of subsequent
papers on quantum theory and also on condensed-matter physics, especially in the study
of ground states and phase transitions [8,13,18]. So RP is fundamental, and it is important
to know when it holds.

Let A ∈ A− belong to an algebra of observables localized on one side of a reflection
plane; let ϑ(A) denote the reflected observable localized on the other side of the plane.
The reflection ϑ is said to have the RP-property on A− with respect to the expectation
〈 · 〉, if always 〈A ϑ(A)〉 � 0.

In this paper we show that RP applies in lattice statistical mechanical systems gen-
erated by parafermions. The expectation that we study here is a trace defined with the
Boltzmann weight e−H for a class of Hamiltonians specified in Sect. 6. Our Hamil-
tonians are not necessarily hermitian. However, in case the Hamiltonian is reflection
symmetric, then the partition function is automatically real and positive,

Z = Tr(e−H ) > 0. (1.2)

We give our main result in Theorem 6 of Sect. 6, where we show that the corresponding
expectations of the form

〈 · 〉 = Tr( · e−H ) (1.3)

are RP with respect to an algebra of observables An− generated by monomials in
parafermions of degree n. This paper generalizes our earlier results on the algebra of
fermionic coordinates [25].

1.2. Non-hermitian Hamiltonians. We remark that non-hermitian Hamiltonians describe
the dynamics of physical systems that are not conservative. They may arise in differ-
ent systems, such as those with a singular potential, or when considering conditional
expectations. Although such models appear throughout statistical physics, there has been
a proliferation of recent papers that focus on non-hermitian Hamiltonians.

Interesting examples with non-hermitian Hamiltonians occur both in statistical physics;
see for example [4,15], as well as in different areas of science. We mention the study
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of flux lines in superconducting materials [21], and the analysis of population density
in biological processes [36]. Trefethen and Embree [42] have a book on some general
properties of non-normal operators, that arise from non-hermitian Hamiltonians.

In the complementary direction of Euclidean quantum field theory, the action S
plays the role of the Hamiltonian multiplied by time or inverse temperature. In this
context, expectation values defined with a reflection-positive Boltzmann weight e−S

are the analytic continuation of physical expectation values in a quantum theory with a
self-adjoint Hamiltonian. A non-hermitian action S occurs not only for action functions
involving fermion fields, see [39], but it can also arise for purely bosonic interactions
that are not time-reflection invariant, see [23,24].

2. Basic Properties of Monomials in Parafermions

Parafermions c j are operators that satisfy the relations (1.1). They yield ordered mono-
mials with exponents taken mod n,

CI = cn1
1 cn2

2 · · · cnL
L , where 0 � n j � n − 1. (2.1)

Define the sequence of exponents, I = {n1, . . . , nL}, and denote the total degree as

|I| =
L∑

j=1

n j . (2.2)

2.1. Algebras of parafermions. The parafermions c j generate an algebra that we denote
A. Divide the L parafermions ci into two subsets, according to whether or not i � 1

2 L .
Define A− as the algebra generated by parafermions c j with j � 1

2 L . We use the short-
hand notation I ⊂ Λ− to mean that the sequence I determines a monomial CI ∈ A−.
Correspondingly let A+ denote the algebra generated by parafermions c j with j > 1

2 L .
In addition, define the “order k”-parafermion subalgebras Ak± ⊂ A± as follows:

Ak± is the algebra generated by CI ∈ A±, with |I| = k. (2.3)

One can add the sets indexing parafermions by defining

I + I′ = {n1 + n′
1, . . . , nL + n′

L}. (2.4)

There is no loss in generality to require that one takes each sum n j + n′
j mod n. Define

the numbers

I ◦ I′ =
∑

1� j< j ′�L

n j n
′
j ′, and I ∧ I′ = I ◦ I′ − I′ ◦ I. (2.5)

With these definitions

CICI′ = ω−I◦I′
CI+I′ = ω−I∧I′

CI′CI. (2.6)

Denote the complement of I by

Ic = {n − n1, . . . , n − nL}. (2.7)

One has
C∗

I = ω−I◦I CIc , and C∗
I CI = I = CI C∗

I. (2.8)
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2.2. Reflection. Define the reflection ϑ as the map

i 
→ ϑi = L − i + 1. (2.9)

Represent ϑ as an anti-linear ∗-automorphism of A, whose action on elements we denote
ϑ(A). Thus

ϑ(ci ) = c∗
ϑi = cn−1

ϑi , and ϑ
(
c j ck

) = ϑ
(
c j

)
ϑ (ck) . (2.10)

Set ϑI = {nL , . . . , n1}, and note that (ϑI)c = ϑ(Ic) = ϑIc. Using (2.5), one sees
that

ϑ(CI) = ω−I◦I CϑIc . (2.11)

Take Λ− = {1, 2, . . . , L/2} and Λ+ = {L/2 + 1, . . . , L} to divide the points Λ =
Λ− ∪Λ+ into two sets Λ± exchanged by reflection. To simplify notation, we relabel the
sites in order to put sites 1 to L/2 on one side of the reflection plane and sites L/2+1 to L
on the other side. Throughout the rest of this paper we use the property that parafermions
ci− with i− ∈ Λ− and ci+ with i+ ∈ Λ+ satisfy ci−ci+ = ω ci+ ci− , which follows from
our assumption i− < i+. For I ⊂ Λ+ and I′ ⊂ Λ−, one has I ◦ I′ = 0. So in this case

I ∧ I′ = −I′ ◦ I = −
∑

j, j ′
n j n

′
j ′ = − ∣∣I

∣∣ ∣∣I′∣∣ . (2.12)

2.3. Gauge transformations. We introduce the family of local gauge automorphisms U j
defined by

c j 
→ U j ′(c j ) = ω
δ j j ′ c j , for j = 1, . . . , L . (2.13)

Here δ j j ′ is the Kronecker delta function. As shown in [12], this transformation can
be implemented on the Hilbert space of parafermions by the unitary transformation
Vj = e−2π i N j /n , where N j is a parafermionic number operator, and U j ′(c j ) = Vj ′c j V ∗

j ′ .
The different Vj commute.

Global gauge transformations are defined by U = ∏L
j=1 U j and transform all

parafermions by the same phase ω. Special significance is attached to the parafermion
monomials that are invariant under global gauge transformations. In fact we say that the
globally-gauge-invariant parafermion monomials are observables. We call the gauge-
invariant algebra An the algebra of observables.

3. Reflection Symmetry and Gauge Invariance

Here we show that certain multiples of the monomials (2.1) are both reflection-symmetric
and gauge invariant. These monomials may not be hermitian. We also discuss the general
form of reflection-symmetric, gauge-invariant, polynomial Hamiltonians.

Lemma 1. (Elementary Rearrangement) For I± ⊂ Λ±,

CI+ CI− = ω−|I+||I−| CI− CI+ . (3.1)

Also for I,I′ ⊂ Λ−,

ϑ(CI) CI′ = ω|I | |I′| CI′ ϑ(CI). (3.2)
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Proof. For I± ⊂ Λ±, one has I+ ◦ I− = 0. Hence

I+ ∧ I− = −I− ◦ I+ = − |I−| |I+| . (3.3)

Therefore (2.6) can be written in this case as (3.1). Also ϑIc ∈ Λ+, so (2.11) and (3.3)
ensures

ϑ(CI) CI′ = ω−ϑIc◦I′
CI′ ϑ(CI). (3.4)

But |ϑIc| = nL − |I|, so (3.2) holds. �
Proposition 2. Let CI ∈ A− have the form (2.1), and let

XI = ω
1
2 |I|2

CI ϑ(CI), where ω = e
2π i

n . (3.5)

Then XI is both reflection invariant and globally gauge invariant. More generally for
XI = eiθ CI ϑ(CI), the reflection-invariant combination XI + ϑ(XI) is a real multiple
of (3.5).

Proof. One has

ϑ(XI) = ϑ(ω
1
2 |I|2 CI ϑ(CI)) = ω− 1

2 |I|2 ϑ(CI) CI. (3.6)

Substitute the elementary rearrangement of (3.2) with I = I′ into (3.6). This entails
ϑ(XI) = XI as claimed.

Furthermore XI is a globally-gauge-invariant monomial, for

UCIU∗ = ω|I| CI, while Uϑ(CI)U∗ = ω−|I| ϑ(CI). (3.7)

As U is linear, we infer U XIU∗ = XI.
The second assertion also follows, by noting that the multiple in question is

2 cos
(
θ − π

n |I|2). �
Corollary 3. Reflection-invariant, globally-gauge-invariant polynomials that are linear
combinations of monomials (3.5) can be written as

∑

I⊂Λ−

(−1)1+|I| ω
1
2 |I|2

JIϑI CI ϑ(CI), with real couplings JIϑI. (3.8)

3.1. Hermitian Hamiltonians. A general monomial entering the sum (3.8) is not her-
mitian. Namely

YI = (−1)1+|I| ω
1
2 |I|2

JIϑI CI ϑ(CI), (3.9)

yields

Y ∗
I = (−1)1+|I| ω

1
2 |I|2

JIϑI CIc ϑ(CIc). (3.10)

In this equality we use (2.8) and (3.1), so the monomial YI is hermitian only if Ic = I.
This entails ni = 1

2 n or ni = 0, for every i . A necessary condition for a non-constant
YI to be hermitian is that n is even.

For example if n = 2 and L = 2 one can label the two sites by 1,2, with I = {1} and
ϑI = {2}. Then |I| = 1 and ω = −1. The specific monomial

YI = i JIϑI c1ϑ(c1) (3.11)
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of the form (3.9) is both reflection-symmetric and hermitian. On the other hand, a general
YI of the form (3.9), which may not be hermitian, always yields the polynomial YI+Y ∗

I,
that is both reflection symmetric and hermitian. For example, with n = 3 and L = 2,

ω = e
2π i

3 , the monomial

YI = ω
1
2 JIϑI c1ϑ(c1) = ω

1
2 JIϑI c1c∗

2 = ω
1
2 JIϑI c1c2

2, (3.12)

yields the reflection-symmetric, hermitian polynomial

YI + Y ∗
I = ω

1
2 JIϑI (c1c2

2 + c2
1c2). (3.13)

4. A Basis for Parafermions

Let CI = cn1
1 . . . cnL

L be one of nL monomials of the form (2.1), with L even. As a
consequence of the results of Morris [33], one can take CI to act on a Hilbert space H
of dim(H) = nL/2.

Proposition 4. The monomials CI are linearly independent, and provide a basis for the
nL linear transformations on H. Furthermore Tr (CI) = 0, unless |I| = 0. Any linear
transformation A on H has the decomposition

A =
∑

I

aI CI, where aI = 1

nL/2 Tr
(
C∗

IA
)
. (4.1)

Proof. If CI = I , then Tr (CI) = dim H = nL/2. So we need only analyze |I| > 0.
We consider two cases.

Case I: a particular c j does not occur in CI. Distinguish between two subcases, ac-
cording to whether or not

∑
i< j ni − ∑

i> j ni = 0 mod n. If this quantity does not
vanish, then cyclicity of the trace and the parafermion relations (1.1) ensure that

Tr (CI) = Tr
(

CIcn
j

)
= Tr

(
c j CIcn−1

j

)

= ω
∑

i< j ni −∑
i> j ni Tr (CI) .

The last equality is a consequence of (1.1), allowing one to move c j to the right through

CI. As ω
∑

i< j ni −∑
i> j ni �= 1, we infer that Tr(CI) = 0.

On the other hand, when
∑

i< j ni − ∑
i> j ni = 0 mod n, there exists j ′ �= j with

n j ′ �= 0 mod n, and also | j − j ′| is minimized. If j ′ < j , then

Tr (CI) = Tr
(

CIcn
j ′
)

= Tr
(

c j ′CIcn−1
j ′

)

= ω
−n j ′ +(

∑
i< j ni −∑

i> j ni ) Tr (CI)

= ω
−n j ′ Tr (CI) = 0.

In the last equality we use that ω
n j ′ �= 1. If j ′ > j the same reasoning can be followed,

except ω
n j ′ replaces ω

−n j ′ .
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Case II: every c j occurs in CI. Here we have

n j ∈ {1, 2, . . . , n − 1}, (4.2)

for each j . Move one of the c j ’s cyclically through the trace, and back to its original
position. For j = 1, this shows that

Tr (CI) = ω
∑L

j=2 n j Tr (CI) . (4.3)

Hence either Tr (CI) = 0, or else

L∑

j=2

n j = 0 mod n. (4.4)

Likewise for 2 � j � L , either Tr(CI) = 0, or

−
k−1∑

j=1

n j +
L∑

j=k+1

n j = 0 mod n, for k = 2, . . . , L − 1, (4.5)

and for k = L ,
L−1∑

j=1

n j = 0 mod n. (4.6)

The conditions (4.4) and (4.5) for the case k = 2, show that n1 + n2 = 0 mod n.
Condition (4.2) ensures that both n1 and n2 are strictly greater than 0 and strictly less
than n, so n1 + n2 = n.

Next subtract the condition (4.5) for k = 3 from the same condition for k = 2. This
shows that n2 + n3 = 0 mod n, and the restriction (4.2) ensures that n2 + n3 = n.
Continue in this fashion for k = j + 1 and k = j , in order to infer that n j + n j+1 = n for
j = 3, . . . , L−2. Finally consider the condition (4.6). As we have seen that n j +n j+1 = n
for j = 1, 3, 5, . . . , L − 3, we infer that nL−1 = 0 mod n. But this is incompatible
with 1 < nL−1 < n required by (4.2). So we conclude that Tr(CI) = 0 in all cases for
which I �= 0.

Note that C∗
ICI = I for each I. Assuming that I �= I′, it follows from the form (2.1)

for CI, that C∗
I′CI = ±Cγ for some γ �= 0. Suppose that there are coefficients aI ∈ C

such that
∑

I aICI = 0. Then for any I′, one has C∗
I′

∑
I aICI = ∑

I aIC∗
I′CI = 0.

Taking the trace shows that aI′ = 0, so the CI are actually linearly independent. As
there are nL linearly independent matrices CI, namely the square of the dimension of
the representation space nL/2 of parafermions, these monomials are a basis set for all
matrices. Expanding an arbitrary matrix A in this basis, we calculate the coefficients in
(4.1) using Tr I = nL/2. �

5. Primitive Reflection-Positivity

Proposition 5. Consider an operator A ∈ A±, then

Tr(A ϑ(A)) � 0. (5.1)
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Proof. The operator A ∈ A± can be expanded as a polynomial in the basis CI of
Proposition 4. One can restrict to I ∈ Λ±, so the monomials that appear in the expansion
all belong to A±. Write

A =
∑

I

aI CI, and ϑ(A) =
∑

I

aI ϑ(CI). (5.2)

With A ∈ A−, one can take CI = cn1
1 . . . c

nL/2
L/2 , so

Tr (A ϑ(A)) =
∑

I,I′
aI aI′ Tr (CI ϑ(CI′)) . (5.3)

Since CI ∈ A− and ϑ(CI′) ∈ A+, they are products of different parafermions. We infer
from Proposition 4 that the trace vanishes unless |I| = |ϑI′| = 0. Then

Tr (A ϑ(A)) = nL/2 |a0|2 � 0, (5.4)

as claimed. �

6. The Main Results

Fix the order n of parafermions, and consider positive-temperature states determined by
a Hamiltonian H that is reflection invariant ϑ(H) = H , and globally gauge invariant
U HU∗ = H . But H is not necessarily hermitian.

Assume that H has the form

H = H− + H0 + H+, (6.1)

with H± ∈ An± and H+ = ϑ(H−). Here H0 is a sum of interactions (3.8) across the
reflection plane, namely

H0 =
∑

I⊂Λ−
|I|>0

(−1)|I|+1ω
1
2 |I|2 JIϑI CI ϑ(CI). (6.2)

6.1. Assumptions on the coupling constants. For any n, our results hold if the coupling
constants in (6.2) satisfy

JIϑI � 0, for all I. (6.3)

Alternatively, for even n, our results hold if the coupling constants satisfy

(−1)|I| JIϑI � 0, for all I. (6.4)

Note that we only restrict the signs of the coupling constants for those interactions
that cross the reflection plane.2 The functional

Tr(A ϑ(B) e−H ), for A, B ∈ An±, (6.5)

is linear in A and anti-linear in B.
2 The conditions (6.3)–(6.4), taken together with our definition (6.2) for the phase of the couplings, reduce

to the conditions in our earlier work on Majoranas [25], for which n = 2 and ω = −1. The phase in (6.2) is

i2|I|+2+|I|2 = −1, i , corresponding to |I| being even or odd, respectively. In [25] the corresponding phases
were i (|I| mod 2) = 1, i . Thus the couplings JIϑI in the present paper have the opposite sign from those in
[25] for even |I|; they have the same sign for odd |I|. Bearing this in mind, the allowed interactions in the
two papers agree for n = 2. For the case of general n, our new choice of signs simplifies the formulation of
conditions (6.3)–(6.4).
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6.2. Reflection positivity on the algebra of observables. Here we show that a reflection-
symmetric, globally-gauge-invariant Hamiltonian H has the reflection-positivity prop-
erty on the algebra An± of gauge-invariant observables.

Theorem 6. Let A ∈ An± and H of the form (6.1)–(6.4). Then the functional (6.5) is
positive on the diagonal,

Tr(A ϑ(A) e−H ) = Tr(ϑ(A) A e−H ) � 0. (6.6)

In particular, the partition function Tr(e−H ) � 0 is real and non-negative.

Proof. Use the Lie product formula for matrices α1, α2, and α3 in the form

eα1+α2+α3 = lim
k→∞

(
(1 + α1/k)eα2/keα3/k

)k
, (6.7)

with α1 = −H0, α2 = −H−, and α3 = −H+. (Such an approximation was also used in
equation (2.6) of [17].) Using (6.7), one has e−H = limk→∞

(
e−H

)
k , where

(
e−H

)

k
=

⎛

⎜⎝(I − 1

k

∑

I⊂Λ−
|I|>0

(−1)1+|I|ω
1
2 |I|2 JIϑI CI ϑ(CI)) e−H−/k e−ϑ(H−)/k

⎞

⎟⎠

k

=
⎛

⎜⎝(I +
1

k

∑

I⊂Λ−
|I|>0

(−1)|I|ω
1
2 |I|2 JIϑI CI ϑ(CI)) e−H−/k e−ϑ(H−)/k

⎞

⎟⎠

k

.

(6.8)

One can include the term I in the sums in (6.8) by defining J∅ϑ∅ = k, and including
|I| = 0 in the sum. Then

(
e−H

)

k
= 1

kk

⎛

⎝
∑

I⊂Λ−

(−1)|I|ω
1
2 |I|2 JIϑI CI ϑ(CI) e−H−/k e−ϑ(H−)/k

⎞

⎠
k

=
∑

I(1),...,I(k)⊂Λ−

(−1)
∑k

j=1 |I( j)|
ω

∑k
j=1

1
2 |I( j)|2

×cI(1),...,I(k) YI(1),...,I(k) . (6.9)

In the second equality we have expanded the expression into a linear combination of
terms with coefficients

cI(1),...,I(k) = 1

kk

k∏

j=1

JI( j) ϑI( j) , (6.10)

and with

YI(1),...,I(k) = CI(1)ϑ(CI(1) ) e−H−/k e−ϑ(H−)/k · · ·
× · · · CI(k)ϑ(CI(k) ) e−H−/k e−ϑ(H−)/k . (6.11)

We assume in (6.1) that H− ∈ An−. Thus YI(1),...,I(k) has the form in (6.13) with B j =
e−H−/k for all j . Let

DI(1),...,I(k) = CI(1) e−H−/k CI(2) e−H−/k · · · CI(k) e−H−/k ∈ A−. (6.12)
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Lemma 7. (General rearrangement) Let CI( j) ∈ A−, and let A, B j ∈ An−, for j =
1, . . . , k. Also let DI(1),...,I(k) = CI(1) B1 CI(2) B2 . . . CI(k) Bk ∈ A−. Then

Aϑ(A)CI(1)ϑ(CI(1) ) B1ϑ(B1) CI(2)ϑ(CI(2) ) B2ϑ(B2) . . . CI(k)ϑ(CI(k) ) Bkϑ(Bk)

= ω
∑

1� j< j ′�k |I( j)| |I( j ′)| ADI1,...,Ik ϑ(ADI1,...,Ik ). (6.13)

Proof. In order to establish (6.13), rearrange the order of the factors on the left side of
the identity. In doing this, one retains the relative order of A, of the various CI( j) , and
of the various B j ′ that are elements of A−. Likewise one retains the relative order of
ϑ(A), of the various ϑ(CI( j) ) and of the various ϑ(B j ′) that are elements of A+. In this
manner one obtains ADI(1),...,I(k)ϑ(ADI(1),...,I(k) ) multiplied by some phase.

The resulting rearrangement only requires that one commutes operators in A+ with
operators in A−. As ϑ(A) ∈ An

+ and ϑ(B j ′) ∈ An
+, each such factor commutes with

every operator in A−, and in particular with each CI( j) . Likewise B j ′ ∈ An− commutes
with each operator ϑ(CI( j) ). Thus one acquires a phase not equal to 1, only by moving
one of the operators ϑ(CI( j) ) ∈ A+ to the right, past one of the operators CI( j ′) ∈ A−.
And this is only required in case j < j ′. Use the rearrangement identity (3.1) to perform
this exchange. This phase is given by the resulting product of phases arising in the
elementary moves, and it yields the phase in (6.13). �
Lemma 8. (Conservation law) Under the hypotheses of Lemma 7, the trace of ADI1,...,Ik
ϑ(ADI1,...,Ik ) vanishes unless

k∑

j=1

|I( j)| = 0 mod n. (6.14)

If (6.14) holds, then the constants cI(1),...,I(k) defined in (6.10) satisfy

0 � cI(1),...,I(k) . (6.15)

Proof. Expand T = ADI1,...,Ik and its reflection as a sum of monomials (4.1),

T =
∑

Ĩ⊂Λ−

aĨCĨ, and ϑ(T ) =
∑

Ĩ′⊂Λ−

aĨ′ ϑ(CĨ′). (6.16)

Here we distinguish Ĩ = {̃n1, . . . , ñL/2, 0, . . . , 0} from I( j) in the definition of CI( j) .
Proposition 4 ensures that the trace of CĨ ϑ(CĨ′) vanishes unless each ñi = 0 = ñ′

i . The
trace of T ϑ(T ) is given by the constant term in the expansion in the monomial basis of
parafermions.

Consider first the case in which A and all the B j are constants. Then the relation (2.6)
ensures that

T = CI(1) · · · CI(k) = α CI(1)+···+I(k) = α CĨ, with α ∈ C, (6.17)

namely there is only one term CĨ in the expansion of T . Thus we have the local conser-
vation law

ñi =
k∑

j=1

n( j)
i mod n, (6.18)

for each i = 1, . . . , L , and in fact ñi = 0 for i > L/2.
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Proposition 4 ensures that the trace of T ϑ(T ) vanishes unless each parafermion ci
appears in CĨ with an exponent equal to 0 mod n. In other words ñi = 0. Summing this
relation over i gives the desired global conservation law (6.14).

In the general case, the matrices A and B j are elements of An−. One obtains T from the
previous case by replacing each CI( j) by the product CI( j) B j , and multiplying DI1,...,Ik
by A. One can expand A and each B j using the basis of parafermion monomials, and
the total degree of each non-zero term in each of these expansions is an integer multiple
of n. In the general case, the multiplications may introduce new parafermion factors, so
it may be the case that ñi �= ∑k

j=1 n( j)
i mod n, and the local conservation law (6.18)

may not hold for T . However the relation (2.6) ensures that each multiplication by A
or by B j changes the total degree of any monomial in the expansion of T by an integer
multiple of n. Thus

L∑

i=1

ñi =
L∑

i=1

k∑

j=1

n( j)
i mod n =

k∑

j=1

|I( j)| mod n, (6.19)

remains true. Since the trace of T ϑ(T ) vanishes unless ñi = 0 for all i , we infer the
global conservation law (6.14). Hence (6.14) holds in the general case.

The positivity of cI(1),...,I(k) follows in case each of the coupling constants JI( j) ϑI( j)

are non-negative. In case of even n, we also allow a factor

(−1)
∑k

j=1

∣∣I( j)
∣∣ = (−1)αn (6.20)

for integer α. But as we are assuming that n is even, this also equals +1. �
Completion of the proof of Theorem 6. Using (6.9) and Lemma 7, we infer that

A ϑ(A)
(

e−H
)

k
=

∑

I(1),...,I(k)

(−1)
∑k

j=1 |I( j)|
ω

∑k
j=1

1
2 |I( j)|2+

∑
1� j< j ′�k |I( j)| |I( j ′)|

× cI(1),...,I(k) ADI(1),...,I(k)ϑ(ADI(1),...,I(k) )

=
∑

I(1),...,I(k)

(−1)
∑k

j=1 |I( j)|
ω

∑k
j=1

1
2 |I( j)|2+ 1

2

(∑k
j=1 |I( j)|

)2− 1
2

∑k
j=1 |I( j)|2

× cI(1),...,I(k) ADI(1),...,I(k) ϑ(ADI(1),...,I(k) )

=
∑

I(1),...,I(k)

(−1)
∑k

j=1 |I( j)|
ω

1
2

(∑k
j=1 |I( j)|

)2

× cI(1),...,I(k) ADI(1),...,I(k) ϑ(ADI(1),...,I(k) ).

Taking the trace, we have the approximation

Tr
(

Aϑ(A)
(

e−H
)

k

)
=

∑

I(1),...,I(k)

(−1)
∑k

j=1 |I( j)|
ω

1
2

(∑k
j=1 |I( j)|

)2

cI(1),...,I(k)

× Tr
(

ADI(1),...,I(k) ϑ(ADI(1),...,I(k) )
)
. (6.21)

From Lemma 8 we infer that the trace vanishes unless
∑k

j=1 |I( j)| = αn for some
non-negative integer α. Also in this case cI(1),...,I(k) � 0. The phase in (6.21) is

(−1)
∑k

j=1 |I( j)|
ω

1
2

(∑k
j=1 |I( j)|

)2

= (−1)αnω
1
2 α2n2 = e2π in (1+α)α

2 = 1.
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In the final equality we use the fact that (1 + α)α is even. Proposition 5 ensures
Tr(ADI(1),...,I(k)ϑ(ADI(1),...,I(k) ) � 0. So each term in the sum (6.21) is non-negative.
Therefore the k → ∞ limit of (6.21) is also non-negative. �

In Sect. 9, we require a generalization of Lemmas 7 and 8, which reduce to the
previous statements in case A = B and B−

j = F−
j for all j . The proof of the general-

izations follow the prior proofs step by step.

Lemma 9. (General rearrangement II) Let CI( j) ∈ A−, and let A, B, B−
j , F−

j ∈ An−,

for j = 1, . . . , k. Also let D−
I(1),...,I(k) = CI(1) B−

1 CI(2) B−
2 · · · CI(k) B−

k ∈ A−, and

correspondingly let E−
I(1),...,I(k) = CI(1) F−

1 CI2 F−
2 · · · CI(k) F−

k ∈ A−. Then,

Aϑ(B)CI(1)ϑ(CI(1) ) B−
1 ϑ(F−

1 ) · · · CI(k)ϑ(CI(k) ) B−
k ϑ(F−

k )

= ω
∑

1� j< j ′�k |I( j)| |I( j ′)| AD−
I1,...,Ik

ϑ(B E−
I1,...,Ik

). (6.22)

Lemma 10. (Conservation law II) Under the hypotheses of Lemma 9, the trace of
AD−

I1,...,Ik
ϑ(B E−

I1,...,Ik
) vanishes unless

k∑

j=1

|I( j)| = 0 mod n. (6.23)

If (6.23) holds, then

cI1,...,Ik = 1

kk

k∏

j=1

JI( j) ϑI( j) � 0. (6.24)

7. RP Does Not Hold on A−

We have proved that the functional f (A) = Tr(A ϑ(A) e−H ) is positive for A ∈ An− ⊂
A−. This is what we defined as the algebra of observables after (2.3). Here we remark
that f (A) is not positive on the full algebra A−.

Consider L = 2 with the parafermion generators, c = c1 ∈ A1− and c2 = ϑ(c)∗ ∈ A1
+.

Let A = c and take H = H0 = ω
1
2 cϑ(c), which has the form (6.1)–(6.2), with

H− = H+ = 0. We now show that f (c) is not positive, so ϑ is not RP on A1−. In
fact

f (c) =
∞∑

k=0

Tr(cϑ(c)(cϑ(c))k)
(−1)kω

k
2

k!

=
∞∑

k=0

ω

(
k+ k(k−1)

2

)

Tr
(

c1+kϑ(c)1+k
) (−1)kω

k
2

k!

=
∞∑

k=0

ω

(
k+ k2

2

)

(−1)k

k! Tr
(

c1+kϑ(c)1+k
)

.
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Use the fact that the trace vanishes unless 1 + k = 
n for 
 = 1, 2, . . .. Then

f (c) = Tr(I )
∞∑


=1

ω

(
(
n−1)+ (
n−1)2

2

)

(−1)
n−1

(
n − 1)!

= −ω− 1
2 Tr(I )

∞∑


=1

ω
1
2 
2n2

(−1)
n

(
n − 1)! . (7.1)

For integer 
, the product 
(
 + 1) is an even, positive integer. Thus the phase inside the
sum equals

ω
1
2 
2n2

(−1)
n = e

(
2π i

n

)(
1
2 
2n2

)
+π i
n = eπ in
(
+1) = 1. (7.2)

Therefore one finds that

f (c) = −ω− 1
2 Tr(I )

∞∑


=1

1

(
n − 1)! �∈ R+. (7.3)

One can also calculate f (c j ) for the same Hamiltonian, noting that c j ∈ A
j
−. In this

case there are certain pairs (n, j), with j < n, for which f (c j ) is positive. Three such
families of pairs are:

1. n = k3, j = k2, with k ∈ Z+,
2. n = 2k2, j = 2k j ′, with 1 � j ′ < k,
3. n = k2, j = j ′k with k odd and 1 � j ′ < k.

We do not pursue the question of finding on exactly which subalgebras of A− the
functional f (c j ) is positive.

8. The Baxter Clock Hamiltonian

As an example of a familiar parafermion interaction, Fendley has shown that the Baxter
clock Hamiltonian (originally formulated as interacting spins [4,5]) can be expressed
in terms of parafermions. Near the end of §3.1 of [15], he finds that for parafermion
generators c j of degree n,

H = ω
n−1

2

L−1∑

j=1

t j c j+1c∗
j , (8.1)

where the t j are real coupling constants. As c∗
j = cn−1

j , each term in the Hamiltonian is
an element of the algebra An .

In Sect. 1 we remarked that if {c j } are parafermion generators, then {c∗
j } are also

parafermion generators. So using this alternative set of parafermions, one can also write
the Baxter clock Hamiltonian as

H = ω
n−1

2

L−1∑

j=1

t j c∗
j+1c j = −ω

1
2

L−1∑

j=1

t j c j c∗
j+1. (8.2)

One can split this sum into three parts,

H = H− + H0 + H+, (8.3)
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where

H− = −ω
1
2

1
2 L−1∑

j=1

t j c j c
∗
j+1, H+ = −ω

1
2

L−1∑

j= 1
2 L+1

t j c j c
∗
j+1,

and
H0 = −ω

1
2 t 1

2 L c 1
2 L c∗

1
2 L+1

= −ω
1
2 t 1

2 L c 1
2 L ϑ(c 1

2 L). (8.4)

Note that ϑ(H0) = H0. Also

ϑ(H−) = −ω− 1
2

1
2 L−1∑

j=1

t j ϑ(c j )ϑ(c∗
j+1) = −ω− 1

2

1
2 L−1∑

j=1

t j c∗
L− j+1cL− j

= −ω− 1
2 −(n−1)

1
2 L−1∑

j=1

t j cL− j c
∗
L− j+1 = −ω

1
2

L−1∑

j= 1
2 L+1

tL− j c j c
∗
j+1.

On the other hand, the parafermion Hamiltonians that we study in (6.1) include those
with |I| = 1 of the form

H = H− + H0 + H+, with H+ = ϑ(H−), (8.5)

and

H0 = ω
1
2 J 1

2 L c 1
2 L ϑ(c 1

2 L) = ω
1
2 J 1

2 L c 1
2 L c∗

1
2 L+1

. (8.6)

Thus Fendley’s representation of the Baxter Hamiltonian has the required general
form (8.5)–(8.6) if J j = −t j for all j , and also

tL− j = t j , for j = 1, 2, . . . ,
1

2
L − 1. (8.7)

Such a Hamiltonian is reflection invariant,ϑ(H) = H , and it is gauge invariantU HU∗ =
H . It satisfies our RP hypotheses in Sect. 6.1 in case:

For odd n: t 1
2 L � 0.

For even n: t 1
2 L ∈ R. (8.8)

9. Reflection Bounds

Reflection positivity allows one to define a pre-inner product on A± given by

〈A, B〉 = Tr(A ϑ(B)). (9.1)

This pre-inner product satisfies the Schwarz inequality

|〈A, B〉|2 � 〈A, A〉 〈B, B〉. (9.2)

In the standard way, one obtains an inner product 〈 Â, B̂〉 and norm ‖ Â‖ by defining the
inner product on equivalence classes Â = {A + n} of A’s, modulo elements n of the null
space of the functional (9.1) on the diagonal. In order to simplify notation, we ignore
this distinction.
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Let us introduce two pre-inner products 〈 ·, · 〉± on the algebras An±, corresponding
to two reflection-symmetric Hamiltonians. Let

〈A, B〉− = Tr(A ϑ(B) e−H−,ϑ−), for H−,ϑ− = H− + H0 + ϑ(H−). (9.3)

Similarly define

〈A, B〉+ = Tr(A ϑ(B) e−Hϑ+,+), for Hϑ+,+ = ϑ(H+) + H0 + H+. (9.4)

As in the first paragraph of this section, use the forms (9.3) and (9.4) to define inner
products and norms ‖ · ‖±.

We now state the reflection bound for a Hamiltonian H for which we do not assume
that H− = ϑ (H+). Rather we bound the absolute value of expectations defined by H ,
in terms of the norms ‖ · ‖±.

Proposition 11. (RP-bounds) Let H = H− + H0 + H+ with H± ∈ An± and H0 of the
form (6.2), with couplings JIϑI that satisfy (6.3) or (6.4). Then for A, B ∈ An

+,
∣∣∣Tr(A ϑ(B) e−H )

∣∣∣ � ‖A‖− ‖B‖+. (9.5)

Also ∣∣∣Tr(A ϑ(B) e−H )

∣∣∣ � ‖A‖+ ‖B‖−. (9.6)

In particular for A = B = I ,
∣∣∣Tr(e−H )

∣∣∣ � Tr(e−(H−+H0+ϑ(H−)))1/2 Tr(e−(ϑ(H+)+H0+H+))1/2. (9.7)

Proof. The proof is an elaboration of the proof of Theorem 6, that yields an upper bound
rather than positivity. Use the expression (6.21), along with the discussion following that
identity, to write A ϑ(B)

(
e−H

)
k , which converges to A ϑ(B) e−H as k → ∞ in the

form

Tr
(

Aϑ(B)
(

e−H
)

k

)
=

∑

I(1),...,I(k)

cI(1),...,I(k)

〈
AD−

I(1),...,I(k) , B E−
I(1),...,I(k)

〉
. (9.8)

The form 〈 · , · 〉 in (9.8) is defined in (9.1). The matrices D−
I1,...,Ik

∈ A− are given by
(6.12), and

E−
I1,...,Ik

= CI1e−ϑ(H+)/kCI2 e−ϑ(H+)/k · · · CIk e−ϑ(H+)/k ∈ A−. (9.9)

We infer from Lemma 8 that cI1,...,Ik � 0 whenever 〈AD−
I1,...,Ik

, B E−
I1,...,Ik

〉 �= 0. Use
the Schwarz inequality for 〈 ·, · 〉 and the positivity of cI1,...,Ik to obtain
∣∣∣Tr

(
A ϑ(B)

(
e−H

)

k

)∣∣∣ �
∑

I(1),...,I(k)

c
1/2
I1,...,Ik

〈AD−
I1,...,Ik

, AD−

1,...,
k

〉1/2

× c
1/2
I1,...,Ik

〈B E−
I1,...,Ik

, B E−
I1,...,Ik

〉1/2

�

⎛

⎝
∑

I(1),...,I(k)

cI(1),...,I(k)〈AD−
I(1),...,I(k) , AD−

I(1),...,I(k)〉
⎞

⎠
1/2

×
⎛

⎝
∑

I(1),...,I(k)

cI(1),...,I(k) 〈B E−
I(1),...,I(k) , B E−

I(1),...,I(k)〉
⎞

⎠
1/2

.
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Taking the limit k → ∞, one has
∣∣∣Tr

(
A ϑ(B) e−H

)∣∣∣ = 〈A, A〉1/2
− 〈B, B〉1/2

+ = ‖A‖− ‖B‖+. (9.10)

This completes the proof of relation (9.5).
When A, B ∈ An

+, substitute in the left-hand side of (9.6) A = ϑ( Ã) and B = ϑ(B̃)

with Ã, B̃ ∈ An−. Since A and B commute with ϑ(A) and ϑ(B),
∣∣∣Tr(A ϑ(B) e−H )

∣∣∣ =
∣∣∣Tr(B̃ ϑ( Ã) e−H )

∣∣∣ . (9.11)

Replacing H− by ϑ(H+) and ϑ(H−) by H+ in the bound (9.5) completes the proof of
(9.6). �

Reflection-positivity bounds of the form (9.5) and (9.6) turned out to be useful to
solve numerous physics problems. As an illustration, we mention here four relevant
examples. In [13], the authors applied RP bounds to study phase transitions in anisotropic
spin lattice models. RP bounds were also useful to investigate the vortex structure in
the ground states of interacting fermions on a lattice [29,31] and of certain spin ladders
[11].

10. Topological Order and Reflection Positivity

Define a loop C of length 2
 as an ordered sequence of sites {i1, i2, . . . , i2
}. Let WA =
A ϑ(A) = B(C) be a product of parafermions around the loop C ,

B(C) = c
ni1
i1

c
ni2
i2

. . . c
ni2


i2

, where i1 � i2 � · · · � i2
 = i1. (10.1)

Take A = c
ni1
i1

. . . c
ni

i


to be the product of parafermions along half of a loop and ϑ(A) =
ϑ(ci1) . . . ϑ(ci
 ) = (c

ni1
ϑi1

)∗ . . . (c
ni

ϑi


)∗ = c
n−ni1
i2


. . . c
n−ni

i
+1

the product of parafermions
along the other half of the loop.

Consider a reflection-invariant Hamiltonian H , with a ground-state subspace P . We
also use the symbol P to denote the orthogonal projection onto the ground-state subspace.
Define H to have W -order, if the operator W applied to any vector � ∈ P has no
component in P that is orthogonal to �. In other words, PWP is a scalar multiple of
P , and W does not cause transitions between different ground states. Topological order
involves the additional assumption that W is localized.

In an earlier paper [26], we have the following result for a Hamiltonian describing the
interaction of Majoranas. The exact same proof as in [26] applies as well to Hamiltonians
describing the interaction of parafermions.

Proposition 12. Let H be a reflection-positive Hamiltonian that has WA = Aϑ(A)

topological order, where A ∈ An−. Then 0 � 〈�, WA�〉 for any � ∈ P .

Topologically ordered systems have attracted a lot of attention in the physics com-
munity because of their potential use in quantum computation. The idea is to encode
the qubit states into the ground-state subspace of such Hamiltonians. Topological or-
der ensures that the encoded qubits are able to tolerate some local noise without being
destroyed. In order to change the state of the qubit one must perform a non-local oper-
ation. This is the basic premise for topological quantum computation. In this context it
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is important to understand the ground-state properties of Hamiltonians with topological
order.

Related to this line of thinking, we considered the interaction of Majoranas (parafermi-
ons of degree two) on a two-dimensional lattice [26]. In this case the operators WA were
conserved and we said that a loop C has a vortex if B(C) = WA = −1. We applied
Proposition 12 to show that WA has no vortex in any ground state. One could investigate
a similar situation for parafermion interactions.
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