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Abstract Minimization of the Dirichlet eigenvalues of the Laplacian among sets of pre-
scribed measure is a standard problem in shape optimization. The main result of this paper is
that in the Euclidean plane, apart from the first four, no Dirichlet eigenvalue can be minimized
by disks or disjoint unions of disks.
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1 Introduction

Shape optimization problems associated to the eigenvalues of the Laplacian are numerous
and received a lot of attention since the end of the nineteenth century. The most classical one
is the minimization of the eigenvalues of the Laplacian with Dirichlet boundary condition
among sets of prescribed measure. In dimension 2, this problem was introduced in the late
nineteenth century by Lord Rayleigh. He conjectured that the first eigenvalue is minimized
by a disk. Faber and Krahn proved Rayleigh’s conjecture in all dimensions in the 1920s. It
is a straightforward consequence that the second eigenvalue is minimized by two identical
balls. This result is usually attributed to Pólya and Szegő, but it seems to be contained in
one of Krahn’s older papers. The problem of the minimization of the kth eigenvalue of the
Dirichlet–Laplacian for k > 2 is still open whatever the dimension.
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Yet, despite many research articles on the subject, still very little is known on optimal
shapes (see [7] or [9] for instance). Progresses regarding existence have recently been made
[4,11] but very few geometrical information are available on optimal shapes (connectivity,
regularity. . .).

Identifying a minimizer is a very difficult task. Actually, even the computation of the
eigenvalues of a given shape is a non-trivial problem. Except for some very particular shapes
such as disks and rectangles, analytic formulae do not exist. Nevertheless, the approximation
of the eigenvalues of a shape is possible with a relatively good precision by standard Finite
Elements Methods tools. Then suspected optimal shapes can be found using some optimiza-
tion methods. But these shapes usually cannot be described theoretically, for instance with
usual functions.

Thus following the works of Pólya and Szegő and the works of Wolf and Keller [15], we
restrict in this article our study to the class of unions of disks, eventually the disk. This class
always contains an optimal shape. However, based on numerical results obtained in [14] and
[2], we cannot expect these optimal shapes to be optimal for the general problem.

More precisely, this article addresses the question: “Is the disk or a disjoint union of disks
a minimizer of λk?”

We start part 2 by recalling some definitions and classical results in spectral optimization.
Theorem 4 states that the eigenvalues are not locally minimized by a disk apart from the

first and perhaps the third. The proof of this Theorem, in part 3, is broken down in three parts.
First, in part 3.1 we compute the asymptotic development of order two of the eigenmodes with
respect to a radial deformation of the disk. This development has already been established
by Wolf and Keller [15] for λ2 and λ3 while Rayleigh established the one for λ1. We provide
here a detailed computation leading to the more general result for any λk . We then distinguish
two different cases. First the case of simple eigenvalues in part 3.2 then in part 3.3 the case
of double eigenvalues.

Theorem 5 states that λk is not globally minimized by a disk or a disjoint union of disks
except perhaps if 1 ≤ k ≤ 4 or k ∈ {6, 7, 9}. In part 4 we first show Theorem 5 using a theorem
due to Wolf and Keller. In fact we use this theorem twice. First, a restricted version allows us
to find the minimizer of a given eigenvalue when considering only the class of disjoint unions
of disks and disks. Then, we determine which eigenvalues could be minimized by a union of
a given number of disks. Finally we rule out possibilities by comparing with the best unions
of disks and with rectangles. Notice that Theorem 5 can be improved by comparing the best
unions of disks with reliable numerical results. In fact, the numerical schemes introduced in
[14] and [2] give a numerical estimate which is greater than the exact one.

Theorem 7 is a local version of Theorem 5 which identifies which eigenvalues are perhaps
locally minimized by a disjoint union of a given number of disks. In part 5 we give a local
version of the theorem due to Wolf and Keller with a sketch of proof. We then prove Theorem
7 with an induction based on arguments and ideas of the proof of Theorem 5.

2 Definitions and main results

Let Ω be a bounded open set of R
2 and let us denote by λk(Ω) the kth eigenvalue of the

Laplacian with Dirichlet boundary condition. That is to say there exists a function u such
that

{−�u = λku on Ω,

u = 0 on ∂Ω.
(1)
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For a given bounded open set Ω in the plane we know that

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · → +∞.

We are looking for open sets Ωk ⊆ R
2 with |Ωk | = 1 which are optimal in the following

sense:

λk(Ωk) = min {λk(Ω); Ω ⊆ R
2 bounded open, |Ω| = 1}. (2)

The question of the existence of such optima is a difficult one. For years there have only been
partial answers, see [5,8] for instance. But recently there have been improvements. Indeed
we can cite the following result due to Bucur [4].

Theorem 1 For every k ∈ N, the problem

min{λk(A), A ⊆ R
N , |A| = c}

has at least one solution in the family of quasi-open sets. Moreover, every solution is bounded
and has finite perimeter.

Notice that the first part of this theorem (existence) has also been proved in [11] by Mazzoleni
and Pratelli contemporarily by other means. Notice that there is no more general existence
result too.

It is easy to show the following property.

Property 1 (Homogeneity) Let c > 0 be a real. Then

λ j (cΩ) = c−2λ j (Ω). (3)

Using this property, it is straightforward that an equivalent problem to (2) is to find Ωk ⊆ R
2

such that

|Ωk |λk(Ωk) = min {|Ω|λk(Ω); Ω ⊆ R
2open}. (4)

Definition 1 1. We say that Ωk is a minimizer of λk if it is a solution of (2)⇔(4).
2. We say that a regular set Ωk is a local minimizer of λk if for all analytical deformations

F we have, |F(Ωk)|λk(F(Ωk)) ≥ |Ωk |λk(Ωk).

We refer to [7] for a proof of the following two theorems.

Theorem 2 (Faber–Krahn)

λ1(B) = min{λ1(Ω), Ω ⊂ R
2 open, |Ω| = 1}

where B is the disk of area 1.

Theorem 3 (Krahn–Szegő) min{λ2(Ω), Ω ⊂ R
2open, |Ω| = 1} is realized by the union

of two identical disks.

The only other useful result for us is a result of Wolf and Keller who proved in [15] that λ3

is locally minimized by a disk, considering particular radial deformations. We use the same
ideas to show our first result:

Theorem 4 The eigenvalues of the Laplacian with Dirichlet boundary condition λk with
k > 3 are not locally minimized by the disk in dimension 2 among sets of constant measure.
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Notice that this result agrees with the available numerical results (see Fig. 2). To complete
Theorems 2 and 3 we now have the following global result:

Theorem 5 – λ3 is perhaps minimized by the disk but is not by any disjoint unions of disks,
– λ4 and λ6 are not minimized by a disjoint union of disks nor by the disk except perhaps

by two particular unions of two disks (known radii),
– λ7 and λ9 are not minimized by a disjoint union of disks nor by the disk except perhaps

by two particular unions of three disks (known radii),
– λ5, λ8 and the eigenvalues λk with k ≥ 10 are not minimized by the disk nor by a disjoint

union of disks.

Remark 1 Theorem 5 can be improved using two numerical upper estimates for λ6 and λ7.
As noticed previously, the tools used in [14] and [2] give reliable numerical upper bounds
which makes it possible to conclude the proof of the improved theorem:

Theorem 6 – λ3 is perhaps minimized by the disk but is not by any disjoint unions of disks,
– λ4 is not minimized by a disjoint union of disks nor by the disk except perhaps by a

particular union of two disks (whose radii are in the ratio
√

j0,1/j1,1),
– the eigenvalues λk with k ≥ 5 are not minimized by the disk nor by any disjoint unions

of disks.

Also, notice that Theorem 4 is a local result whereas Theorem 5 is global. Nevertheless we
can obtain a local version of Theorem 5:

Theorem 7 Let n ∈ N
∗. If a disjoint union of n disks minimizes locally the eigenvalue λ then

λ must be some λn+2k with k ∈ {0, . . . , n}.

Remark 2 We will not show that λn+2k with k ∈ {0, . . . , n} is minimized locally by a disjoint
union of n disks. We will not give arguments indicating that they are not. But we will show
that any other cases are not possible.

3 Proof of Theorem 4

3.1 Eigenvalues on a set obtained by a small deformation of a disk

To show that the disk is not a local minimizer, we consider shapes obtained by small defor-
mations of the disk. We choose a relevant perturbation such that the eigenvalue of the corre-
sponding shape is smaller than the one of the disk. The aim of this section is to estimate the
eigenvalues of such profiles.

Since we only work on radial deformations, we use polar coordinates in R
2. Let us intro-

duce parameters (r, θ) satisfying
{

x = r cos(θ),

y = r sin(θ)

with r ∈]0, R[, R > 0, θ ∈ [0, 2π [.
We recall the analytic expression of the eigenvalues and eigenfunctions of the Dirichlet–

Laplacian of the disk.
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Theorem 8 The eigenvalues and eigenfunctions of the disk of radius R (normalized for the
L2-norm) for Dirichlet–Laplacian are given by

λ0,p = j2
0,p

R2 , p ≥ 1,

u0,p(r, θ) =
√

1

π

1

R
∣∣J ′

0( j0,p)
∣∣ J0

(
j0,pr

R

)
, p ≥ 1,

λm,p = j2
m,p

R2 , m, p ≥ 1, multiplicity 2

um,p(r, θ) =
⎧⎨
⎩

√
2
π

1
R|J ′

m ( jm,p)| Jm

(
jm,pr

R

)
cos(mθ)√

2
π

1
R|J ′

m ( jm,p)| Jm

(
jm,pr

R

)
sin(mθ)

, m, p ≥ 1, (5)

where jm,p is the pth zero of the Bessel function Jm.

This result is easy to show and elements can be found in [7].
We will consider here a disk of radius 1. Thus, we consider the case of the constraint

measure π .
We consider deformations of the unit disk in the following sense: for ε ≥ 0 a small

parameter, the boundary points of the new domain Ωε are described by the parameterization
(R(θ, ε), θ) where

R(θ, ε) = 1 + ε

∞∑
n=−∞

aneinθ + ε2
∞∑

n=−∞
bneinθ + O(ε3) (6)

with a−n = an and b−n = bn for all n.
We will see in Sects. 3.2 and 3.3 that we need a second order development.

Using

( ∞∑
n=−∞

aneinθ

)2

=
∞∑

n,l=−∞
alanei(l+n)θ , ana−n = |an |2 and

∫ 2π

0 einθ dθ = 0 for

n �= 0 we show that the area of Ωε is

A(ε) =
∫ 2π

0

∫ R(θ,ε)

0
r drdθ = π

[
1 + 2εa0 + ε2

(
2b0 +

∞∑
n=−∞

|an |2
)

+ O(ε3)

]
. (7)

We will deal with the measure constraint in two times. First, let us make A(ε) = π+O(ε3).
We thus obtain the conditions

a0 = 0 and b0 = −1

2

∞∑
n=−∞

|an |2. (8)

Then, from Property 1, we will have to compare A(ε)λ(Ωε) with πλ(Ω0).
Let us consider an eigenvalue λ of the disk. From Theorem 8 we know that there exist

m > 0 and p ≥ 0 such that λ = j2
m,p . So let us fix them.

Now, Part VII.6.5 of [10, pp. 423–426], gives us an expression of the eigenvalues and
eigenfunctions of the Laplacian on the new domains. For some more details we can also refer
to the pp. 155–160 of [12] and to [13] or [6] for details on the theorem used in [12].
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For the following and for simplicity, let us denote λ(Ωε) = ω2 and u(r, θ, ε) an associ-
ated eigenfunction. Note that even if it is not explicit, they depend on m and p. Since the
eigenfunctions given in (5) define a basis and since J−n = (−1)n Jn , ∀n, let us write

u(r, θ, ε) =
∞∑

n=−∞
An(ε)Jn(ωr)einθ , with A−n = (−1)n An (9)

and with

An(ε) = δ|n|mαn + εβn + ε2γn + O(ε3) (10)

where δ|n|m = 0 if |n| �= m and else δ|n|m = 1. Since A−n = (−1)n An we deduce that
α−n = (−1)nαn, β−n = (−1)nβn, γ−n = (−1)nγn .

Remark 3 For m �= 0 αm �= 0 and must satisfy

u(r, θ, 0) =
(
αmeimθ + αmeimθ

)
Jm(ωr), (11)

u(r, θ, 0) being an eigenfunction on the disk associated with λ(Ω0) = j2
m,p . Thus, if we

choose αm = 1, the eigenfunction associated with j2
m,p is um,p = 2Jm( j2

m,pr) cos(mθ) and
if we choose αm = i , um,p = −2Jm( j2

m,pr) sin(mθ).

From [10] we know that we can write

ω = ω0 + εω1 + ε2ω2 + O(ε3). (12)

Thus, remembering λ(Ωε) = ω2

λ(Ωε) = ω2
0 + 2εω0ω1 + ε2 (2ω0ω2 + ω2

1

) + O(ε3). (13)

We now want to express ω0, ω1, ω2 with (an), (bn), (αn), (βn) . . .

The Dirichlet boundary condition becomes

u (R(θ, ε), θ, ε) =
∞∑

n=−∞
An(ε)Jn (ωR(θ, ε)) einθ = 0. (14)

Remark that ωR = ω0 + (ω − ω0) + ω(R − 1). Using this in (14) and expanding Jn in a
Taylor series

∞∑
n=−∞

An(ε)

[
Jn(ω0) + J ′

n(ω0) (ω − ω0 + ω(R − 1))

+ 1

2
J ′′

n (ω0) (ω − ω0 + ω(R − 1))2 + O(ε3)

]
einθ = 0. (15)
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Using (6) for R, (10) for An and (12) for ω in (15) we obtain the equation

0 =
∑

n

δ|n|mαn Jn(ω0)e
inθ

+ ε
∑

n

(
βn Jn(ω0) + δ|n|mαn J ′

n(ω0)

[
ω1 + ω0

∑
l

ale
ilθ

])
einθ

+ ε2
∑

n

(
γn Jn(ω0) + βn J ′

n(ω0)

[
ω1 + ω0

∑
l

ale
ilθ

]

+ δ|n|mαn

[
J ′

n(ω0)

(
ω2 + ω1

∑
l

ale
ilθ + ω0

∑
l

ble
ilθ

)

+ 1

2
J ′′

n (ω0)

(
ω2

1 + 2ω0ω1

∑
l

ale
ilθ + ω2

0

(∑
l

ale
ilθ

)2 )])
einθ + O(ε3). (16)

This equation is true if and only if the coefficients ahead of ε j , j = 0, 1, 2 . . ., are all equal
to zero.

We now have to separate the cases m = 0, that is to say simple eigenvalues of the disks,
and m > 0, double eigenvalues.

Case m = 0: simple eigenvalues

Lemma 1 With previous notations, if λ(Ω0) = j2
0,p then

A(ε)λ(Ωε) = π j2
0,p

(
1 + 4ε2

∑
l>0

(
1 + j0,p J ′

l ( j0,p)

Jl( j0,p)

)
|al |2

)
+ O(ε3). (17)

Proof Term in ε0

α0 J0(ω0) = 0. But α0 �= 0 else u(r, θ, 0) = 0. So J0(ω0) = 0 that is to say ω0 = j0,p .

Term in ε1

J0(ω0) = 0 and a0 = 0 so

0 = α0ω1 J ′
0(ω0) +

∑
n �=0

[
α0 J ′

0(ω0)ω0an + βn Jn(ω0)
]

einθ .

For n �= 0, βn = −α0ω0an
J ′

0(ω0)

Jn(ω0)
and for n = 0, α0ω1 J ′

0(ω0) = 0 so ω1 = 0.

Term in ε2

Using ω1 = 0 and J0(ω0) = 0

0 =
∑

n

(
γn Jn(ω0) + βn J ′

n(ω0)ω0

∑
l

ale
ilθ

)
einθ

+α0

⎡
⎣J ′

0(ω0)

(
ω2 + ω0

∑
l

ble
ilθ

)
+ 1

2
J ′′

0 (ω0)ω
2
0

∑
n,l

alanei(l+n)θ

⎤
⎦ .

Then, for n = 0 we obtain

ω2 = −ω0b0 −
∑
n �=0

ω0
βn

α0
a−n

J ′
n(ω0)

J ′
0(ω0)

− 1

2
ω2

0
J ′′

0 (ω0)

J ′
0(ω0)

∑
n �=0

|al |2.
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Using βn = −α0ω0an
J ′

0(ω0)

Jn(ω0)
for n �= 0, J ′′

0 (ω0) = − 1
ω0

J ′
0(ω0), J ′−n = (−1)n J ′

n and |a−n | =
|an | = |an |

ω2 = ω0

∑
n �=0

(
1 + ω0

J ′
n(ω0)

Jn(ω0)

)
|an |2 = 2ω0

∑
n>0

(
1 + ω0

J ′
n(ω0)

Jn(ω0)

)
|an |2.

In conclusion, replacing ω0, ω1, ω2 by these values in (13) and considering A(ε) = π+O(ε3)

we deduce (17). ��
Case m > 0: double eigenvalues

Lemma 2 With previous notations if λ(Ω0) = j2
m,p, m > 0 then

A(ε)λ(Ωε) = π j2
m,p

(
1 − 2εa2m

αm

αm

+ 2ε2
[

2|a2m |2 +
∑
|l|�=m

(
1 + jm,p

J ′
l ( jm,p)

Jl( jm,p)

)
|am−l |2 +

(
βm

αm
a2m − βm

αm
a2m

)

+ αm

αm

(
− b2m +

∑
|l|�=m

(
1

2
+ jm,p

J ′
l ( jm,p)

Jl( jm,p)

)
am+lam−l

)])
+ O(ε3). (18)

Remark 4 From Remark 3 we know that for a double eigenvalue we can choose different αm

such that one of the eigenvalues becomes of the form j2
m,p (1 − 2εa2m)+ O(ε2), for instance

for αm = 1, and the other one j2
m,p (1 + 2εa2m) + O(ε2), for instance for αm = i .

Proof Term in ε0

With J−m = (−1)m Jm and α−m = (−1)mαm

αm Jm(ω0)e
imθ + α−m J−m(ω0)e

−imθ = 2Re
(
αmeimθ

)
Jm(ω0) = 0 ∀θ

so Jm(ω0) = 0 that is to say ω0 = jm,p .

Term in ε1

0 =
∑

|n|�=m

[
βn Jn(ω0) + (αman−m + αman+m) ω0 J ′

m(ω0)
]
einθ

+ (αmω1 + αmω0a2m)J ′
m(ω0)e

imθ + (αmω1 + αmω0a−2m)J ′
m(ω0)e

−imθ .

For n �= |m| βn = −ω0 (an−mαm + an+mαm)
J ′

m (ω0)

Jn(ω0)
, for n = m we obtain ω1

ω0
= −a2m

αm
αm

and for n = −m, ω1
ω0

= −a2m
αm
αm

so ω1
ω0

∈ R and ω1 ∈ R. Therefore, if a2m �= 0, a2m
a2m

=
(

αm
αm

)2

so ω1 = −ω0a2me−2iarg(αm ), which is also true if a2m = 0.
In conclusion ω1 = −a2mω0

αm
αm

and ω2
1 = ω2

0|a2m |2.
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Term in ε2

With J−m = (−1)m Jm , α−m = (−1)mαm , J ′′
m(ω0) = − 1

ω0
J ′

m(ω0) by definition of Bessel

functions and

( ∞∑
n=−∞

aneinθ

)2

=
∞∑

n,l=−∞
alanei(l+n)θ

0 =
∑

n

(
γn Jn(ω0) + βn J ′

n(ω0)

[
ω1 + ω0

∑
l

ale
ilθ

])
einθ

+αm J ′
m(ω0)

⎛
⎝ω2 − ω2

1

2ω0
+ ω0

∑
l

ble
ilθ − ω0

2

∑
n,l

alanei(l+n)θ

⎞
⎠ eimθ

+αm J ′
m(ω0)

⎛
⎝ω2 − ω2

1

2ω0
+ ω0

∑
l

ble
ilθ − ω0

2

∑
n,l

alanei(l+n)θ

⎞
⎠ e−imθ .

For n = m, with (8), we have that

ω2 = ω2
1

2ω0
+ω0

∑
l

|al |2−ω0
αm

αm

(
b2m − 1

2

∑
l

am+lam−l

)
− βm

αm
ω1− ω0

αm

∑
l

βlam−l
J ′

l (ω0)

J ′
m(ω0)

.

Using the previous expressions for βn , |n| �= m, ω1, ω2
1 and with β−m = (−1)mβm and

J ′−m = (−1)m J ′
m we deduce

ω2

ω0
= |a2m |2

2
+

∑
l

|al |2 + ω0

∑
|l|�=m

|am−l |2 J ′
l (ω0)

Jl(ω0)︸ ︷︷ ︸
Γ

+
(

βm

αm
a2m − βm

αm
a2m

)

︸ ︷︷ ︸
Υ1

+ αm

αm

⎛
⎝−b2m +

∑
|l|�=m

(
1

2
+ ω0

J ′
l (ω0)

Jl(ω0)

)
am+lam−l

⎞
⎠

︸ ︷︷ ︸
Υ2

.

Similarly, for n = −m, ω2
ω0

= Γ + Υ1 + Υ2.

Thus, since Γ ∈ R, ω2
ω0

= Γ + Υ1 + Υ2 = Γ + Υ1 + Υ2 = Γ + Υ1 + Υ2 so ω2
ω0

∈ R so
ω2 ∈ R. Furthermore, Γ ∈ R so Υ1 + Υ2 ∈ R so, in particular, Υ1 + Υ2 = ±|Υ1 + Υ2|.
Moreover Υ1 ∈ iR so Υ1 = −I m(Υ2).

With
∑

l
|al |2 = |a2m |2 + ∑

|l|�=m
|am−l |2 we obtain

ω2

ω0
= 3

2
|a2m |2 +

∑
|l|�=m

(
1 + ω0

J ′
l (ω0)

Jl(ω0)

)
|am−l |2 +

(
βm

αm
a2m − βm

αm
a2m

)

+ αm

αm

⎛
⎝−b2m +

∑
|l|�=m

(
1

2
+ ω0

J ′
l (ω0)

Jl(ω0)

)
am+lam−l

⎞
⎠ .

In conclusion, replacing ω0, ω1, ω2 by these values in (13) and considering A(ε) = π+O(ε3)

we deduce (18). ��
We obtained asymptotic developments of the eigenvalues on domains with respect to small
deformations of the disk. Now, if we find some families (an) and (bn) such that A(ε)λ(Ωε) <
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πλ(Ω0) = π j2
m,p for corresponding m and p, then the disk is not a local minimizer for the

corresponding eigenvalue.
On the contrary, Wolf and Keller have shown that for these deformations, λ3 is always

greater than j2
1,1.

3.2 Simple eigenvalues of the unit disk

Lemma 3 Let λk be an eigenvalue of the Dirichlet–Laplacian which is simple for the disk.
Then, for k �= 1, λk is not locally minimized by the disk among sets of constant measure.

Remark 5 It is easy to show that for λk simple for the disk, the disk is a critical point for the
function t �→ |Ωt |λk(Ωt ). We can use the expressions for the derivatives with respect to the
domain given in pp. 38–39 of [7] prove it or remark that in (17) we do not have terms in ε.
So we have an example of a lot of critical points which are not (local) minimizers.

The case of the simple eigenvalues corresponds to the case m = 0, so A(ε)λk(Ωε) is

given by (17). If we can find a l such that 1 + j0,p J ′
l ( j0,p)

Jl ( j0,p)
< 0 we can show that the disk is

not a local minimizer. In fact we have the following estimates:

Lemma 4

1 + j0,1 J ′
3( j0,1)

J3( j0,1)
> 0 and 1 + j0,p J ′

3( j0,p)

J3( j0,p)
< 0 ∀p ≥ 2.

Proof of Lemma 3 From Lemma 4, if we choose (an) given by ai = 0,∀|i | �= 3, a3 �= 0
small enough and a−3 = a3, and (bn) such that b0 = −|a3|2 and bn = 0 for n �= 0,

A(ε)λk(Ωε) = π j2
0,p + 4πε2 j2

0,p

(
1 + j0,p J ′

3( j0,p)

J3( j0,p)

)
︸ ︷︷ ︸

<0

|a3|2 + O(ε3) ∀p ≥ 2.

Remark that it corresponds to the case

R(θ, ε) = 1 + 2ε [Re(a3) cos(3θ) − Im(a3) sin(3θ)] − ε2|a3|2 + O(ε3).

So there exist shape obtained from the unit disk by small variations for which simple eigen-
values apart from the first are less than the ones of the unit disk. This concludes the proof.

��
Proof of Lemma 4 To prove the lemma we use the following classical results on Bessel
functions:

∀n ∈ N, ∀x ∈ R
∗+, x J ′

n = n Jn − x Jn+1 (19)

∀n ∈ N, ∀x ∈ R
∗+, x J ′

n = −n Jn + x Jn−1 (20)

and ∀n ∈ N, ∀x ∈ R
∗+,

2n

x
Jn = Jn−1 + Jn+1. (21)

These results can be found for instance in [1, pp. 358–361].
From (21) and J0( j0,p) = 0 we deduce that

2

j0,p
J1( j0,p) = J0( j0,p) + J2( j0,p) = J2( j0,p) ⇒ J2( j0,p)

J1( j0,p)
= 2

j0,p
. (22)
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From (19) and (22)

J ′
1( j0,p)

J1( j0,p)
= 1

j0,p
− J2( j0,p)

J1( j0,p)
= − 1

j0,p
.

Therefore,

1 + j0,p J ′
1( j0,p)

J1( j0,p)
= 1 + j0,p ×

(
− 1

j0,p

)
= 0, ∀p ∈ N

∗.

Moreover, (22) is

J2( j0,p)

J1( j0,p)
= 2

j0,p
⇒ J1( j0,p)

J2( j0,p)
= j0,p

2
.

With this equality and (20)

J ′
2( j0,p)

J2( j0,p)
= − 2

j0,p
+ J1( j0,p)

J2( j0,p)
= − 2

j0,p
+ j0,p

2
= j2

0,p − 4

2 j0,p
.

Since j0,p ≥ j0,1 > 2,∀p ∈ N
∗, J ′

2( j0,p)

J2( j0,p)
> 0 and

1 + j0,p J ′
2( j0,p)

J2( j0,p)
> 0, ∀ p ∈ N

∗.

Now, (19) gives

J ′
2( j0,p)

J2( j0,p)
= 2

j0,p
− J3( j0,p)

J2( j0,p)
= j2

0,p − 4

2 j0,p
⇒ J2( j0,p)

J3( j0,p)
= 2 j0,p

8 − j2
0,p

.

Therefore with this equality and (19)

J ′
3( j0,p)

J3( j0,p)
= −3

j0,p
+ J2( j0,p)

J3( j0,p)
= −3

j0,p
+ 2 j0,p

8 − j2
0,p

= 5 j2
0,p − 24

j0,p

(
8 − j2

0,p

) .

Let us define f (x) = 1 + x 5x2−24
x(8−x2)

= 4 x2−4
8−x2 .

Then f (x) > 0 ∀x ∈
]
2, 2

√
2
[

and f (x) < 0 ∀x ∈ ]0, 2[ ∪
]
2
√

2,+∞
[
.

But j0,1 ∈
]
2, 2

√
2
[

so f ( j0,1) > 0 whereas j0,k ≥ j0,2 > 2
√

2 so f ( j0,k) < 0 ∀k ≥ 2

so we proved lemma 4. ��
3.3 Double eigenvalues of the unit disk

Lemma 5 Let λs be an eigenvalue of the Dirichlet–Laplacian which is double for the disk.
Then, for s �= 3, λs is not locally minimized by the disk among sets of constant measure.

We are in the case m �= 0 and A(ε)λ(Ωε) is given by (18).
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For simplicity let us choose a2m = 0. Therefore, (18) becomes

A(ε)λ(Ωε) = π j2
m,p

(
1 + 2ε2

[ ∑
|l|�=m

(
1 + jm,p

J ′
l ( jm,p)

Jl( jm,p)

)
|am−l |2

+αm

αm

(
− b2m +

∑
|l|�=m

(
1

2
+ jm,p

J ′
l ( jm,p)

Jl( jm,p)

)
am+lam−l

)

︸ ︷︷ ︸
Ψ

])
+ O(ε3).

It is then easy to nullify Ψ (choice of b2m). So we just have to study

A(ε)λ(Ωε) = π j2
m,p

(
1 + 2ε2

∑
|l|�=m

(
1 + jm,p

J ′
l ( jm,p)

Jl( jm,p)

)
|am−l |2

)
+ O(ε3). (23)

Thus, if we find a l such that
(

1 + jm,p J ′
l ( jm,p)

Jl( jm,p)

)
+

(
1 + jm,p J ′

2m−l( jm,p)

J2m−l( jm,p)

)
< 0

(|am−l | = |al−m |) we will be able to find some (an) and (bn) satisfying the necessary
conditions and such that A(ε)λ(Ωε) < πλ(Ω0), which proves Lemma 5.

Lemma 6

∀m > 1, ∀p ∈ N
∗

(
1 + jm,p J ′

m+2( jm,p)

Jm+2( jm,p)

)
+

(
1 + jm,p J ′

m−2( jm,p)

Jm−2( jm,p)

)
< 0.

Lemma 7 (
1 + j1,1 J ′

2( j1,1)

J2( j1,1)

)
+

(
1 + j1,1

J ′
4( j1,1)

J4( j1,1)

)
> 0

and

(
1 + j1,p J ′

2( j1,p)

J2( j1,p)

)
+

(
1 + j1,p

J ′
4( j1,p)

J4( j1,p)

)
< 0 ∀p ≥ 2.

Proof of Lemma 5 The idea of this proof is similar to the previous one.
Let us begin with the case m > 1, p ∈ N

∗.
From Lemma 6, if we choose (an) given by ai = 0,∀|i | �= 2, a2 �= 0 small enough and

a−2 = a2, and for (bn), such that b0 = −|a2|2, bk = 0 for k �= 0, then

A(ε)λ(Ωε) = π j2
m,p + 4πε2 j2

m,p|a2|2

×
((

1 + jm,p J ′
m+2( jm,p)

Jm+2( jm,p)

)
+

(
1 + jm,p J ′

m−2( jm,p)

Jm−2( jm,p)

))
︸ ︷︷ ︸

<0

+O(ε3).

Remark that it corresponds to the case

R(θ, ε) = 1 + 2ε [Re(a2) cos(2θ) − Im(a2) sin(2θ)] − ε2|a2|2 + O(ε3).

So there exist shapes obtained from the unit disk by small variations for which A(ε)λ(Ωε) <

πλ(Ω0) when λ(Ω0) = j2
m,p, m > 1 and p > 0.
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Now for m = 1, p > 1, from Lemma 7, if we choose (an) given by ai = 0, ∀|i | �= 3, a3 �=
0 small enough and a−3 = a3, and for (bn) such that b0 = −|a3|2, bk = 0 then

A(ε)λ(Ωε) = π j2
1,p + 4πε2 j2

1,p|a3|2

×
((

1 + j1,p J ′
2( j1,p)

J2( j1,p)

)
+

(
1 + j1,p J ′

4( j1,p)

J4( j1,p)

))
︸ ︷︷ ︸

<0

+O(ε3) ∀p ≥ 2.

Remark that it corresponds to the case

R(θ, ε) = 1 + 2ε [Re(a3) cos(3θ) − Im(a3) sin(3θ)] − ε2|a3|2 + O(ε3).

So there exist shapes obtained from the unit disk by small variations for which A(ε)λ(Ωε) <

πλ(Ω0) when λ(Ω0) = j2
1,p and p > 1.

Notice that j2
1,1 = λ2(Ω0) = λ3(Ω0). ��

Proof of Lemma 6 One more time, we use (21) and Jm( jm,p) = 0 so

2(m + 1)

jm,p
Jm+1( jm,p) = Jm( jm,p) + Jm+2( jm,p) = Jm+2( jm,p)

⇒ Jm+2( jm,p)

Jm+1( jm,p)
= 2(m + 1)

jm,p
. (24)

(19) and (24) gives

J ′
m+1( jm,p)

Jm+1( jm,p)
= m + 1

jm,p
− Jm+2( jm,p)

Jm+1( jm,p)
= −m + 1

jm,p
. (25)

Therefore,

1 + jm,p J ′
m+1( jm,p)

Jm+1( jm,p)
= 1 + jm,p ×

(
−m + 1

jm,p

)
= −m < 0, ∀p ∈ N

∗, ∀m ≥ 1.

Then we rewrite (25)

Jm+2( jm,p)

Jm+1( jm,p)
= 2(m + 1)

jm,p
⇒ Jm+1( jm,p)

Jm+2( jm,p)
= jm,p

2(m + 1)
.

With this equation and (20)

J ′
m+2( jm,p)

Jm+2( jm,p)
= −m + 2

jm,p
+ Jm+1( jm,p)

Jm+2( jm,p)
= −m + 2

jm,p
+ jm,p

2(m + 1)

= j2
m,p − 2(m + 2)(m + 1)

2(m + 1) jm,p
. (26)

So

1 + jm,p J ′
m+2( jm,p)

Jm+2( jm,p)
= j2

m,p − 2(m + 1)2

2(m + 1)
, ∀p ∈ N

∗. (27)

On the other hand, for m > 1, (21) gives

2(m − 1)

jm,p
Jm−1( jm,p) = Jm( jm,p) + Jm−2( jm,p) = Jm−2( jm,p)

⇒ Jm−1( jm,p)

Jm−2( jm,p)
= jm,p

2(m − 1)
.
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With this equation and (19)

J ′
m−2( jm,p)

Jm−2( jm,p)
= m − 2

jm,p
− Jm−1( jm,p)

Jm−2( jm,p)
= m − 2

jm,p
− jm,p

2(m − 1)

= 2(m − 1)(m − 2) − j2
m,p

2(m − 1) jm,p
. (28)

So

1 + jm,p J ′
m−2( jm,p)

Jm−2( jm,p)
= 2(m − 1)2 − j2

m,p

2(m − 1)
, ∀p ∈ N

∗.

Still for m > 1,∀p ∈ N
∗, from (27) and (28)

(
1 + jm,p J ′

m+2( jm,p)

Jm+2( jm,p)

)
+

(
1 + jm,p J ′

m−2( jm,p)

Jm−2( jm,p)

)

= j2
m,p − 2(m + 1)2

2(m + 1)
+ 2(m − 1)2 − j2

m,p

2(m − 1)
= − j2

m,p + 2(m + 1)(m − 1)

(m + 1)(m − 1)

= −
(

j2
m,p

(m + 1)(m − 1)
+ 2

)
< 0.

��

Proof of Lemma 7 Now, with (26) and (19) we have

J ′
m+2( jm,p)

Jm+2( jm,p)
= m + 2

jm,p
− Jm+3( jm,p)

Jm+2( jm,p)
= j2

m,p − 2(m + 1)(m + 2)

2(m + 1) jm,p

⇒ Jm+2( jm,p)

Jm+3( jm,p)
= 2(m + 1) jm,p

4(m + 1)(m + 2) − j2
m,p

.

Therefore, with this equation and (20)

J ′
m+3( jm,p)

Jm+3( jm,p)
= −(m + 3)

jm,p
+ Jm+2( jm,p)

Jm+3( jm,p)

= −(m + 3)

jm,p
+ 2(m + 1) jm,p

4(m + 1)(m + 2) − j2
m,p

= (3m + 5) j2
m,p − 4(m + 1)(m + 2)(m + 3)

jm,p

[
4(m + 1)(m + 2) − j2

m,p

] . (29)

In the particular case m = 1, we obtain, respectively, from (25) and (29)

1 + j1,p J ′
2( j1,p)

J2( j1,p)
= −1 and 1 + j1,p

J ′
4( j1,p)

J4( j1,p)
= 1 + 8 j2

1,p − 96

24 − j2
1,p

so
(

1 + j1,p J ′
2( j1,p)

J2( j1,p)

)
+

(
1 + j1,p

J ′
4( j1,p)

J4( j1,p)

)
= 8 j2

1,p − 96

24 − j2
1,p

.
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Let us define f (x) = 8x2−96
24−x2 . Then f (x) > 0 for x ∈]2√

3, 2
√

6[ and f (x) < 0 for x ∈
[0, 2

√
3[∪]2√

6,+∞[. But j1,1 ∈]2√
3, 2

√
6[ so f ( j1,1) > 0 whereas j1,p ≥ j1,2 > 2

√
6

so f ( j1,p) < 0 ∀p ≥ 2. So we proved Lemma 7. ��
Conclusion With Lemmas 3 and 5 we have proved exactly Theorem 4.

Remark 6 It is clear that if λk is not a local minimum, then it is not a global minimum.

4 Proof of Theorem 5

In this section, we use the previous results on disks to obtain information on the optimality
of disjoint unions of disks. For that, we need a result linking eigenvalues of disjoint unions
of disks and of disks. Wolf and Keller obtained such a result in [15].

Let us define the open set Ω∗
n by |Ω∗

n | = 1 and satisfying

λn
(
Ω∗

n

) = min{λn(Ω); Ω open set, |Ω| = 1}
and

λ∗
n = λn

(
Ω∗

n

) = min{λn(Ω); Ω open set, |Ω| = 1}.
Theorem 9 (Wolf–Keller, dimension N ) Suppose that Ω∗

n ∈ R
N is the union of at least two

disjoint open sets of positive measure. Then

(
λ∗

n

)N/2 = (
λ∗

i

)N/2 + (
λ∗

n−i

)N/2 = min
1≤ j≤ n−1

2

[(
λ∗

j

)N/2 +
(
λ∗

n− j

)N/2
]

(30)

where i is a value of 1 ≤ j ≤ n−1
2 minimizing the sum (λ∗

j )
N/2 + (λ∗

n− j )
N/2. Moreover,

Ω∗
n =

[(
λ∗

i

λ∗
n

)1/2

Ω∗
i

]⋃[(
λ∗

n−i

λ∗
n

)1/2

Ω∗
n−i

]
(disjoint union). (31)

This theorem gives an iterative way of finding candidates for unions of sets minimizing
eigenvalues of the Dirichlet–Laplacian. It can easily be restricted to disks and disjoint unions
of disks of same measure.

Therefore, we can obtain the disjoint union of disks, eventually the disk, of measure
one which minimizes each eigenvalue. We can do exact computations. But for simplicity I
used a computer to obtain the results given in Fig. 1. Notice that the results given here are
approximations but I did them at the very end of the process. Moreover these results are
essential for the proof of Theorem 5.

Now we want to identify if there exists such a union of disks which can be a minimizer of
a given eigenvalue. For that, we use one more time iteratively Theorem 9 to find candidates.
We can then compare with results of Fig. 1 to determine if the union candidate is better than
any other union of disks. If the candidate is not in Fig. 1 then it cannot be a minimizer by
construction. We also have the possibility to compare with the eigenvalues of the rectangles
since the formulae are known. In fact, recall that if Ω = [0, L] × [

0, 1
L

]
then λm,n =

π2
(

m2

L2 + L2n2
)

,∀m, n ≥ 1.

With these observations and results of previous sections we can establish Theorem 5.

Proof of Theorem 5 – Suppose that Ω∗
k is a union of two disjoint disks. According to

Theorem 9, there exists an 1 ≤ i ≤ k such that Ω∗
i and Ω∗

n−i are both disks. We deduce
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λ1 18.169

λ2 36.337

λ3 46.125

λ4 64.294

λ5 82.462

λ6 92.250

λ7 110.418

λ8 127.884

λ9 138.375

λ10 154.625

λ11 172.793

λ12 180.903

λ13 199.071

λ14 217.239

λ15 227.027

λ16 241.711

λ17 241.711

λ18 259.880

Fig. 1 Disjoint unions of disks, eventually the disk, of measure one which minimizes eigenvalues of the
Laplacian with Dirichlet boundary condition and their approximated values

that at best i ∈ {1, 3} and n − i ∈ {1, 3}. Therefore if k /∈ {2, 4, 6} λk is not minimized
by a union of two disjoint disks.

– Suppose that Ω∗
k is a union of three disjoint disks. According to Theorem 9, there exists

an 1 ≤ i ≤ k such that Ω∗
i is a disk and Ω∗

n−i is a union of two disjoint disks. It follows
that at best i ∈ {1, 3} and n − i ∈ {2, 4, 6}. Therefore, the only possibilities are k = 3,
k = 5, k = 7 and k = 9.
But we have to exclude k = 3 since the eigenvalue of one disk is smaller than for any
union of disks (cf. Fig. 1).
Then, Antunes and Freitas in [3] found the minimizing rectangle for λ5 (whose lengths
are (5/3)1/4 and its inverse). The eigenvalue of this rectangle (�81.5463) is smaller than
the one for any union of three disks (�82.462 for the best union of three disks from
Fig. 1).
So if k /∈ {7, 9} λk is not minimized by a union of three disjoint disks.

– Suppose that Ω∗
k is a union of four disjoint disks. We have here to consider two cases:

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a disk and Ω∗

n−i is a union of three
disjoint disks. It follows that at best i ∈ {1, 3} and n − i ∈ {7, 9}. Therefore, the only
possibilities are k = 8, k = 10 and k = 12,

– there exists an 1 ≤ i ≤ k such that Ω∗
i and Ω∗

n−i are both unions of two disjoint
disks. It follows that at best i ∈ {2, 4, 6} and n − i ∈ {2, 4, 6}. Therefore, the only
possibilities are k = 4, k = 6, k = 8, k = 10 and k = 12.

But for all these last three eigenvalues, the eigenvalue of one disk is smaller than the ones
of any union of disks (cf. Fig. 1).
On the other hand λ4 and λ6 are smaller in the case of the union of two disks than in the
case of a union of four disks (cf. Fig. 1).
So ∀k, λk is not minimized by a union of four disjoint disks.

– Suppose that Ω∗
k is a union of five disjoint disks. We have here to consider two cases:

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a disk and Ω∗

n−i is a union of four disjoint
disks. From previous considerations this is not possible,

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a union of two disjoint disks and Ω∗

n−i is a
union of three disjoint disks. It follows that at best i ∈ {2, 4, 6} and n − i ∈ {7, 9}.
Therefore the only possibilities are k = 9, k = 11, k = 13 and k = 15.
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But λ9 is smaller in the case of a union of three disks than in the case of a union of five
disks (cf. Fig. 1). Likewise, λ11, λ13 and λ15 are smaller in the case of a union of two
disks than in the case of a union of five disks (cf. Fig. 1).
So ∀k, λk is not minimized by a union of five disjoint disks.

– Suppose that Ω∗
k is a union of six disjoint disks. We have to consider three distinct cases:

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a disk and Ω∗

n−i is a union of five disjoint
disks. This is not possible from previous items,

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a union of two disks and Ω∗

n−i is a union
of four disjoint disks. This is not possible from previous items,

– there exists an 1 ≤ i ≤ k such that Ω∗
i and Ω∗

n−i are both unions of three disjoint
disks. It follows that at best i ∈ {7, 9} and n − i ∈ {7, 9}. Therefore, the only
possibilities are k = 14, k = 16 and k = 18.

But λ14 is smaller in the case of a union of three disks than in the case of a union of six
disks (cf. Fig. 1). Likewise, λ16 (resp. λ18) is smaller in the case of one disk (resp. the
union of two disks) than in the case of a union of six disks (cf. Fig. 1).
So ∀k, λk is not minimized by a union of six disjoint disks.

– Suppose that Ω∗
k is a union of m disjoint disks with m > 6. The different possibilities

are:

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a disk and Ω∗

n−i is a union of m − 1 > 5
disjoint disks, but we see by induction that it is not possible,

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a union of two disjoint disks and Ω∗

n−i is a
union of m − 2 > 4 disjoint disks, but we see by induction that it is not possible,

– there exists an 1 ≤ i ≤ k such that Ω∗
i is a union of three disjoint disks and Ω∗

n−i is
a union of m − 3 > 3 disjoint disks, but we see by induction that it is not possible,

– the other possibilities of unions of disks for Ω∗
i are not possible.

So ∀k, λk is not minimized by a union of more than 6 disjoint disks. ��

Theorem 5 can be improved using numerical results. In fact if we find shapes, not neces-
sarily explicit, for which the eigenvalues are less than the ones of the best union of disks, then
these unions cannot be minimizers. For that we can use the numerical results of Oudet [14],
the improved ones of Freitas and Antunes [2] or the more recent ones given in Fig. 2. These
last results were obtained by Oudet and me using finite element methods and are consistent
with the results of Freitas and Antunes.

We then can see that shapes exist for which λ6 and λ7 are smaller than for any union of
disks. Taking this into account in the previous proof simplify it and the possibility for λ9

disappears.

Remark 7 Notice that Antunes and Freitas used a method different from the one used by
Oudet and me to obtain these shapes. Moreover both these methods ensure that the numerical
values are greater than the real ones.

5 Proof of Theorem 7

The main idea of the proof of Theorem 5 can be used to show Theorem 7. For that we first
need to state a corollary of Theorem 9 in the case of local minima.

123



302 Ann Glob Anal Geom (2015) 47:285–304

i Ω∗
i λ∗

i

1 18.169

2 36.337

3 46.126

4 64.306

5 78.166

i Ω∗
i λ∗

i

6 88.502

7 106.211

8 118.970

9 132.493

10 142.746

i Ω∗
i λ∗

i

11 159.821

12 173.035

13 186.977

14 199.286

15 209.954

Fig. 2 Shapes numerically obtained suggested as minimizers of the eigenvalues of the Laplacian with Dirichlet
boundary condition. These results obtained by Oudet and me are consistent with the ones obtained by Freitas
and Antunes in [2] (cf. Remark 7)

Let us denote λ∗
k a local minimum of λk achieved by Ω∗

k , open set of measure 1.

Corollary 1 (Local version of Theorem 9) Let λ∗
n be a local minimum of λn achieved by Ω∗

n
with |Ω∗

n | = 1. Suppose that Ω∗
n = Ω1 ∪ Ω2 (disjoint) with |Ω1| > 0 and |Ω2| > 0. Then

there exists 1 ≤ i < n such that

1. Ω1 is a local minimizer of λi and Ω2 is a local minimizer of λn−i ,
2. if λ∗

i = |Ω1|2/N λi (Ω1) and λ∗
n−i = |Ω2|2/N λn−i (Ω2) then (λ∗

n)N/2 = (λ∗
i )

N/2 +
(λ∗

n−i )
N/2,

3. if Ω∗
i = Ω1

|Ω1|1/N and Ω∗
n−i = Ω2

|Ω2|1/N then

Ω∗
n =

[(
λ∗

i

λ∗
n

)1/2

Ω∗
i

]⋃[(
λ∗

n−i

λ∗
n

)1/2

Ω∗
n−i

]
(disjoint union).

Proof of Corollary 1 The proof of this corollary is based on the proof of Theorem 5 as we
can find in [7]. Thus we will not do details here.

We first show that there exists an 1 ≤ i < n such that λi (Ω1) = λn−i (Ω2) = λ∗
n with the

same arguments as in pp. 74–75 of [7].
Suppose that λi (Ω1) is not a local minimum of λi . So there exists a vector field V such

that ∀ε > 0 λi (Ω1) > λi (Ω1 + εV ) with |Ω1| = |Ω1 + εV |.
Let now be η > 0 and Ω ′′

1 = (1−η)Ω ′
1 = (1−η)(Ω1+εV ). For η small enough, λi (Ω

′
1) <

λi (Ω
′′
1 ) < λn−i (Ω2). Let be Ω ′ = Ω ′′

1 ∪ Ω ′
2 with Ω ′

2 = κΩ2 such that |Ω ′′
1 | + |Ω ′

2| = 1.
Thus λn−i (Ω2) > λn−i (Ω

′
2) and so λn(Ω ′) = max{λn−i (Ω

′
2), λi (Ω

′′
1 )} < λn−i (Ω2) = λ∗

n ,
which contradicts the hypothesis of local minimality of Ω∗

n .
Thus, λi (Ω1) is a local minimum of λi with the constraint measure |Ω1|.
We similarly show that λn−i (Ω2) is a local minimum of λn−i with the constraint measure

|Ω2|.
Now let us define Ω∗

i = Ω1
|Ω1|1/N . It is easy to show that |Ω∗

i | = 1 and λi (Ω
∗
i ) = λ∗

i =
|Ω1|2/N λ∗

n .
Similarly, forΩ∗

n−i = Ω2
|Ω2|1/N we have |Ω∗

n−i | = 1 andλn−i (Ω
∗
n−i ) = λ∗

n−i = |Ω2|2/N λ∗
n .

Since |Ω1| + |Ω2| = 1, (λ∗
i )

N/2 + (λ∗
n−i )

N/2 = (λ∗
n)N/2.
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Finally let us define

Ω̃ =
⎡
⎣
(

(λ∗
i )

N/2

(λ∗
i )

N/2 + (λ∗
n−i )

N/2

)1/N

Ω∗
i

⎤
⎦⋃⎡

⎣
(

(λ∗
n−i )

N/2

(λ∗
i )

N/2 + (λ∗
n−i )

N/2

)1/N

Ω∗
n−i

⎤
⎦ .

With arguments similar to [7] we show that |Ω̃| = 1 and λn(Ω̃) = λ∗
n . ��

Before giving the proof of Theorem 7, let us exhibit the result for the first values of n.

A union of

∣∣∣∣∣∣∣
1
2
...

∣∣∣∣∣∣∣
disjoint disks can locally minimize at most

∣∣∣∣∣∣∣
λ1 and λ3.

λ2, λ4 and λ6.
...

Proof of Theorem 7 Let us do an induction. The result is clearly true for n = 1 from what
precedes. Suppose now that the theorem is true from 1 to n − 1 and let us prove that it is true
for n. We are looking for ks for which λk can possibly be locally minimized by a disjoint
union of n disks. So there exists an 1 ≤ m ≤ n such that Ω = Ω1 ∪ Ω2 with Ω1 a disjoint
union of m disks and Ω2 a disjoint union of n − m disks. According to Corollary 1, Ω can
be a local minimizer of λi only if i = i1 + i2 where Ω1 is a local minimizer of λi1 and Ω2 is
a local minimizer of λi2 . From the hypothesis of the induction we have that

i1 ∈ {m + 2l1; l1 = 0, . . . , m} and i2 ∈ {n − m + 2l2; l2 = 0, . . . , (n − m)}.
Therefore,

i = i1 + i2 ∈ {n + 2l; l = 0, . . . , n} (independent of m)

which concludes this proof. ��
Remark 8 This theorem does not say that these unions of disks are local minimizers of the
corresponding eigenvalue but only that it is possible.
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