Erratum to: Sharp upper bound for the first eigenvalue

Raveendran Binoy • G. Santhanam

Published online: 8 November 2014
© Springer Science+Business Media Dordrecht 2014

Erratum to: Geom Dedicata (2014) 169:397-410 DOI 10.1007/s10711-013-9863-0

In our paper "Sharp upper bounds for the first eigenvalue" [1], we proved the following theorem.

Theorem 1 Let $\left(\bar{M}, d s^{2}\right)$ be a non compact rank-1 symmetric space and M be a closed hypersurface in \bar{M} which encloses the bounded region Ω. Then

$$
\lambda_{1}(M) \leq \lambda_{1}(S(R))\left(\frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}\right)+\frac{1}{\sinh ^{2} R \operatorname{Vol}(S(R))} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2}
$$

where $R>0$ is such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$; here $B(R)$ and $S(R)$ are the geodesic ball and geodesic sphere respectively of radius R.

Further, the equality holds if and only if M is a geodesic sphere of radius R.
The proof of this theorem uses the following inequality of [1]: For a closed hypersurface M in the noncompact rank- 1 symmetric space \bar{M},

$$
\lambda_{1}(M) \int_{M} f^{2} d m \leq \int_{M}\left\|\nabla^{M} f\right\|^{2} d m+\int_{M} f^{2}\left(\lambda_{1}(S(r))-\sum_{i=1}^{k n}\left(\frac{\partial f_{i}}{\partial \eta}\right)^{2}\right) d m
$$

where $f=\sinh r$.

The online version of the original article can be found under doi:10.1007/s10711-013-9863-0.

[^0]Substituting the value of $\lambda_{1}(S(r))$ and applying Lemmas 1 and 2 of [1], we get

$$
\begin{align*}
\lambda_{1}(M) \operatorname{Vol}(S(R)) \sinh ^{2} R \leq & (k n-1) \operatorname{Vol}(M)-(k-1) \tanh ^{2} R \operatorname{Vol}(S(R)) \tag{0.1}\\
& +\int_{M}\left\|\nabla^{M} \sinh r\right\|^{2} d m
\end{align*}
$$

when $k=1$, that is for $\bar{M}=\mathbb{H}^{n}$, we get the required inequality stated in Theorem 1 .
In a later inspection, we observed that when $k>1$, we can not assert the validity of the inequality

$$
\begin{gathered}
\left.\lambda_{1}(M) \operatorname{Vol}(S(R)) \sinh ^{2} R \leq\left((k n-1)-(k-1) \tanh ^{2} R\right)\right) \operatorname{Vol}(M) \\
+\int_{M}\left\|\nabla^{M} \sinh r\right\|^{2} d m
\end{gathered}
$$

from Eq. (0.1). This was used to complete the proof Theorem 1.
As the above inequality does not hold in general, the Theorem 1 stated as above needs correction. The correct statement and proof of the theorem are as follows.

Theorem 2 Let $\left(\bar{M}, d s^{2}\right)$ be a non-compact rank-1 symmetric space with $\operatorname{dim} \bar{M}=k n$ where $k=\operatorname{dim}_{\mathbb{R}} \mathbb{K} ; \mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$ or \mathbb{C} a. Let M be a closed hypersurface in \bar{M} which encloses the bounded region Ω. Then for $k=1$, we have

$$
\frac{\lambda_{1}(M)}{\lambda_{1}(S(R))} \leq \frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}+\frac{1}{(n-1) \operatorname{Vol}(S(R))} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2}
$$

and for $k>1$, we have

$$
\begin{aligned}
\lambda_{1}(M) \leq & \lambda_{1}(S(R))\left(\frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}\right)+\frac{k-1}{\cosh ^{2} R}\left(\frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}\right) \\
& +\frac{1}{\sinh ^{2} R \operatorname{Vol}(S(R))} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2}
\end{aligned}
$$

where $R>0$ is such that $\operatorname{Vol}(\Omega)=\operatorname{Vol}(B(R))$; here, $B(R)$ and $S(R)$ are the geodesic ball and geodesic sphere, respectively, of radius R. Further, the equality holds in above two inequalities if and only if M is a geodesic sphere of radius R.

Proof When $k=1$, the inequality (0.1) reduces to

$$
\lambda_{1}(M) \operatorname{Vol}(S(R)) \sinh ^{2} R \leq(n-1) \operatorname{Vol}(M)+\int_{M}\left\|\nabla^{M} \sinh r\right\|^{2} d m .
$$

Using the fact that $\lambda_{1}(S(r))=\frac{n-1}{\sinh ^{2} r}$ for all $r>0$, we get the required result

$$
\begin{equation*}
\frac{\lambda_{1}(M)}{\lambda_{1}(S(R))} \leq \frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}+\frac{1}{(n-1) \operatorname{Vol}(S(R))} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2} \tag{0.2}
\end{equation*}
$$

for hypersurfaces in \mathbb{H}^{n}.

When $k>1$, we get

$$
\begin{align*}
\lambda_{1}(M) \leq & \left(\frac{k n-1}{\sinh ^{2} R}-\frac{k-1}{\cosh ^{2} R}\right) \frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))} \tag{0.3}\\
& +\frac{1}{\operatorname{Vol}(S(R))}\left(\frac{k-1}{\cosh ^{2} R} \operatorname{Vol}(M)+\frac{1}{\sinh ^{2} R} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2}\right) \\
= & \lambda_{1}(S(R))\left(\frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}\right)+\frac{k-1}{\cosh ^{2} R}\left(\frac{\operatorname{Vol}(M)}{\operatorname{Vol}(S(R))}\right) \\
& +\frac{1}{\sinh ^{2} R \operatorname{Vol}(S(R))} \int_{M}\left\|\nabla^{M} \sinh r\right\|^{2} .
\end{align*}
$$

The equality in (0.2) and in (0.3) follows from the equality criterion in Lemmas 1 and 2 and $\frac{\partial f_{i}}{\partial \eta}(q)=0$ for all $i=1, \ldots, k n$ for all points $q \in M$. This happens if and only if M is a geodesic sphere.

References

1. Binoy, R., Santhanam, G.: Sharp upper bound for the first eigenvalue. Geometriae Dedicata 169(1), 397410 (2014)

[^0]: R. Binoy (\boxtimes)

 Institut de mathématiques, Universit de Neuchâtel, Neuchâtel, Switzerland e-mail: binoy1729@gmail.com
 G. Santhanam

 Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India e-mail: santhana@iitk.ac.in

