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Abstract We study the problem of finding the minimum number of edges that, when
cut, form a partition of the vertices into k sets of equal size. This is called the k-BAL-
ANCED PARTITIONING problem. The problem is known to be inapproximable
within any finite factor on general graphs, while little is known about restricted graph
classes.

We show that the k-BALANCED PARTITIONING problem remains APX-hard
even when restricted to unweighted tree instances with constant maximum degree. If
instead the diameter of the tree is constant we prove that the problem is NP-hard to
approximate within nc, for any constant c < 1.

If vertex sets are allowed to deviate from being equal-sized by a factor of at most
1 + ε, we show that solutions can be computed on weighted trees with cut cost no
worse than the minimum attainable when requiring equal-sized sets. This result is
then extended to general graphs via decompositions into trees and improves the previ-
ously best approximation ratio from O(log1.5(n)/ε2) [Andreev and Räcke in Theory
Comput. Syst. 39(6):929–939, 2006] to O(logn). This also settles the open problem
of whether an algorithm exists for which the number of edges cut is independent of ε.
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1 Introduction

In this article we study the k-BALANCED PARTITIONING problem. The problem
asks for a partition of the n vertices of a graph into k sets of size at most �n/k�
each. At the same time the total number of edges connecting vertices in different
sets, called the cut cost, needs to be minimised. The problem has numerous applica-
tions of which one of the most prominent is in the field of parallel-computing [2].
There, it is crucial to evenly distribute n tasks (vertices) among k processors (sets)
while minimising the inter-processor communication (edges between different sets),
which constitutes a bottleneck. Other applications can be found in VLSI circuit de-
sign [5], image processing [31, 37], computer vision [23], route planning [7], and
divide-and-conquer algorithms [25, 32]. However, despite the broad applicability, k-
BALANCED PARTITIONING is a notoriously hard problem. The special case of
k = 2, commonly known as the BISECTION problem, is already NP-hard [18]. For
this reason, approximation algorithms that find a balanced partition with a cut cost
larger than optimal have been developed. We follow the convention of denoting the
approximation ratio on the cut cost by α.

Unfortunately, when k is not constant even finding an approximation of the mini-
mum balanced cut still remains infeasible. In fact, no finite approximation for the cut
cost can be computed in polynomial time, unless P = NP [1]. In order to circumvent
the hardness results, researchers have investigated algorithms that compute solutions
with relaxed balance constraints. By that we mean that the sets of the partitions are
allowed to be of size at most (1 + ε)�n/k� for some factor ε > 0. In most cases
the algorithms proposed are bicriteria approximations, which approximate both the
balance and the cut cost of the optimal solution. The approximation ratio achieved
by these algorithms is measured by comparing the cut cost of the computed solution
in which the balance constraint is relaxed, with the optimal cut cost of a perfectly
balanced partition. That is, one in which each set has size at most �n/k�.

The k-BALANCED PARTITIONING problem has received some attention for the
case ε = 1. This means approximating the perfect balance within a factor of two. For
this case, the best result is by Krauthgamer et al. [22] who give an algorithm with
approximation factor α ∈ O(

√
logn logk) on the cut cost. However, it is not hard to

imagine how the slack on the balance can be unattractive for practical applications.
In parallel-computing, for instance, a factor of two on the balance in the workload
assigned to each machine can result in a factor of two slowdown. This is because
the completion time is solely determined by the machines with the highest workload.
Therefore the case when ε can be chosen arbitrarily between 0 and 1, is of greater
practical interest. We call the resulting partitions near-balanced. No progress has
been made on near-balanced partitions since Andreev and Räcke [1] gave an algo-
rithm with α ∈O(log1.5(n)/ε2)—a significantly worse bound than the one for ε = 1.

As argued in [1], it is not surprising that the achieved ratio α is worse for near-
balanced solutions than it is in the case ε = 1. This is because typically the algorithms
for ε = 1 work in two phases. First the graph is partitioned into components of size
at most 2�n/k� while minimising the cut cost. Then the components are packed into
k bins. The fact that ε = 1 implies that any such returned components can be packed
into k bins using a greedy algorithm. However this approach cannot be used to find
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Fig. 1 Two optimally partitioned binary trees. For the tree on the left k = 8 (with a cut cost of 10) whereas
k = 9 (with a cut cost of 8) for the tree on the right. The numbers in the vertices indicate the set they belong
to and the cut edges are dashed

near-balanced solutions. In fact, as ε approaches 0 and the constraint on the balance
becomes more stringent, the cutting phase must be adapted to return components that
can later be packed into bins of the required size. This fact significantly complicates
the cutting phase.

1.1 Our Contribution

As argued above, the restriction to near-balanced partitions poses a major challenge
in understanding the k-BALANCED PARTITIONING problem. For this reason, we
consider the simplest non-trivial instance class of the problem, namely connected
trees. Even in this simple case the structure of the solution is not easily understood.
Figure 1 gives an example of how balanced partitions exhibit a counter-intuitive be-
haviour even on perfect binary trees, as increasing k does not necessarily entail a
larger cut cost. Our results confirm this intuition when a perfectly balanced solution
is required. Adapting an argument by Andreev and Räcke [1], we show that it is
NP-hard to approximate the cut cost within α = nc for any constant c < 1. This is
asymptotically tight, since a trivial approximation algorithm can achieve a ratio of n

by cutting all edges of the tree. Interestingly, the lower bound remains true even if
the diameter of the tree (i.e. the length of the longest path between any two leaves)
is equal to 4. Instances of diameter at most 3 on the other hand, are polynomially
solvable.

By a substantially different argument, we show that a similar dichotomy arises
when parametrising the complexity with the maximum degree �. For trees with
� = 2 (i.e. paths) k-BALANCED PARTITIONING is trivial. However, if � = 5 the
problem becomes NP-hard and with � = 7 we show it is APX-hard. Finding where
exactly the dichotomy arises, i.e. the � ∈ {3,4} at which k-BALANCED PARTI-
TIONING becomes hard, is an interesting open problem. These results should be
contrasted with a greedy algorithm by MacGregor [26] that can be modified to find
perfectly balanced partitions for k sets with α ∈ O(log(n/k)), for trees of constant
degrees.

On the positive side, we present approximation algorithms that compute near-
balanced partitions for edge-weighted graphs. In this case the cut cost is measured
by the total weight of the respective edge set of the solution. We show that when
near-balance is allowed, trees exhibit a substantially better behavior compared to
general graphs. We present an algorithm for edge-weighted trees that computes a
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Fig. 2 Illustrations of best approximation factor α known against k and ε, for general graphs (left) and
trees (right). The plane (α, k) represents the case of perfectly balanced solutions (ε = 0) and shows that the
restriction to trees does not significantly change the asymptotic behaviour. However, for ε > 0 much better
approximations can be devised for trees. This remarkable behaviour can be partially adapted to general
graphs via tree decompositions, allowing us to reduce the gap between the case ε < 1 and ε = 1 visible in
the plot on the left

near-balanced partition for any constant ε > 0 in polynomial time. It achieves a cut
cost no larger than the optimal for a perfectly balanced partition, i.e. α = 1. In this
sense the presented algorithm is a PTAS w.r.t. the balance of the computed solution.
In addition, such a PTAS can be shown to yield an optimal perfectly balanced solu-
tion for trees if k ∈ Θ(n). On general graphs the problem is NP-hard for these values
of k [20].

In the last section of our article we capitalise on the PTAS we presented for trees
to tackle the k-BALANCED PARTITIONING problem on general edge-weighted
graphs. By decomposing a graph into a collection of trees with a cut distortion of
O(logn), we can use our PTAS for trees to get a solution for graphs. Since the PTAS
has approximation factor α = 1, the total approximation factor paid for the general
graphs is due only to the distortion of the decomposition, that is α ∈ O(logn). Note
that since the graph is decomposed into trees as a preliminary step, the decomposi-
tion is oblivious of the balance constraints related to solving k-BALANCED PAR-
TITIONING on the individual trees. Hence the distortion does not depend on the
balance factor ε. This is sufficient to simultaneously improve on the previous best
result known [1] of α ∈ O(log1.5(n)/ε2), and answer an open question posed in the
same paper whether an algorithm with no dependence on ε in the ratio α exists. Fig-
ure 2 summarises the related work and our contribution.

1.2 Related Work

This article extends the results in [1], where it is shown that approximating the cut
cost of the k-BALANCED PARTITIONING problem on general graphs is NP-hard
for any finite factor α, if perfectly balanced partitions are needed. In [1] the authors
also give a bicriteria approximation algorithm with α ∈ O(log1.5(n)/ε2) when solu-
tions are allowed to be near-balanced. When more unbalance is allowed, for ε = 1
Even et al. [10] present an algorithm with α ∈ O(logn) that uses spreading met-
rics techniques. For the same value of ε, Simon and Teng [33] gave a method that
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can achieve a factor of α ∈ O(log k
√

logn) by recursively applying edge separators.
Later Krauthgamer et al. [22] improved these results to α ∈ O(

√
logn logk) using a

semidefinite relaxation which combines l2
2 metrics with spreading metrics. For graphs

with excluded minors1 (such as planar graphs) solutions with α ∈ O(1) and ε = 1 can
be computed in ˜O(n3) deterministic, or ˜O(n2) expected, time by applying a spread-
ing metrics relaxation and the results in [21]. A faster algorithm can be obtained [12]
for the special case of grid graphs without holes. This is achieved by combining
some structural insights [15] on the cut shapes with the above mentioned techniques
of Simon and Teng [33]. This yields an algorithm running in ˜O(n1.5) time. While
the algorithm also computes partitions with ε = 1, it trades the faster runtime with
a worse ratio of α ∈ O(log k). For the problem under consideration, to the best of
our knowledge these are the only results for restricted graph classes. However for a
related problem on scheduling of pipelined operator trees, Bodlaender et al. [6] gave
a PTAS. In this problem the objective is also to find a partition of the vertices into
k sets. However instead of fixing an upper bound on the set sizes, the optimisation
function to be minimised depends on the cut cost and the maximum set size.

The special case when k = 2, commonly known as the BISECTION problem, is
well studied. The BISECTION problem is NP-hard in the general case [18] but ap-
proximation algorithms are known. Räcke [30] gives an algorithm with approxima-
tion ratio α ∈O(logn) for perfectly balanced partitions. For near-balanced partitions,
Leighton and Rao [24] show how to compute a solution using min-ratio cuts. In this
solution the cut cost is approximated within α ∈ O(γ /ε), where γ is the approxima-
tion factor of computing a min-ratio cut. In [24] it was shown that γ ∈ O(logn), and
this result was improved [3] to γ ∈ O(

√
logn). For (unweighted) planar graphs it is

possible to compute the optimum min ratio cut in polynomial time [28]. If a perfectly
balanced solution to BISECTION is required for planar graphs, Dìaz et al. [8] show
how to obtain a PTAS. Even though it is known that the BISECTION problem is
weakly NP-hard on planar graphs with vertex weights [28], whether it is NP-hard on
these graphs in the unweighted case is unknown. For other special graph classes the
problem can be solved optimally in polynomial time [9]. For instance an O(n4) time
algorithm for grid graphs without holes has been found [14], while for trees an O(n2)

time algorithm [26] exists.
In addition to the case k = 2, some results are known for other extreme values

of k. For trees the algorithm from [26] is easily generalised to solve the k-BALANCED
PARTITIONING problem for any constant k in polynomial time. At the other end
of the spectrum, i.e. when k ∈ Θ(n), it is known that the problem is NP-hard [20] for
any k ≤ n/3 on general graphs. Feo and Khellaf [16] give an α = n/k approximation
algorithm for the cut cost which was improved to α = 2 [17] in case k equals n/3
or n/4.

We complete the review of related work by discussing the literature on hierar-
chical graph decompositions, which we leverage to extend our PTAS for trees to
general graphs. Informally a hierarchical decomposition of a graph G is a set of trees
for which the leaves correspond to the vertices of G, and for which the structure
of their cuts approximate the cuts in G. Graph decompositions have been studied

1We thank an anonymous reviewer for pointing out this folklore result.
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in the context of oblivious routing schemes (see [27] for a survey). Räcke [30] in-
troduced an optimal decomposition with factor O(logn), which we employ in the
present work. In a recent work, Madry [27] shows that it is possible to generalise
Räcke’s insights so that any cut based problem (see also [36]) is solvable on graphs
by computing solutions on trees resulting from a decomposition of the input graph.
This result directly translates to our scenario and hence we use his notation in the
present work.

2 The Hardness of Computing Perfectly Balanced Partitions in Trees

We now consider the problem of finding a perfectly balanced partition with minimum
cut cost for an unweighted tree. We prove hardness results in the case where either
the diameter or the degree is restricted to be constant. All reductions are from the
3-PARTITION problem, defined as follows.

Definition 1 (3-PARTITION) Given 3k integers a1, . . . , a3k and a threshold s ∈N,
such that s/4 < ai < s/2 and

∑3k
i=1 ai = ks, find a partition of the integers into k

triples such that each triple sums up to exactly s.

The 3-PARTITION problem is strongly NP-hard [18] which means that it re-
mains so even if all integers are polynomially bounded in the size of the input. We
call an instance to the 3-PARTITION problem a YES instance if it is solvable and a
NO instance otherwise.

We begin by showing that an approximation algorithm with factors α = nc

and ε = 0, for any constant c < 1, for k-BALANCED PARTITIONING on trees
could be used to decide an instance of 3-PARTITION. The idea for the reduc-
tion is similar to the one used by Andreev and Räcke [1] for general graphs.
The result remains valid even if the diameter of the tree is bounded by a con-
stant.

Theorem 2 Unless P = NP, the k-BALANCED PARTITIONING problem on un-
weighted trees has no polynomial time approximation algorithm with ratios ε = 0
and α = nc, for any constant c < 1, even if the diameter is at most 4.

Proof The construction used in the proof is shown in Fig. 3. Let m = 3knc for some
constant c < 1. For each ai of a given instance I of the 3-PARTITION problem,
define a corresponding gadget Ti as a star on aim vertices. Construct a tree T where
the centres of all Ti for i ≥ 2 are connected to the centre of T1, as shown in Fig. 3.
The number of vertices of the resulting tree is n = ∑3k

i=1 aim = 3k2snc. Solving this

equation for n gives n = (3k2s)
1

1−c . Since c is constant and s can be assumed to be
polynomially bounded in k, the tree T can be constructed in polynomial time. The
following lemma, which we prove below, gives the properties needed of such a tree
T to prove Theorem 2.
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Fig. 3 Construction for the
reduction of Theorem 2. Thin
grey edges link star centres,
darkened edges connect centres
to leaves

Lemma 3 In a tree T as constructed above for a 3-PARTITION instance I , an
optimal perfectly balanced partition has cut cost at most 3k − 1 if and only if I is a
YES instance. Otherwise it requires at least m = 3knc edges.

Given that this lemma is true, this would allow an approximation algorithm with
approximation factor at most nc to decide between a YES and a NO instance of the
3-PARTITION problem. Since the latter is NP-hard this proves the theorem. �

Proof of Lemma 3 It is easy to see that if I is a YES instance then cutting at most
the 3k − 1 edges that connect the Tis suffices. Suppose now that I is a NO instance
and that the cut set C∗ of minimum size that partitions T into {V1, . . . , Vk}, where
|Vi | = ms, has size strictly less than m. The set C∗ can be expressed as A∪B , where
A contains only edges that link Ti centres, and B contains only edges separating a
Ti ’s centre from one of its leaves. By the assumption on the cut cost it follows that
|A| < m and |B| < m. Also |B| > 0 as cutting only edges from A would separate
complete Tis, thus implying a solution to I , and contradicting the fact that I is a NO
instance.

Let Vl be a set of the partition induced by C∗ that contains at least one isolated
leaf v, which always exists since |B| > 0. Assume that Vl contains an incomplete Ti ,
that is, Vl contains the centre of such a Ti but not one of its leaves w. Then w must be
contained in some other Vj , where j 
= l. Thus swapping v and w allows putting both
w and the incomplete Ti in Vl , rendering the cut that separate them superfluous. This
contradicts the assumption that C∗ is a cut set of minimum size. Hence Vl can contain
only a (possibly empty) set of complete Tis in addition to one or more isolated leaves.

The proof is completed by noticing that the number of vertices of a set of complete
Tis is a multiple of m. Therefore at least m additional isolated leaves are required
for |Vl | (recall |Vl | = ms) to be a multiple of m, contradicting the assumption that
|B| < m and establishing the result. �

The reduction in the proof of the above theorem relies on the fact that the degree of
the tree is unbounded. Therefore the natural next step is to investigate the complexity
of bounded degree trees. As we will show next, the problem remains surprisingly
hard for constant degree trees. We are able to prove two hardness results for this case.
First we show that the problem of finding a perfectly balanced partition of a tree is
APX-hard even if the maximum degree of the tree is at most 7. We prove this result
by a reduction from the GAP-3-PARTITION problem. This is the 3-PARTITION
problem in which, for a given ρ, either all or at most a ρ fraction of the ais can be
partitioned into the desired triples. A formal definition follows.

Definition 4 (GAP-3-PARTITION) Let 3k integers a1 to a3k , a threshold s ∈ N,
and ρ > 1 be given, such that s/4 < ai < s/2,

∑3k
i=1 ai = ks, and the integers can
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either all be partitioned into k triples that sum up to exactly s or at most k/ρ of them
can. Decide whether k or at most k/ρ such triples can be found.

There is a constant ρ > 1 for which the GAP-3-PARTITION problem is NP-
hard. This is true even if all integers are polynomially bounded in k. These results
follow from the original NP-hardness proof of 3-PARTITION by Garey and John-
son [18] and the results of Petrank [29].2 The latter result introduces a constant sized
gap for the 3D-MATCHING problem. By considering the reductions given by Garey
and Johnson from 3D-MATCHING to 3-PARTITION it can readily be seen that they
are gap-preserving (cf. [4]). These reductions also establish the strong NP-hardness
of 3-PARTITION.

The technique we use to prove the hardness for constant degree trees is substan-
tially different, and more involved, than the method used to prove Theorem 2. Rather
than relying on the fact that many edges have to be cut in a gadget consisting of a
high degree star, we need gadgets with structural properties that guarantee a number
of cut edges proportional to the number of integers that cannot be packed into triples
in a GAP-3-PARTITION instance.

Theorem 5 Unless P=NP, there exists a constant ρ > 1 such that the k-BALANCED
PARTITIONING problem on unweighted trees with maximum degree at most 7 has
no polynomial time approximation algorithm with ratios ε = 0 and α = 1 + (1 −
ρ−1)/24.

Proof Consider an instance I of GAP-3-PARTITION with polynomially bounded
integers that are divisible by 12. Obviously all hardness properties are preserved by
this restriction since GAP-3-PARTITION is strongly NP-hard and we may mul-
tiply each integer and the threshold parameter of an arbitrary instance by 12. As a
consequence, all integers are divisible by 4 and s > 20, which will become important
later in the proof. For each ai in I , construct a gadget Ti composed by a path on ai

vertices (called an ai -path) connected to the root of a tree on s vertices (referred to
as an s-tree). The root of the s-tree branches into four paths, three of them with s/4
vertices each, and one with s/4 − 1 vertices. Additionally the roots of the s-trees are
connected in a path, as shown in Fig. 4. We define B to be the set of edges connecting
different Tis and A the set of edges connecting an ai -path with the root of the corre-
sponding s-tree in each Ti . Below, we will prove the following lemma, which states
the structure needed of the constructed tree T in order to prove Theorem 5.

Lemma 6 If all k integers in a given GAP-3-PARTITION instance I can be par-
titioned into triples that sum up to exactly s, then the constructed tree T can be split
into 4k parts of a perfectly balanced partition with cut cost 6k −1. If however at most
k/ρ such triples can be found, T requires at least (1 − ρ−1)k/4 additional cut edges
if s > 20.

2We thank Nikhil Bansal for pointing out the connection between the reductions in [18] and the results by
Petrank [29].
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Fig. 4 Construction for Theorem 5. Each gadget Ti is composed by an ai -path connected to the root of an
s-tree through an edge from A (straight grey). Each s-tree branches into four paths of (almost) the same
length. Two adjacent gadgets in a path are connected through the roots of their s-trees with an edge from
B (wiggled grey)

It immediately follows that an algorithm computing an approximation within a

factor smaller than 6k−1+(1−ρ−1)k/4
6k−1 of the optimum cut cost, can decide the GAP-3-

PARTITION problem. Hence this proves the theorem. �

Proof of Lemma 6 It is easy to see that if all k integers of I can be partitioned into
triples of size exactly s, cutting exactly the 6k − 1 edges in A and B suffices to create
a valid perfectly balanced partition into 4k parts.

It remains to be shown that (1 − ρ−1)k/4 additional edges are required when
the integers in I can be partitioned into at most k/ρ triples of size exactly s. Let
in this case C∗ be an optimal set of edges that cuts T into 4k parts of a perfectly
balanced partition. We argue that by incrementally repositioning cut edges from the
set C := C∗ \ (A ∪ B) to edges in (A ∪ B) \ C∗, eventually all the edges in A ∪ B

will be cut. However, the following lemma implies that a constant fraction of the
edges initially in C will not be moved. We will then argue that the more triples of I

cannot be packed into triples of size s, the more edges are left in C. Thus the more
edges must additionally have been in C compared to those in A ∪ B . We rely on the
following technical lemma which we will prove later.

Lemma 7 If s > 20 then |C| ≥ 2|(A ∪ B) \ C∗|.

Consider the following algorithm A which repositions cut edges from a perfectly
balanced partition into 4k parts. As long as there is an uncut edge e ∈ A ∪ B , A
removes a cut edge left in C and cuts e instead. At the end of the process, when all
edges in A ∪ B are cut, A removes the set of cut edges still left in C denoted by C′.
Then |C′| is the minimum number of additional edges cut in the case at most k/ρ

triples that sum up to exactly s can be formed from the integers. When repositioning
a cut edge from C to A ∪ B , or when removing the edges in C′, A modifies the
sizes of the sets in the partition induced by the cut set, and the balance might be
lost. In particular, when a cut edge e ∈ C is removed, the algorithm will join the
two connected components induced by the cut set and incident to e to form a single
component. The algorithm will then include the component in an arbitrary one of the
sets that contained the two components. This changes the sizes of at most two sets
in the partition. When a new cut is introduced by A, a component is split into two
and the two newly created components are retained in the same set, thus no set size
is changed.
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Fig. 5 Part of the construction of Lemma 7 with components W and T ′ highlighted

By Lemma 7 there are at least as many edges in C′, as there are edges that are
repositioned from C to A ∪ B . Since each edge from C repositioned by A causes at
most two changes in set sizes, the total number of set size changes performed by A
is at most 4|C′|.

When A terminates only edges from A ∪ B are cut. Therefore the remaining con-
nected components correspond to the 3k integers ai of I and 3k integers of size s.
The integers in I can be partitioned into at most k/ρ triples of size exactly s. Hence
at least (1 − ρ−1)k of the sets of the resulting partition do not have size exactly s.
This means that A must have changed the size of at least (1 − ρ−1)k sets, since it
converted a perfectly balanced partition of T into a solution to GAP-3-PARTITION
with at least (1−ρ−1)k unbalanced sets. This finally implies that 4|C′| ≥ (1−ρ−1)k,
which concludes the proof given that |C′| is the number of additional cuts required. �

Proof of Lemma 7 It is sufficient to prove that the lemma holds for all disjoint sub-
trees T ′ of T that contain at least one edge from (A ∪ B) \ C∗. That is, if E′ is the
edge set of T ′ we set out to prove |C ∩ E′| ≥ 2|((A ∪ B) \ C∗) ∩ E′|, for all pairwise
disjoint trees T ′ such that their union contains (A ∪ B) \ C∗. Consider all connected
components cut out by a balanced partition of T that contain at least a root of an
s-tree. Create a subtree T ′ from each such component W by re-attaching all the cut
s-tree branches incident to it and all ai -paths incident to the edges in A \ C∗ con-
tained in W (see Fig. 5). Note that T ′ contains the same edges from A and B as W .
In particular no edges from (A ∪ B) ∩ C∗ are in T ′. We distinguish two cases.

First, consider a T ′ that contains no edges from B . If T ′ also does not contain an
edge from A then the lemma is trivially true. Otherwise, the tree T ′ is simply a gadget
Ti and has a total size of s + ai . Since ai > s/4 and each branch of the s-tree in T ′
has at most s/4 vertices, there must be at least two edges from C in T ′ in order to cut
away ai vertices. This proves the lemma in the case T ′ contains no edges from B .

Consider now a subtree T ′ that contains at least one edge from B , and the con-
nected component W from which T ′ originated. Let A′ and B ′ denote the edges in
W from A and B , respectively. Each branch of an s-tree and each ai -path in T ′ has
at least s/4 − 1 vertices. As s > 20, if 5 or more branches of s-trees or ai -paths
were fully included in W (before the extension to T ′) this connected component
would contain more than s vertices. This is a contradiction since every connected
component has size at most s. Therefore there are at most 4 such included branches.
The branches that are not fully included in W but are in T ′, each contains an edge
from C. Since T ′ contains at least 4(|B ′| + 1) s-tree branches and |A′| ai -paths, we
can conclude that the number of edges from C in T ′ is at least |A′| + 4|B ′|. Notice
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Fig. 6 Construction for Theorem 8. Each gadget Ti is composed by a path on ai nodes (ai -path) connected
to the root of a tree on s vertices (s-tree). Each s-tree branches from the root in three paths of length s/4
each and a shorter one of length s/4 − 1. The leaves of the shorter branch of each s-tree are connected by
edges of the set A (wiggled thin grey) in a path. In each Ti , the ai -path and the s-tree are connected by an
edge belonging to the set B (straight thin grey)

that |B ′| ≥ |A′| − 1 since otherwise W would be disconnected. Using the fact that
|B ′| ≥ 1 we obtain

∣

∣A′∣
∣ + 4

∣

∣B ′∣
∣ ≥ 2

∣

∣A′∣
∣ − 1 + 3

∣

∣B ′∣
∣ ≥ 2

∣

∣A′ ∪ B ′∣
∣.

This proves our claim in the case T ′ contains at least one edge from B , and concludes
the proof of the lemma. �

Using similar ideas as in the proof of Theorem 5, if we restrict the degree to be at
most 5 we can still show that the problem remains NP-hard. For this we again reduce
from 3-PARTITION and use a slightly different construction than the one shown
in Fig. 4. Instead of connecting the s-trees through their roots, the B edges connect
the leaves of the shortest branches of the s-trees (Fig. 6). It is then possible to show
that exactly the 6k − 1 edges in A and B are cut if all k integers in the instance I

can be partitioned into triples of size exactly s, while otherwise at least 6k edges are
cut. Since the 3-PARTITION problem is NP-hard [18] this suffices to establish the
following result.

Theorem 8 Unless P = NP, the k-BALANCED PARTITIONING problem on un-
weighted trees with maximum degree at most 5 has no polynomial time algorithm.

Proof Consider an instance I of 3-PARTITION where s is a multiple of 4. Clearly
the 3-PARTITION problem remains strongly NP-hard even if restricted to such in-
stances since we may multiply all integers by 4. For each ai in I , construct a gadget
Ti composed by a path on ai vertices (hereinafter, ai -path) connected to the root of a
tree on s vertices (hereinafter, s-tree). The root of the s-tree branches into four paths,
three of them with s/4 vertices each and one with s/4 − 1 vertices. The construction
is completed by connecting the leaves of the shortest branch of each s-tree in a path,
as shown in Fig. 6. We call A the set of edges connecting different Tis and B the set
of edges connecting an ai -path with the corresponding s-tree in each Ti .

At a high level, we want to argue that an algorithm that can find a perfectly bal-
anced partition of T into 4k sets could be used to solve the 3-PARTITION problem
on I . More precisely, we set out to prove that T can be split into 4k sets using exactly
6k − 1 cut edges if and only if I is a YES instance. To this end, we call a partition
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light if it splits T into connected components each of size at most s. We leverage the
following lemma which provides the structure of the constructed tree T needed to
prove Theorem 8.

Lemma 9 The only cut set of minimum size that breaks a tree T constructed for a
3-PARTITION instance I into a light partition contains all and only the 6k − 1
edges in A ∪ B .

Before proving Lemma 9 we see how Theorem 8 follows from it. Clearly, breaking
T into connected components of size less than or equal to s is a necessary condition
to obtain a perfectly balanced partition into 4k sets. It follows that no such partition
can cut less than 6k − 1 edges. If I is a YES instance then cutting all the 6k − 1
edges in A∪B suffices to find a perfectly balanced partition of T into 4k sets. This is
because the vertices of the ai -paths can then be partitioned into sets of size s with no
additional cuts. By Lemma 9 it also follows that if cutting 6k−1 edges suffices to find
a perfectly balanced partition of T into 4k sets, the cut set must coincide with A ∪ B .
Therefore no additional cut edges are required only if the integers corresponding to
the ai -paths can be packed into triples of size s each. This yields a solution to the
3-PARTITION instance I , given that each s-tree separated by the A ∪ B cut set
completely fills a set of size s. Hence if I is a NO instance then the cut cost is at least
6k, which completes the proof. �

Proof of Lemma 9 First observe that cutting A∪B suffices to create a light partition.
We show that any light partition that does not use some edge in A ∪ B can be trans-
formed into a light partition that has the same number of cut edges and cuts all edges
in A ∪ B plus at least one more. Therefore the only light partition of minimum cut
cost is the one where all edges in A ∪ B are cut.

We begin by showing how to convert a light partition that does not use an edge
b ∈ B , connecting an ai -path to an s-tree, into one that uses all edges in B without
increasing the cut cost. Suppose Tl is a gadget where an edge b ∈ B is not cut. Since
the size of Tl is s + al at least al vertices have to be separated from Tl to form a light
partition. Each branch of the s-tree is strictly smaller than al and hence, without using
b, there must be at least two edges cut in two different branches of Tl . At least one
of these edges c cannot be on the shortest branch of the s-tree, which is connected
to a neighbouring Ti . There are two cases. If c cuts some edge of the al-path (other
than b), then c can be replaced with b without invalidating the light partition property.
Else, if no cut edge is on the al-path, there is a cut edge c on one of the longest
branches of the s-tree of Tl which can be replaced with b. This again results in a light
partition as the al-path has size strictly larger than any branch of the s-tree of Tl .

Repeatedly applying the transformation described above for each gadget Ti , we
can obtain a light partition of T where all edges in B are cut and the total size of the
cut set has not increased. Also at least one additional edge in such a gadget Ti is cut.
We are then left to prove that if any edge a ∈ A is not cut then the cut set is strictly
suboptimal.

Suppose not all edges from A are cut. Then there exist chains of length p > 1
of Tis connected by edges in A that are not cut. By the above transformation, we
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can assume that all Tis in such a chain have their corresponding ai -path cut out.
Furthermore, each Ti in the chain must have at least one more edge cut. If that was
not the case the size of the connected component of the light partition containing a
Ti that violates the property would be at least s + 1. This is because the edge a ∈ A

from Ti to its neighbouring gadget in the chain is not cut. Consider Tl , the first Ti

of such a chain. The cut edge c /∈ B in Tl can be replaced by the edge a ∈ A to the
neighbouring gadget without invalidating the light partition property. This follows
from the fact that cutting a will completely separate Tl from the chain and the total
size of Tl with its ai -path removed is exactly s. The same process can be repeated for
all the p − 2 remaining edges from A on the chain of gadgets. This implies that for
each chain of Tis all but at least one cut edge can be replaced with edges in A.

Hence after replacing each cut edge not in A ∪ B with one from this set we obtain
a light partition with the same number of cut edges. However in this light partition at
least one additional edge is cut in addition to those in A ∪ B and hence the lemma
follows. �

3 Near-Balanced Partitions for Trees

The previous section shows that approximating the cut cost of k-BALANCED PAR-
TITIONING is hard even on unweighted trees, if perfectly balanced partitions are
desired. We showed that for the general case when the degree is unbounded there is
no hope for a polynomial time algorithm with non-trivial approximation guarantee.
Therefore, in this section we study the complexity of the problem when allowing the
partitions to deviate from being perfectly balanced. In contrast to the negative results
presented so far, we prove the existence of a PTAS for k-BALANCED PARTITION-
ING on trees with edge weights. It computes near-balanced partitions but returns a
cut cost no larger than the optimum of a perfectly balanced solution.

Assume we are given an edge-weighted tree T = (V ,E,ω) with weight func-
tion ω : E → R

+. Conceptually one could find a perfectly balanced partition of T

with minimum cut cost in two steps. First all the possible ways of cutting T into
connected components are grouped into equivalence classes based on the sizes of
their components. That is, the sets of connected components S and S ′ belong to the
same equivalence class if they contain the same number of components of size x for
all x ∈ {1, . . . , �n/k�}. In a first step the set of connected components that achieves
the cut of minimum cost for each class is computed and set to be the representative
of the class. In a second stage only the equivalence classes whose elements can be
packed into k sets of size at most �n/k� are considered, and among those the repre-
sentative of the class with minimum overall cut cost is returned. Clearly such an al-
gorithm finds the optimal solution to the k-BALANCED PARTITIONING problem,
but the runtime is exponential in n as, in particular, the total number of equivalence
classes is exponential. To get around this problem we instead group sets of connected
components into coarser equivalence classes. These are determined by subdividing
the possible component sizes into intervals. A coarse class then consists of cuts for
which each interval in total contains the same number of component sizes. By making
the lengths of the intervals appropriately depend on ε, this reduces the equivalence
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Fig. 7 A part of a tree in which
a vertex v, its rightmost child u,
its predecessor w, the set of
vertices Lv , and the m covered
vertices by some lower frontier
with signature �g are indicated

classes to a polynomial number if ε is constant. However this also introduces an ap-
proximation error in the balance of the solution.

Definition 10 Let S be a set of disjoint connected components of the vertices of
T , and ε > 0. A vector �g = (g0, . . . , gt ), where t = �log1+ε(1/ε)� + 1, is called
the signature of S if in S there are g0 components of size in [1, ε�n/k�) and gi

components of size in [(1+ ε)i−1 · ε�n/k�, (1+ ε)i · ε�n/k�), for each i ∈ {1, . . . , t}.

The first stage of our algorithm uses a dynamic programming scheme to find a set
of connected components of minimum cut cost among those with signature �g, for any
possible �g. This dynamic programming scheme is a generalisation of those found for
the BISECTION problem (see e.g. [26, 34, 36]). Let S denote the set containing each
of these optimal sets that cover all vertices of the tree, as computed by the first stage.
In the second stage the algorithm attempts to distribute the connected components in
each set S ∈ S into k bins, where each bin has a capacity of (1 + ε)�n/k� vertices.
This is done using a scheme originally proposed by Hochbaum and Shmoys [19, 35]
for the BIN PACKING problem. The final output of our algorithm is the partition of
the vertices of the given tree that corresponds to a packing of a set ˜S ∈ S that uses at
most k bins and has minimum cut cost. Both stages of the algorithm have a runtime
exponential in t . Hence the runtime is polynomial if ε is a constant.

3.1 The Cutting Phase

We now describe the dynamic programming scheme to compute the set of connected
components of minimum cut cost among those whose signature is �g, for every pos-
sible �g. The method we use generalises the algorithms for the BISECTION problem
on trees [26, 34, 36]. We fix a root r ∈ V among the vertices of T , and an ordering
of the children of every vertex in V . We define the leftmost and the rightmost among
the children of a vertex, the siblings left of a vertex, and the predecessor of a vertex
among its siblings according to this order in the natural way. The idea is to recursively
construct a set of disjoint connected components for every vertex v 
= r by using the
optimal solutions of the subtrees rooted at the children of v and the subtrees rooted
at the siblings left of v. Let for a vertex v 
= r the set Lv ⊂ V contain all the vertices
of the subtrees rooted at those siblings of v that are left of v and at v itself (Fig. 7).
We refer to a set F of disjoint connected components as a lower frontier of Lv if all
components in F are contained in Lv and the vertices in V not covered by F form
a connected component containing the root r . For every vertex v and every signature
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�g, the algorithm recursively finds a lower frontier F of Lv with signature �g. Finally, a
set of connected components with signature �g covering all vertices of the tree can be
computed using the solutions of the rightmost child of the root. The algorithm selects
a set having minimum cut cost in each recursion step. Let Cv(�g,m), for any vertex
v 
= r and any integer m, denote the optimal cut cost over those lower frontiers of Lv

with signature �g that cover a total of m vertices with their connected components. If
no such set exists let Cv(�g,m) = ∞. Additionally, we define μ := (1 + ε)�n/k�, and
�e(x) for any integer x < μ to be the signature of a set containing only one connected
component of size x. We now show that the function Cv(�g,m) can be computed using
a dynamic program.

Let F∗ denote an optimal lower frontier associated with Cv(�g,m). We will con-
sider the four cases resulting from whether or not the vertex v is a leaf, and whether
or not it is the leftmost among its siblings. First consider the case when both proper-
ties are met. That is, v is a leaf and the leftmost among its siblings. Then Lv = {v}
and hence the set F∗ either contains {v} as a component or is empty. In the latter case
the cut cost is 0. In the former it is the weight ω(e) of the edge e incident to the leaf
that is cut from the tree. Thus Cv((0, . . . ,0),0) = 0 and Cv(�e(1),1) = ω(e) while all
other function values equal infinity. Now consider the case when v is neither a leaf
nor the leftmost among its siblings. Let w be the predecessor among v’s siblings and
u the rightmost child of v. The set Lv contains the vertices of the subtrees rooted at
v’s siblings that are left of v and at v itself. The lower frontier F∗ can either be one
in which the edge from v to its parent is cut or not. In the latter case the m vertices
that are covered by F∗ do not contain v and hence are distributed among those in Lw

and Lu since Lv = Lw ∪ Lu ∪ {v}. If x of the vertices in Lu are covered by F∗ then
m − x must be covered by F∗ in Lw . The vector �g must be the sum of two signa-
tures �gu and �gw such that the lower frontier of Lu (respectively Lw) has minimum
cut cost among those having signature �gu (respectively �gw) and covering x (respec-
tively m − x) vertices. If this were not the case the lower frontier in Lu (respectively
Lw) could be exchanged with one having a smaller cut cost—a contradiction to the
optimality of F∗. Hence in case v is a non-leftmost internal vertex and the edge to its
parent is not cut,

Cv(�g,m) = min
{

Cw(�gw,m − x) + Cu(�gu, x) | 0 ≤ x ≤ m ∧ �gw + �gu = �g}

. (1)

If the edge connecting v to its parent is cut in F∗, then all nv vertices in the
subtree rooted at v are covered by F∗. Hence the other m−nv vertices covered by F∗
must be included in Lw . Let x be the size of the component S ∈ F∗ that includes v.
Analogous to the case before, the lower frontiers Lu and Lw with signatures �gu and
�gw in F∗ \ {S} must have minimum cut costs. Hence the vector �g must be the sum of
�gu, �gw , and �e(x). Therefore in case the edge e to v’s parent is cut,

Cv(�g,m) = ω(e) + min
{

Cw(�gw,m − nv)

+ Cu(�gu,nv − x) | 1 ≤ x < μ ∧ �gw + �gu + �e(x) = �g}

. (2)

Taking the minimum value of the formulas given in (1) and (2) thus correctly com-
putes the value for Cv(�g,m) for the case in which v is neither a leaf nor the leftmost
among its siblings. In the two remaining cases when v is either a leaf or a leftmost
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sibling, either the vertex u or w does not exist. For these cases the recursive defini-
tions of Cv(·, ·) can easily be derived from Eqs. (1) and (2) by letting all function
values Cu(�g,x) and Cw(�g,x) of a non-existent vertex u or w be 0 if �g = (0, . . . ,0)

and x = 0, and ∞ otherwise.
The above recursive definitions for Cv(·, ·) give a framework for a dynamic pro-

gramming scheme that computes the wanted solution set S in polynomial-time if ε is
a constant, as the next theorem shows.

Theorem 11 For any tree T and any constant ε > 0 there is an algorithm that com-
putes S in polynomial time.

Proof If the tree contains only one vertex the theorem obviously holds. Otherwise the
optimum solution from S that has signature �g must contain a connected component
that includes the root r and has some size x. Clearly x is at least 1 and at most μ.
Hence, if u denotes the rightmost child of the root r , the cut cost C(�g) of the optimal
solution for �g can be computed in linear time using the formula

C(�g) = min
{

Cu

(�g − �e(x), n − x
) | 1 ≤ x < μ

}

. (3)

An optimal set of connected components with signature �g can be computed using the
dynamic program given by the above equation together with the recursive definition
of Cv by keeping track of the set of connected components used in each recursion
step.

To analyse the runtime let us first bound the number of signatures �g that have to be
considered for a vertex v in the dynamic program. Let Nv = |Lv| denote the number
of vertices in the subtrees rooted at the siblings left of v and at v itself. There are
Nv vertices that can be distributed into connected components of different sizes to
form a lower frontier S of Lv . Each entry gi of �g counts components of size at least
the lowest value of the i-th interval as specified in Definition 10. Hence each gi is
upper-bounded by Nv/((1 + ε)i−1 · εn/k) ≤ k/((1 + ε)i−1 · ε) if i ∈ {1, . . . , t}, and
Nv if i = 0. Therefore the total number of signatures �g considered for a vertex v is
upper-bounded by

Nv ·
t

∏

i=1

k

(1 + ε)i−1 · ε = Nv

(

k

ε

)t

·
(

1

1 + ε

)
(t−1)t

2 ≤ Nv

(

k√
ε

)t

,

where the inequality holds since t −1 = �log1+ε(1/ε)�. The latter value can be upper-
bounded by �1/ε · log(1/ε)� if ε ≤ 1, since then 1 + ε ≥ 2ε . Hence we can conclude

that the number of signatures is γNv , where γ ∈ O((k/
√

ε)1+� 1
ε

log( 1
ε
)�).

We bound the runtime as follows. For each vertex v we calculate the number of
steps Tv that are needed to compute all entries Cv′(�g,m) for all v′ ∈ Lv . We claim
that Tv ≤ 3

2γ 2N4
v for any vertex v. According to Formulas (1) and (2), in addition to

the number of steps Tu and Tw to compute the tables for Lu and Lw , for each m and
�g the minimum value over two options is found by going through all possible x, �gu,
and �gw . For any fixed x there are at most γNu · γNw many possibilities to combine
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vectors �gu and �gw to form a signature �g. Since m and x are both upper-bounded by
Nv and Nu + Nw ≤ Nv we get

Tv ≤ Tu + Tw + 2γ 2NuNwN2
v

≤ 3

2
γ 2N2

v

(

N2
u + N2

w + 2NuNw

)

≤ 3

2
γ 2N4

v .

Since the time to compute Formula (3) for each signature is O(γ n), we conclude

that the total runtime is O(γ 2n4) = O(n4(k/
√

ε)2+2� 1
ε

log( 1
ε
)�), which is polynomial

if ε is constant. �

3.2 The Packing Phase

The second stage of the algorithm attempts to pack each set of connected compo-
nents S ∈ S, computed by the first stage, into k bins of capacity (1 + ε)�n/k�. This
means solving the well known BIN PACKING problem, which is NP-hard in gen-
eral. However we are able to solve it in polynomial time for constant ε using a method
developed by Hochbaum and Schmoys [19], which we briefly describe as presented
in [35].

Let S ∈ S be a set of connected components with signature �g = (g0, . . . , gt ). First
the algorithm constructs an instance I of the BIN PACKING problem containing
only the components of S larger than ε�n/k�. In particular, the bin capacity is set to
be �n/k� and for every entry 1 ≤ i ≤ t of �g, gi elements of size (1 + ε)i−1 · ε�n/k�
are introduced in I . That is, the size of each component is converted to the lower
endpoint of the interval which contains it according to Definition 10. The number of
elements in I is

∑

i≥1 gi ≤ n/(ε�n/k�) ≤ k/ε since there are n vertices in V and
the smallest size of an element in I is ε�n/k�. An optimal bin packing for I can be
found in O((k/ε)2t ) time, using a dynamic programming scheme (for more details
see [19, 35]). That is, the runtime is exponential in the number t of different sizes of
the elements. A packing of I into the minimum number of bins of capacity �n/k�
translates into a packing of the components of S larger than ε�n/k� into bins of
capacity (1 + ε)�n/k�. This is because each element in I underestimates the size of
the component in S that it represents by a factor of at most 1 + ε.

To complete the packing of S the algorithm distributes the remaining components
of size less than ε�n/k� by greedily putting them into bins without exceeding the
capacity of (1 + ε)�n/k�. A new bin is created if there is no room for a component
in any of the open bins. Distributing the remaining components can be performed in
O(n) time. Let ϕ(S) denote the number of bins that this algorithm needs to pack S .
Note that for two sets of components having the same signature the components larger
than ε�n/k� will always be distributed in the same way by the algorithm. However
the greedy distribution of the remaining small components may create more bins for
one of the sets. We show next that if a set of components computed by the first stage
has the same signature �g∗ as the set of components induced by an optimal perfectly
balanced partition, then the second stage of the algorithm packs it into at most k bins
with capacity (1 + ε)�n/k�.
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Lemma 12 Let S∗ having signature �g∗ be the set of connected components in an
optimal perfectly balanced partition. For the set S ∈ S with signature �g∗ it holds that
ϕ(S) ≤ k.

Proof We distinguish two cases for the greedy distribution of the components of S
that have size less than ε�n/k� depending on whether or not new bins are created.
If no new bins are created then ϕ(S) is solely determined by the output of the bin
packing algorithm, run with capacities �n/k� on the instance I . Since S∗ has the
same signature �g∗ as S , all elements ei ∈ I can be mapped to distinct components
Si ∈ S∗ such that ei ≤ |Si |. Hence any packing of S∗ into bins of capacity �n/k�
requires at least ϕ(S) many bins which is optimal for I . Since S∗ requires at most k

optimally packed bins by definition, this proves the claim in the case no new bins are
opened.

If new bins are created by the greedy step, then at least the first ϕ(S) − 1 bins of
the final solution are filled beyond the extent of �n/k�. Otherwise small components
of size at most ε�n/k� could have been fit without requiring the creation of the last
bin. Therefore the total number of vertices in S strictly exceeds (ϕ(S) − 1)�n/k�.
Since the total number of vertices contained in S∗ equals that of S , it follows that at
least ϕ(S) bins are required to pack S∗ into bins of capacity �n/k�. This proves the
claim in the case new bins were created by the greedy step. �

The final step of the algorithm is to output the packing of a set S ∈ S of minimum
cut cost among those with ϕ(S) ≤ k. The next theorem proves correctness and bounds
the runtime of the algorithm.

Theorem 13 For any tree T with positive edge weights, ε > 0, and k ∈ {1, . . . , n},
there is an algorithm that computes a partition of T ’s vertices into k sets such that
each set has size at most (1 + ε)�n/k� and its cut cost is at most that of an optimal
perfectly balanced partition of the tree. Furthermore the runtime is polynomial if ε is
a constant.

Proof Let ˜S ∈ S be the set of connected components returned by the algorithm, i.e.
if C(�g) denotes the cut cost of the set S ∈ S with signature �g, then

˜S = argS∈S min
{

C(�g) | S has signature �g ∧ ϕ(S) ≤ k
}

. (4)

By Lemma 12 we know that if S ∈ S has signature �g∗ then ϕ(S) ≤ k. Thus the
minimisation of (4) ensures that the cut cost of ˜S is at most that of a set of components
S ∈ S with signature �g∗. Since S retains the set of components with minimum cut cost
among all those having the same signature, it follows that the cut cost of ˜S is at most
that of S∗, which concludes the proof of correctness.

To bound the runtime of the algorithm, recall from the proof of Theorem 11 that

the total number of considered signatures �g is γ n, where γ ∈O((k/
√

ε)1+� 1
ε

log( 1
ε
)�).

By Theorem 11 the set S, whose size is at most γ n, can be computed in time
O(n4γ 2). Each of the sets of components of S requires at most O((k/ε)2t + n) time
to be packed in the second stage of the algorithm. Hence the second stage can be
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performed in O(γ n((k/ε)2t + n)) total time. This means that the overall runtime of

the algorithm is O(n4(k/ε)1+3� 1
ε

log( 1
ε
)�), which concludes the proof. �

4 Extension to General Graphs

In this section we present an algorithm that uses the PTAS given in Sect. 3 to find a
near-balanced partition of an edge-weighted graph G. The algorithm presented com-
putes a cut cost of at most α ∈ O(logn) times that of an optimal perfectly balanced
partition of G. It relies on using the PTAS of Sect. 3 to compute near-balanced par-
titions of a set of decomposition trees that well approximate the cuts in G. This de-
composition can be found using the results by Räcke [30]. An in-depth discussion of
decomposition trees can be found in [27, 30, 36]. Here we only introduce the basic
concepts needed for our purposes.

For a graph G = (V ,E,ω) with weight function ω : E → R
+, the quality of a

cut W ⊆ V is measured using its cut cost C(W). It is defined to be the sum of the
weights of the edges connecting vertices in W and V \ W . A decomposition tree of
G is a tree T = (VT ,ET ,ωT ), with weight function ωT : ET → R

+, for which the
leaves L ⊂ VT of T correspond to the vertices in G. More precisely there is a mapping
mG : VT → V of all tree vertices to vertices in G such that mG induces a bijection
between L and V . Let mT : V → L denote the inverse function of this bijection. We
also define a leaf cut K ⊆ L of a tree and its cut cost C(K) is the minimum weight
of edges in ET that have to be removed in order to disconnect K from L \ K . We
map cuts W on G to leaf cuts K on its decomposition tree and vice versa using the
notation mT (W) and mG(K) to denote the image of W and K according to mT and
mG respectively. We leverage the following properties of decomposition trees which
are proved in [27, 30, 36].

Theorem 14 For any graph G = (V ,E,u) with n vertices, a family of decomposition
trees {Ti}i of G and positive real numbers {λi}i with

∑

i λi = 1 can be found in
polynomial time, such that for any cut W of G and corresponding leaf cuts Ki =
mTi

(W),

• C(Ki) ≥ C(W) for each i (lower bound), and
• ∑

i λiC(Ki) ≤ O(logn) · C(W) (upper bound).

Since
∑

i λi = 1 the above theorem implies that for at least one tree Ti it holds
that C(Ki) ≤O(logn) ·C(W). That is, in at least one tree Ti the cut structure of G is
not distorted too much. This allows for a fast approximation of balanced partitions in
graphs using a modified version of the PTAS given in Sect. 3. To this end the PTAS
must be adapted to compute near-balanced leaf partitions of each Ti . That is, the
adapted PTAS computes a partition L = {L1, . . . ,Lk} of the l leaves L of a tree T

into k sets of size at most (1 + ε)�l/k� each. The cut cost C(L) in this case is the
minimum capacity of edges that have to be removed in order to disconnect the sets in
L from each other.

The adaptation of the PTAS given in Sect. 3 to compute near-balanced leaf parti-
tions is straightforward (see also [36] for the corresponding adaption of the BISEC-
TION algorithm for trees). First, signatures need to count leaves instead of vertices
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in Definition 10. Also, we need to keep track of the number lv of leaves at a subtree
of a vertex v instead of the number nv of vertices in Eqs. (1) and (2). The following
result summarises the properties of the adapted PTAS.

Corollary 15 For any weighted tree T , ε > 0, and k ∈ {1, . . . , l}, there is an algo-
rithm that computes a partition of the l leaves of T into k sets such that each set
includes at most (1 + ε)�l/k� leaves and its cut cost is at most that of an optimal
perfectly balanced leaf partition. The runtime is polynomial in k and the number of
vertices of T if ε is constant.

Next we show our main result. It entails that the adapted PTAS can be used to
compute near-balanced partitions for general graphs so that the cut cost deviates by
only a logarithmic factor from the optimum.

Theorem 16 Let G = (V ,E,ω) be a graph with n vertices, ε > 0 be a constant,
and k ∈ {0, . . . , n}. There is an algorithm that computes a partition of V into k sets
such that each set has size at most (1 + ε)�n/k� and its cut cost is at most O(logn)

times that of the optimal perfectly balanced solution. The runtime is polynomial if ε

is constant.

Proof We use Theorem 14 to compute a family of decomposition trees with the prop-
erties listed therein. This family has a polynomial number of trees since the runtime is
polynomial. For each such tree we compute a partition of its leaves into k sets of size
at most (1 + ε)�n/k� using Corollary 15. We select the computed leaf partition L∗
of the decomposition tree T ∗ having the smallest cut cost when applied to G. That is,
L∗ minimises the quantity C(mG(L)) among all computed leaf partitions, where for
a leaf partition L = {L1, . . . ,Lk} we define mG(L) = {mG(L1), . . . ,mG(Lk)}. The
output of the algorithm is then the vertex partition mG(L∗) of G.

By Theorem 14, for some decomposition tree T ′ and the corresponding leaf parti-
tion mT ′(V∗) = {mT ′(V ∗

1 ), . . . ,mT ′(V ∗
k )} of the optimal perfectly balanced partition

V∗ = {V ∗
1 , . . . , V ∗

k }, we get the upper bound C(mT ′(V∗)) ≤ O(logn) · C(V∗). This
is due to the observation that for any (vertex or leaf) partition X = {X1, . . . ,Xk} it
holds that C(X ) = 1

2

∑k
j=1 C(Xj ). By Corollary 15 we know that the cut cost of

the computed leaf partition L′ in T ′ is at most the cut cost of the optimal perfectly
balanced leaf partition in T ′, hence C(L′) ≤ C(mT ′(V∗)). From the lower bound
in Theorem 14 we can conclude that C(mG(L′)) ≤ C(L′). Finally, since we chose
L∗ to minimise the quantity C(mG(L)) among all computed leaf partitions, we get
C(mG(L∗)) ≤ C(mG(L′)). This implies C(mG(L∗)) ≤ O(logn) · C(V∗), and con-
cludes the proof. �

5 Conclusions

In this article, we studied the k-BALANCED PARTITIONING problem on tree in-
stances. Typically, NP-hard graph problems become trivial when restricted to trees.
For k-BALANCED PARTITIONING however we showed that trees are an interest-
ing benchmark, for various reasons.



374 Algorithmica (2015) 71:354–376

Fig. 8 The hardness of trees versus their maximum degree �. The hardness results from Sect. 2 (large
dots) indicate that the hardness grows with � (dotted line). A modification of MacGregor’s [26] algorithm
yields an approximation of O(� log�(n/k)) (solid line). This means there is a gap of size O(log(n/k))

between the lower and upper complexity bounds in case � is constant

When a perfectly balanced solution is required, we showed that even if the max-
imum degree of the tree is constant the k-BALANCED PARTITIONING problem
is hard to approximate. Even more disheartening, on unrestricted unweighted con-
nected trees no approximation algorithm can substantially outperform the trivial one
that cuts all edges of the tree. This behavior matches that of general graphs, for which
no algorithm with bounded approximation ratio exists. In this sense, trees represent a
simple unit that still captures the full complexity of the problem.

On the other hand, if one settles for near-balanced solutions, trees prove to be
“easy” instances, which admit a PTAS with approximation α = 1, the best possible
in the bicriteria sense. This crucial fact enables our PTAS for trees to be extended into
an algorithm for general graphs with approximation factor α ∈ O(logn), improving
on the best previous [1] bound of α ∈ O(log1.5(n)/ε2). Hence, remarkably, the same
approximation guarantee can be attained on the cut cost for the k-BALANCED PAR-
TITIONING problem in case k = 2 (the BISECTION problem) and for unrestricted
k, if we settle for near-balanced solutions in the latter case. This is to be contrasted
with the strong inapproximability results for the case of unrestricted k when the so-
lutions are to be perfectly balanced.

Open Problems. For perfectly balanced partitions of trees it remains open to gener-
alise our results to show a tighter dependency of the hardness on the degree (Fig. 8). In
addition, the possibility of an approximation algorithm for perfectly balanced parti-
tions with a better ratio than α ∈ O(� log�(n/k)), as provided by the greedy scheme
by MacGregor [26], remains open. In particular, Theorem 5 does not rule out an al-
gorithm that approximates the cut cost by the factor α = 25/24 if � ≤ 7.

For near-balanced partitions it remains to be seen what other graph classes permit
better approximation ratios on the cut size than those known for general graphs. It
is worth mentioning though that the dynamic program of the PTAS presented in this
article can be generalised to graphs with bounded tree-width, using standard tech-
niques [34]. Hence also for these graphs a factor of α = 1 is achievable.

Another performance metric that may be improved in our results is the runtime.
We showed that we can achieve approximations on the cut cost that do not depend
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on ε, whereas the dependency on ε in the runtime is quite conspicuous. This begs
the question whether an algorithm offering a better tradeoff in the dependency of ε

between runtime and cut cost can be found. A recent result [11] however shows that
there is no hope for a reasonable algorithm of this sort. More precisely it is shown
that, unless P = NP, for trees there is no fully polynomial time algorithm with the
following properties: The computed solution is near-balanced and the cut cost may
deviate from the optimum of a perfectly balanced solution by α = nc/εd , for any
constants c and d where c < 1.

Another main challenge we see for general graphs is to resolve the discrepancy
in complexity between the case ε = 1 and the case ε < 1, studied in this article (re-
call Fig. 2). For the case ε = 1 the algorithm by Krauthgamer et al. [22] achieves
factor α ∈ O(

√
logn logk) and in the same paper it is shown that a dependency of

α on k is unavoidable. Proving similar results for the case ε < 1 seems difficult to
achieve, as the spreading metric techniques generally used for ε = 1 do not extend
to ε < 1. Furthermore, the graph decomposition results that we used to achieve an
O(logn) approximation do not seem amenable to leading to algorithms with o(logn)

approximation factor. Therefore it is likely that radically new techniques need to be
developed to resolve the discrepancy.
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